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Abstract—Registration of an image, the query or reference, to a database
of rotated and translated exemplars constitutes an important image re-
trieval and indexing application which arises in biomedical imaging, digital
libraries, georegistration, and other areas. Two important issues are the
specification of a class of discriminatory and generalizable image features
and determination of an appropriate image-dissimilarity measure to rank
the closeness of the query image with respect to images in the database.
The theoretically best set of features and dissimilarity measure are those
which can be implemented with the lowest misregistration error rate. In
this paper we study a method based on feature discrimination using feature
coincidence trees and mutual �-information measures of feature correla-
tion. Feature coincidence trees represent the commonality between pairs of
images using joint histograms of many simple features, or tags, which are
organized in a data structure similar to that Amit and Geman’s random-
ized trees for shape recognition. The mutual alpha-information measure is
a ranking discriminant applied to the joint histograms which is motivated
by a large deviations framework for detection error rates. We illustrate the
methodology in the context of registering ultrasound scans of human breast
images.

I. INTRODUCTION

The focus application of this paper is co-registration of a pair
of ultrasound images of the breast, called the reference and the
secondary images, respectively. Accurate registration of 3D
breast ultrasound image volumes is an essential part of whole
breast imaging for detection of asymptomatic breast lesions.
Such lesions are missed by community practitioners in up to
45% of women with dense breasts. The image registration prob-
lem falls under the general area of indexing databases of images
� � ����

�
��� for the purposes of finding the best match to a

reference image ��. In this context the reference corresponds
to a reference image and the database corresponds to a set of
transformed versions of the secondary image, e.g. rotation and
translation. To date the most effective methods for medical im-
age registration have been pixel and voxel based and include:
color histogram matching, texture matching using cross corre-
lation, and, more recently, mutual information maximization on
pixel coincidence histograms [11] as used in Radiology at the
University of Michigan (the MIAMI-Fuse c� registration algo-
rithm). While these methods are adequate for some applications,
they are overly sensitive to spurrious image components such as
speckle, shear/compressive tissue deformation, and shadowing
which are ubiquitous to ultrasound breast imaging.

We present an approach to image registration which gets
around the disadvantages of pixel based registration and index-
ing techniques such as the ones previously mentioned. The key
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to our approach is the inclusion of highly specific image features
and use of a generalized information divergence matching crite-
rion based on the Chernoff bound of detection theory. In this ap-
proach we select the most relevant and robust features (curves,
edges, textures and simple spatial relations) from a large breast
image database. These features are organized in an efficient hi-
erarchical database, which we call a feature tree. To register a
target image to a reference image, coincidence histograms of the
features captured by the feature tree for the reference and target
images are constructed. The coincidence histograms are used to
register the images through a generalized mutual information di-
vergence measure, called the mutual �-information. This algo-
rithm specializes to the standard mutual information (MIAMI-
Fuse c�) algorithm when the features are the set of single-pixel
gray levels and � � �. The advantages of our approach are:
1) use of the generalized mutual �-information can lead to a
more stable objective function; and 2) use of higher order fea-
tures captures non-local spatial information which is ignored in
the standard single pixel MIAMI-Fuse c� algorithm and can lead
to more accurate and robust image registration.

We investigate extraction of two types of low dimensional lo-
cal features, called tags, to populate the feature tree; one based
on gray-scale adaptive thresholding and the other on indepen-
dent component analysis (ICA). Gray scale thresholding is a fast
and simple adaptive quantization scheme used by Geman and
Koloydenko [5]. ICA is an iterative method which is closely re-
lated to the projection pursuit technique of non-linear regression
and was applied to images by Olshausen, Hyvärinen and others
[8], [6]. The database used in this paper was a set of 3D ultra-
sound scans of the left or right breast of 21 female subjects, aged
21-49 years, going to biopsy for possible breast cancer. The
lower age range was chosen to provide a sample of more com-
plex breasts, which are also somewhat more difficult to diagnose
than typical breasts of older women. For clarity of presentation
we focus on registration of 2D slices. The extension to 3D voxel
registration is straightforward but will be presented elsewhere.

II. MUTUAL �-INFORMATION AS A SIMILARITY MEASURE

Let �� be a the reference image and consider a database � �,
� � �� � � � �� of images generated from the secondary image
to be indexed relative to the reference. Let � �, �� be feature
vectors extracted from ��, �� and define the joint histogram
����� ��� and the marginal histograms �����, �����. The sim-
ilarity between features �� and �� can be gauged by the dif-
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ference between ����� ��� and the product ���������� which
measures statistical dependence or mutual information (MI).
The mutual�-information is defined as the �-divergence of frac-
tional order � � ��� �� between ����� ��� and ���������� [2]
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The �-divergence is equal to the Hellinger distance squared
when � � ���, and to the Kullback-Liebler (KL) di-
vergence [7] when � � �. The case � � �
corresponds to the standard Shannon mutual information�

�����
��
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�� �	
���
�� 
������
����
���� used by Viola and

Wells [11] and others for image registration. Note that this is
a different usage from the KL divergence between ��� �� and
����� which has been proposed as an indexing measure by sev-
eral authors [9], [4].

The mutual �-information can be justified as an appropriate
registration function by large deviations theory. Define the aver-
age probability of error associated with deciding whether� � and
�� are dependent or independent random variables. i.e. decid-
ing between �� � ��� �� � ��
�� 
�� and �� � ��� �� �

��
����
�� based on a set of i.i.d. samples �
���
� � � � � � �

���
� ,

 � �� �:
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where ���� and ���� are Type II and Type I errors, respectively,
of the test of �� vs. ��. Then [3]:
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Thus the mutual �-information gives the asymptotically opti-
mal rate of exponential decay of the error probability for testing
�� vs ��. Note that the Bayes classification error probability
above is different from that defined by Vasconcelos etal [10] for
optimal decision-theoretic indexing.

III. FEATURE COINCIDENCE TREES

First a universal set of features is selected according to certain
criteria discussed below. These features are organized into bins
on a tree-structured database for which the complexity of the
feature indexed at each node increases as tree depth increases.
Figures 1 and 2 illustrate the feature tree data structure for �	 �
subimages. The two images are each dropped down a feature
tree and incidences and coincidences of features at all of the
nodes of the two trees are counted. The counter is incremented
for every coincidence of a particular feature pair occurring at a
common position within each of the two images. This results
in a histogram called the feature coincidence histogram denoted
������ ���. The histogram marginals ������ and ������ of the
coincidence histogram are extracted by summing over one of
its arguments. These are then used in the mutual �-information
formula (1) to come up with a registration score for the images.

Root Node 

Depth 1 

Depth 2 

Not examined
     further 

Fig. 1. Part of feature tree data structure.

Terminal nodes (Depth 16) 

Fig. 2. Leaves of feature tree data structure.

Our general feature selection and organization scheme is sim-
ilar to the randomized tree classifier structures introduced by
Amit and Geman [1] used for shape recognition from binary
transcriptions of handwriting. A set of primitive local features,
called tags, are selected which provide a coarse description of
the topography of the intensity surface in the vicinity of a pixel.
Local image configurations, e.g. �	 � pixel neighborhoods, are
captured by coding each pixel with labels derived from the tags.
Non-local spatial features are then captured by cataloging pairs
of tags which are in particular relative spatial configurations.

A. Tag Selection via Adaptive Thresholding

Adaptive thresholding is a quantization scheme described by
Geman and Koloydenko [5] which was introduced to study the
invariant characteristics of natural images. Let � be a posi-
tive granularity parameter. The quantized value assigned to a
pixel within a �	 � sub-image depends on the gray values of its
neighbors. The darkest pixel(s) are assigned 0, the next bright-
est pixel(s) are assigned 0 if the difference is less than � and
label 1 otherwise, the next brightest pixel(s) are assigned label
2 if the difference is less than �, and so on. Using this scheme
on our ultrasound breast image database tags associated with the
relatively uniform background areas (dark or bright) with small
spatial variances are correctly classified as speckle and could be
easily eliminated.

134 different tag types were identified among the samples.
The number of tag types was controlled by selectively travers-
ing the decision tree so that it was balanced, and by imposing
constraints on the tag types. Tags were required to have fewer
than 14 pixels of the same intensity, to avoid spurious tags aris-
ing from speckle. Also, tags were required to have at least two
different intensity types within the center four pixels. Each im-
age was block-quantized and dropped down the partition tree.
The pairwise coincidences of the tag types at the leaves were
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recorded in a histogram over ’tag space’. If an image block did
not correspond to any of the tag types, then the pixel was not
used in the image registration/retrieval algorithm.

B. Tag Selection via ICA

Here we adopt the ICA approach of [8] to infer an optimal
basis which decomposes the ultrasound image � � into sparse
approximately statistically independent components �� ��:

�� �

	�

���

�����

The basis elements ���� are selected from an over-complete lin-
early dependent basis using the training set of ultrasound im-
ages. The coefficients ��� are selected according to the mini-
mum description length (MDL) criterion. Here ICA was imple-
mented using Olshausen’s SPARSENETcode (available from
http://redwood.ucdavis.edu/bruno/ ).

Fig. 3. Estimated ICA basis set for ultrasound breast image database

Using the ICA algorithm a set of � 	 � basis vectors were
learned from 10 consecutive image slices extracted from a sin-
gle ultrasound volume scan of the breast (Case151). 64 of the
ICA basis vectors are shown in Fig. 3. Only basis elements that
corresponded to distinct edge or texture information in the asso-
ciated basis were retained, resulting in a total of approximately
256 different types. The tag assigned to a particular pixel is the
feature type that has least Euclidean distance from the �	� sub-
image centered there. An alternative method, not studied here,
is to project sub-images of the reference and secondary images
onto the ICA basis and use the residuals in the joint histogram.

C. Spatially Organized Tags

By including selected spatial relationships between tags as
part of the feature set, one can enhance registration performance.
We capture these relationships by superimposing a disk over
each pixel and detecting the simultaneous occurrence in the disk

of a tag of given type at the center of the sector and another tag
of given type in some outlying spatial sector, e.g. in sectors NW,
NE, SE, SW. This additional spatial information can be used to
discriminate and eliminate undesired regions, e.g. shadow re-
gions, from each image and also to introduce useful local geo-
metric invariances into the registration process. Local invariance
is an attractive property in non-rigid image registration, since it
allows pixel neighborhoods (tags) to undergo relative displace-
ment without affecting the overall registration. For example lo-
cal invariance allows the registration algorithm to be insensitive
to small relative offsets between boundaries due to small com-
pression deformations in one of the two images.

IV. NUMERICAL EXAMPLE

Fig. 4. Bar images with contrast 1.02, 1.07 and 1.78. Background is low vari-
ance white Gaussian while bar is uniform intensity.

We first illustrate the advantages of using feature coincidence
trees for a simple example. In Fig. 4 three simple �� 	 �� bar
images are shown at varying contrast ratios. The backgrounds
of all three images are independent realizations of (truncated)
Gaussian distributed (mean=128, variance =6) textures. The
mutual information criterion (� � �), based on both single
pixel tags and on � 	 � adaptively thresholded tags, is calcu-
lated for each rotated and bilinearly interpolated pair of images
over rotation angles falling between
� degrees. Curves in Fig.
5 show that, as contrasted to the tag-based MI, the single pixel
MI has non-monotonic objective function with peak value de-
pendent on constrast. For the tag based MI 25 edge and corner
tag types are used in this simulation which were determined by
the adaptive thresholding. The plots suggest that significant im-
provement in MI resolution can be achieved by combining �	�
tags and single pixel gray levels in the feature set.

V. REGISTRATION RESULTS

Three test cases were chosen from the breast database. These
will be referred to as Case 151, Case 142 and Case 162, shown
in Figs 6. The image slice chosen from Case 151 (image slice
40) had significant connective tissue structure. Case 142 (slice
35) had a distinct malignant tumor, while Case 162 (slice 60)
was degraded due shadowing. We simulated the decorrelating
effect of speckle by registering a slice to a rotated version of a
proximal but different slice (approximately 2mm away along the
depth of the scan). Shown in Table I are resolution optimizing �
values and resultant optimal peak resolution values of the mutual
�-information as measured by an estimate of curvature of �� �
��	������� ��������������� in th evicinity of its peak over
�. Note that the resolution optimizing value of � are close to 1
only in three out of the 12 cases studied. Note also that all of

12



−5 −4 −3 −2 −1 0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Degree of rotation

M
ut

ua
l I

nf
or

m
at

io
n 

( 
α 

~
=

 1
 )

Single pixel based MI peak with submergence of structure in background

intensity ratio = 1.02
intensity ratio = 1.07
intensity ratio = 1.78

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

1.1

1.2

Degree of rotation

M
ut

ua
l I

nf
or

m
at

io
n 

( 
α 

~
=

1 
)

Tag based MI peak with submergence of structure in background

intensity ratio = 1.02
intensity ratio = 1.07
intensity ratio = 1.78

Fig. 5. Upper curves are single pixel based MI trajectories while lower curves
are �� � tag based MI trajectories for bar images.

151 142 162 151/8 151/16 151/32
pixel ������� ������� �������
tag ������� ������� ����	��

spatial-tag �����	��� �������� �������
ICA ��
���	 ��
���� �����
�


TABLE I

NUMERATOR =OPTIMAL VALUES OF � AND DENOMINATOR = MAXIMUM

RESOLUTION OF MUTUAL �-INFORMATION FOR REGISTERING VARIOUS

IMAGES (CASES 151, 142, 162) USING VARIOUS FEATURES (PIXEL, TAG,

SPATIAL-TAG, ICA). 151/8, 151/16, 151/32 CORRESPOND TO ICA

ALGORITHM WITH 8, 16 AND 32 BASIS ELEMENTS RUN ON CASE 151.

the feature based methods have significantly higher resolution
than the standard single pixel (column labeled “pixel” in Table
I) registration method. Systematic methods for determining the
optimal value of � is an area for future work as is the issue of
optimally combining the gray level and tag features studied here.
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