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ABSTRACT

The type of representation used in describing shape can have
a significant impact on the effectiveness of a recognition
strategy. Shape has been represented by its bounding curve
as well as by the medial axis representation which captures
the regional interaction of the boundaries. Shape matching
with the former representation is achieved by curve match-
ing, while the latter is achieved by matching skeletal graphs.
In this paper, we compare the effectiveness of these two
methods using approaches which we have developed re-
cently for each. The results indicate that skeletal matching
involves a higher degree of computational complexity, but
is better than curve matching in the presence of articulation
or rearrangement of parts. However, when these variations
are not present, curve matching is a better strategy due to its
lower complexity and roughly equivalent recognition rate.

1. INTRODUCTION

The type of shape representation used can have a signifi-
cant impact on the effectiveness of a recognition strategy. A
successful recognition technique has to be robust to visual
transformations like articulation and deformation of parts,
viewpoint variation, occlusion. Thus, the shape represen-
tation has to effectively capture the variations in shape due
to these transformations. In previous recognition applica-
tions, shapes have been represented as curves [1, 2], point
sets or feature sets, and by medial axis [3, 4, 5, 6, 7], among
others. This paper compares two techniques for matching
shapes, one based on matching their outline curves [8] and
the second based on matching their shock graphs [9].

In many object recognition and content-based image in-
dexing applications, the objects are represented by their out-
line curves and matched. Outline curves typically do not
represent a notion of the interior of the shapes. Despite this
well-known drawback, it has been effectively used in certain
applications [1, 10, 2]. Matching typically involves finding
a mapping from one curve to the other that minimizes an
“elastic” performance functional, which penalizes “stretch-
ing” and “bending” [2]. The minimization problem in the
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discrete domain is transformed into one of matching shape
signatures with curvature, bending angle, or orientation as
attributes [1, 10]. The curve-based methods in general typ-
ically suffer from one or more of the following drawbacks:
asymmetric treatment of the two curves, lack of rotation and
scaling invariance, and sensitivity to articulations and defor-
mations of parts.

Shapes have also been represented by the medial axis or
its variants, which represent both the interior and the out-
line of the shape. Medial axis has been effectively used
for matching shapes [3, 7]. The shock graph is the me-
dial axis endowed with geometric and dynamics informa-
tion, and is a richer descriptor of shape than the medial
axis graph, since its graph topology is more in accord with
our perceptual notions of shape. Shock graph matching has
been used in [4, 5, 6] for object recognition and image in-
dexing tasks. A recent approach [9] uses an edit-distance
between shock graph to match shapes effectively. However,
the use of graph matching techniques in general is computa-
tionally more intensive than curve matching. This gives rise
to the question of whether the additional effort required in
skeletal matching is justified by the improvements in recog-
nition rates for particular applications. This paper compares
the matching of shapes based on curves and skeletal graphs
in general and specifically for the recognition task.

2. CURVE MATCHING

In this section, we briefly review the outline-based recogni-
tion method, which is based on finding the minimum-cost
deformation of one curve to the other. The cost of the de-
formation is defined as the sum of “stretching” and “bend-
ing” energies [2]. The basic premise of the approach is that
the cost of the deformation can be expressed as the sum of
the cost of deforming infinitesimal subsegments, which is
defined by length and curvature differences as � � ���� �

��� � ����� � ���, where � is a scale-dependent constant.
The problem is then cast as minimizing an energy func-
tional over all possible alignments between the two curves.
The notion of an alignment curve is introduced to ensure
the symmetric treatment of the two curves, and the optimal
alignment is found using an efficient dynamic-programming
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Fig. 1. This figure illustrates that the curve matching al-
gorithm works well in presence of view-point variation (a)
and articulation and deformation of parts (b). The alignment
is indicated by arbitrarily coloring portions of the aligned
curves by identical colors with a number indicating the each
portion’s end point. Observe that the matches are intuitive,
e.g., hands, legs and head of the dolls correspond.

algorithm.
This technique works well in the presence of commonly

occurring visual transformations, modest amounts of view-
point variation, affine transformations, and under some ar-
ticulation and deformations like stretching and bending of
parts Figure 1. It has been applied to several applications
including hand-written character recognition, prototype for-
mation, and morphing [8].

3. SHOCK GRAPH MATCHING

In this section we briefly review the matching of shapes
which are represented by the shock graphs. Shapes are viewed
as points in a shape space and the distance between shapes
is defined as the minimum cost of the deformation path con-
necting one shape to another. To make this search practical,
an equivalence class on shapes is defined, where all shapes
with the same shock graph topology are equivalent. In addi-
tion, all the deformation paths having the same set of transi-
tion points (boundaries between shape equivalence classes)
are defined as equivalent. These shock transitions are points
where the shock graph topology changes, and have been
formally classified [11]. In the graph domain, each shock
transition is represented by an “edit” operation on the shock
graph, and there are four types of edit operations: ��� the
splice operation deletes a shock branch and merges the re-
maining two; ���� the contract operations deletes a shock
branch connecting two degree-three nodes; ����� the merge

(a)

(b)

(c)

Fig. 2. This figure illustrates that the shock graph matching
algorithm works well in presence of view-point variation
(a) and articulation and deformation of parts (b) and occlu-
sion (c). Same colors indicate matching shock branches,
and grey colored branches in the shock graphs have been
spliced. The matching is intuitive in all cases. Observe,
in particular, how the rider on the horse is pruned when
matched against horse by itself.

operations combines two branches at a degree-two node;
���� we also define a deform edit to relate two shapes in
the same shape cell, ��	�, shapes with the same shock graph
topology but with different attributes. We associate a cost
to each edit operation, and then find the minimum-cost se-
quence of edits by an efficient polynomial-time graph edit
distance algorithm developed in [12].

The shock graph matching technique works well in the
presence of articulation, deformation of parts, occlusion,
presence of shadow and highlights, boundary noise, and
viewpoint variation, Figure 2.

4. CURVES VS SKELETONS

This section discusses our experience with the use of curve
and shock-graph based representations for matching shapes.
The major advantage of directly matching the outline curves
of shapes is the computational efficiency of curve match-
ing, which is an order of magnitude faster than shock graph
matching. Curve matching is the natural choice in appli-
cations where the item to be matched is inherently one-
dimensional, 	�
�, handwritten character recognition, sig-
nature verification 	���. However, we have identified some
fundamental limitations in using a curve-based representa-
tion for general purpose object recognition. Specifically, a
well-known shortcoming of curve-based representation is
that it does not represent the interior of a shape. Hence,
curve matching cannot easily distinguish between those per-
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Fig. 3. Curves do not have a notion of the interior of the shape, and hence curve matching cannot find the intuitive corre-
spondence in some cases. (a) The optimal matching is found for a pair of noisy squares, where two of the sides are replaced
by a “wavy” lines. Curve matching aligns the wavy sides, ignoring the spatial information that shows a square. Shock-
graph matching gives intuitive correspondence. (b)-(d) illustrates the sensitivity of the curve matching to spatial arrangement
of parts and how shock-graph matching avoids the problem. (b) Two ellipses with protrusions. Curve matching correctly
matches the larger protrusion, as it lies on the same side of the ellipse, but fails in the presence of the smaller protrusions that
on opposite sides of the ellipse. Shock-graph matching splices out the small protrusions on different sides and matches the
ellipses intuitively. (c) The missing finger on the hand on the left and the small bump of the hand on the right causes curve
matching to give an un-intuitive match, where the bump is matched to a finger. On the other hand, shock-graph matching
gives the intuitive correspondence. (d) Occlusion of part of the tail of the fish on the right affects the overall part structure,
and curve matching gives the wrong correspondence, as a fin on the fish on the left is matched to the head of the fish on the
right. Shock-graph matching splices the part of the tail on left fish corresponding to the occluded part of right fish is spliced,
thus giving an intuitive correspondence, ��	�, the heads, tails and the fins of the two fishes matching intuitively.

ceptually distinct shapes whose local curve-based features
are in conflict with the global shape percept, as shown in
Figure 3a.

Another drawback of the curve representation and hence
curve matching is the sensitivity to the presence and spatial
arrangement of parts. Figure 3b-d shows examples where
curve matching gives the un-intuitive correspondence when
the parts around the shape are arranged differently. Note
that the curve matching approach [8] is robust to the pres-
ence of occlusion, if it does not affect the overall part struc-
ture of the object. However, when the occlusion adds or
deletes a part, curve matching can fail, as shown in Fig-

ure 3c. The shock graph of shape, on the other hand, in-
herently induces a part-based representation of shape based
on regional aspects, and the spatial and hierarchical rela-
tionships among these parts. Shock-graph matching not
only matches pairs of individual parts, but also the overall
part hierarchy. These fundamental drawbacks favor shock-
graph matching for the generic recognition problem where
the space of variation is enormously large including the vi-
sual transformations such as those highlighted above. Ta-
bles 1 and 2 show recognition results for a database of ��
shapes.
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Table 1. Left: A database of 99 shapes with 9 categories and 11 shapes in each category. Right: Each shape in the database is
matched against every other shape and the 10 nearest neighbors for a few representative shapes are shown for curve matching
(top) and shock graph matching (bottom). Table 2 summarizes the results.

1 2 3 4 5 6 7 8 9 10
Curve ��� �	 �	 �� �
 �
 �� 	
 �
 
�

Shocks ��� ��� ��� �� �� �� �� �� �
 	�

Table 2. Summary of results of curve and shock graph
matching for classifying shapes from Table 1. Each entry
corresponds to the number of times (in percentages) the  ��

best match belongs to the same category as the query.

5. CONCLUSION

We conclude that curve matching is adequate for match-
ing shapes whose space of variations does not include re-
arrangement and articulation of parts and where the regional
interaction is not significant, 	�
�, handwritten character recog-
nition, signature verification, 	��. On the other hand, in
the general object recognition problem due to the enormity
of the space of variations, matching based on shock graphs
gives superior results.
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