Fourier, filtering, smoothing, and noise

Nuno Vasconcelos

ECE Department, UCSD

(with thanks to David Forsyth)
Images

- The incident light is collected by an image sensor that transforms it into a 2D signal.
2D-DSP

- in summary:
 - image is a $N \times M$ array of pixels
 - each pixel contains three colors
 - overall, the image is a 2D discrete-space signal
 - each entry is a 3D vector

$$x[n_1, n_2] = (r, g, b), \quad n_1 \in \{0, ..., N\}$$

$$n_2 \in \{0, ..., M\}$$

- for simplicity, we consider only single channel images

$$x[n_1, n_2], \quad n_1 \in \{0, ..., N\}$$

$$n_2 \in \{0, ..., M\}$$

- but everything extends to color in a straightforward manner
2D convolution

- the operation

\[y[n_1, n_2] = \sum_{k_1=-\infty}^{\infty} \sum_{k_2=-\infty}^{\infty} x[k_1, k_2] h[n_1 - k_1, n_2 - k_2] \]

is the 2D convolution of \(x \) and \(h \)

- we will denote it by

\[y[n_1, n_2] = x[n_1, n_2] * h[n_1, n_2] \]

- this is of great practical importance:
 - for an LSI system the response to any input can be obtained by the convolution with this impulse response
 - the IR fully characterizes the system
 - it is all that I need to measure
Separable systems

Definition: a system is *separable* if and only if its impulse response is a separable sequence

\[h[n_1, n_2] = h_1[n_1] \times h_2[n_2] \]

in this case the convolution simplifies

step1) for every \(k_1,\)

- \(f[k_1,n_2]\) is 1D convolution of \(x[k_1,n_2]\) and \(h_2[n_2]\)

\[f[k_1,n_2] = x[k_1,n_2] \ast h_2[n_2] \]

- which means: “convolve the columns of \(x\) with \(h_2\) to obtain columns of \(f\)”
Separable systems

step2) for every \(n_2 \),

- \(y[n_1, n_2] \) is 1D convolution of \(f[n_1, n_2] \) and \(h_1[n_1] \)

\[
y[n_1, n_2] = f[n_1, n_2] * h_1[n_1]
\]

- which means: “convolve the rows of \(f \) with \(h_1 \) to obtain rows of \(y \)”

\[f[n_1, n_2] \quad \star_h \quad h_1 \quad \rightarrow \quad y[n_1, n_2] \]
The Discrete-Space Fourier Transform

is, once again, a straightforward extension of the 1D Discrete-Time Fourier Transform

\[
X(\omega_1, \omega_2) = \sum_{n_1} \sum_{n_2} x[n_1, n_2] e^{-j\omega_1 n_1} e^{-j\omega_2 n_2}
\]

\[
x[n_1, n_2] = \frac{1}{(2\pi)^2} \iint X(\omega_1, \omega_2) e^{j\omega_1 n_1} e^{j\omega_2 n_2} d\omega_1 d\omega_2
\]

properties:

- basically the same as in 1D (see table in Lim, page 25)
- only novelty is separability (homework)

\[
x[n_1, n_2] = x_1[n_1] x_2[n_2] \leftrightarrow X(\omega_1, \omega_2) = X_1(\omega_1) X_2(\omega_2)
\]
Sampling in 2D

- consider an analog signal \(x_c(t_1, t_2) \) and let its analog Fourier transform be \(X_c(\Omega_1, \Omega_2) \)
 - we use capital \(\Omega \) to emphasize that this is analog frequency
- sample with period \((T_1, T_2)\) to obtain a discrete-space signal

\[
X[n_1, n_2] = x_c(t_1, t_2) \bigg|_{t_1=n_1T_1; t_2=n_2T_2}
\]
Sampling in 2D

- Relationship between the Discrete-Space FT of $x[n_1,n_2]$ and the FT of $x_c(t_1,t_2)$ is simple extension of 1D result

$$X(\omega_1, \omega_2) = \frac{1}{T_1 T_2} \sum_{r_1=-\infty}^{\infty} \sum_{r_2=-\infty}^{\infty} X_c \left(\frac{\omega_1 - 2\pi r_1}{T_1}, \frac{\omega_2 - 2\pi r_1}{T_1} \right)$$

- Discrete Space spectrum is sum of replicas of analog spectrum
 - in the “base replica” the analog frequency $\Omega_1 (\Omega_2)$ is mapped into the digital frequency $\Omega_1 T_1 (\Omega_2 T_2)$
 - discrete spectrum has periodicity $(2\pi, 2\pi)$
For example

\[\Omega' \rightarrow \alpha = \Omega' T_1 \]
\[\Omega'' \rightarrow \beta = \Omega'' T_2 \]

no aliasing if

\[\begin{cases} \Omega' T_1 \leq 2\pi - \Omega' T_1 \\ \Omega'' T_2 \leq 2\pi - \Omega'' T_2 \end{cases} \]

\[\iff \begin{cases} T_1 \leq \pi / \Omega' \\ T_2 \leq \pi / \Omega'' \end{cases} \]
Aliasing

- the frequency \((\Omega'/\pi, \Omega''/\pi)\) is the critical sampling frequency
- below it we have aliasing
- this is just like the 1D case, but now there are more possibilities for overlap
Reconstruction

if there is no aliasing we can recover the signal in a way similar to the 1D case

\[y_c(t_1, t_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} x[n_1, n_2] \frac{\sin \frac{\pi}{T_1}(t_1 - n_1T_1)}{T_1 (t_1 - n_1T_1)} \frac{\sin \frac{\pi}{T_2}(t_2 - n_2T_2)}{T_2 (t_2 - n_2T_2)} \]

note: in 2D there are many more possibilities than in 1D

- e.g. the sampling grid does not have to be rectangular, e.g. hexagonal sampling when \(T_2 = \frac{T_1}{\sqrt{3}} \) and

\[x[n_1, n_2] = \begin{cases} x_c(t_1, t_2) \bigg|_{t_1 = n_1T_1; t_2 = n_2T_2} & n_1, n_2 \text{ both even or odd} \\ 0 & \text{otherwise} \end{cases} \]

- in practice, however, one usually adopts the rectangular grid
Sampling and aliasing in 2D

- in summary, sampling is not very different from the 1D case

- but aliasing is a lot more fun to look at in images
- it shows up in video too (the wagon wheel effect)
a sequence of images obtained by down-sampling without any filtering

aliasing: the low-frequency parts are replicated throughout the low-res image
The role of smoothing

- too little leads to aliasing
- too much leads to loss of information
Aliasing in video

- video frames are the result of **temporal sampling**
 - fast moving objects are above the critical frequency
 - above a certain speed they are aliased and appear to move backwards
 - this was common in old western movies and become known as the “wagon wheel” effect
 - here is an example: super-resolution increases the frame rate and eliminates aliasing

from “Space-Time Resolution in Video” by E. Shechtman, Y. Caspi and M. Irani (PAMI 2005).
Linear Filtering

- smoothing is implemented with linear filters
- given an image $x(n_1,n_2)$, filtering is the process of convolving it with a kernel $h(n_1,n_2)$

$$y(n_1,n_2) = \sum_{k_1k_2} x(k_1,k_2) h(n_1 - k_1, n_2 - k_2)$$

- some very common operations in image processing are nothing but filtering, e.g.
 - smoothing an image by low-pass filtering
 - contrast enhancement by high pass filtering
 - finding image derivatives
 - noise reduction
Popular filters

- **box function**
 \[R_{N_1 \times N_2}(n_1, n_2) = \begin{cases}
 1, & 0 \leq n_1 \leq N_1 - 1, 0 \leq n_2 \leq N_2 - 1 \\
 0, & \text{otherwise}
\end{cases} \]

- **Fourier transform** of a box is the sinc, low-pass filter

- **side-lobes** produce artifacts, smoothed image does not look like the result of defocusing
Example: Smoothing by Averaging
Smoothing by averaging

- the filtered image has a lot of ringing
- this is due to the very sharp edges of the filter
 - the example below shows this more clearly by convolving a synthetic image with a sharp filter
 - note that the problem is not the shape of the filter but the sharpness of the edges
Camera defocusing

- if you point an out-of-focus camera at a very small white light (e.g. a light-bulb) at night, you get something like this
- the light can be thought of as an impulse
- this must be the impulse response
- well approximated by a Gaussian
- more natural filter for image blur than the box

\[
h(x, y) = \frac{1}{2\pi\sigma^2} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right)
\]
The Gaussian

The discrete space version is

\[h(n_1, n_2) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{n_1^2 + n_2^2}{2\sigma^2} \right) \]

- obviously separable

\[h(n_1, n_2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{n_1^2}{2\sigma^2}} \times \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{n_2^2}{2\sigma^2}} \]

- \(h(n_1, n_2) \) has Fourier transform

\[H(\omega_1, \omega_2) = \exp\left(-\frac{\sigma^2 (\omega_1^2 + \omega_2^2)}{2} \right) \]
The Gaussian filter

- the Fourier transform of a Gaussian is a Gaussian
 \((\sigma_x, \sigma_y) \propto (1/\sigma_{w1}, 1/\sigma_{w2})\)

- note that there are no annoying side-lobes
Smoothing by averaging

- when the image is **convolved with the Gaussian filter**
- the output has **very little ringing**

note:
- the **effects of ringing** are most noticeable in the flat image regions
Smoothing by averaging

e.g. consider the result of filtering this image with the two filters
Smoothing by averaging

- this is the result for the sharper filter

ringing
Smoothing by averaging

this is the result for the **Gaussian filter**

no ringing
Smoothing by Averaging
Smoothing with a Gaussian
Role of the variance

- The variance controls the amount of smoothing.
- Each column shows different realizations of an image of Gaussian noise.
- Each row shows smoothing with Gaussians of different \(\sigma \).
Gradients and edges

- for image understanding, one of the problems is that there is too much information in an image
- just smoothing is not good enough
- how to detect important (most informative) image points?
- note that derivatives are large at points of great change
 - changes in reflectance (e.g. checkerboard pattern)
 - change in object (an object boundary is different from background)
 - change in illumination (the boundary of a shadow)
- these are usually called edge points
- detecting them could be useful for various problems
 - segmentation: we want to know what are object boundaries
 - recognition: cartoons are easy to recognize and terribly efficient to transmit
The importance of edges
Gradients

- for a 2D function, $f(x,y)$ the gradient at a point (x_0,y_0)

$$\nabla f(x_0,y_0) = \left(\frac{\partial f}{\partial x}(x_0,y_0), \frac{\partial f}{\partial y}(x_0,y_0) \right)^T$$

$$= \left(f_x(x_0,y_0), f_y(x_0,y_0) \right)^T$$

is the direction of greatest increase at that point.

- the gradient magnitude

$$\|\nabla f(x_0,y_0)\|^2 = \left(\frac{\partial f}{\partial x}(x_0,y_0) \right)^2 + \left(\frac{\partial f}{\partial y}(x_0,y_0) \right)^2$$

measures the rate of change.

- it is large at edges!
Derivatives and convolution

- Recall that a derivative is defined as
 \[
 \frac{\partial f(x)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
 \]

- Linear and shift invariant, so must be the result of a convolution.

- We could approximate as
 \[
 \frac{\partial f(n)}{\partial n} = \frac{f(n+1) - f(n)}{1} = f(n+1) - f(n) = f * h(n)
 \]

- Where the derivative kernel is
 \[
 h(n) = \delta(n+1) - \delta(n)
 \]
Finite difference kernels

- In two dimensions we have various possible kernels.
- E.g., \(N_1=2, N_2=3 \), derivative along \(n_1 \), (line \(n_2=k \)) (horizontal)
 \[
 \begin{pmatrix}
 0 & 0 & 1 & -1 \\
 1 & -1 & 1 & -1 \\
 0 & 0 & 1 & -1 \\
 \end{pmatrix}
 \]

- Derivative along \(n_2 \), (line \(n_1=k \)) (vertical)
 \[
 \begin{pmatrix}
 0 & -1 & 0 & -1 & -1 & -1 \\
 0 & 1 & 0 & 1 & 1 & 1 \\
 \end{pmatrix}
 \]

- Derivative along line \(n_1=n_2 \) (diagonal)
 \[
 \begin{pmatrix}
 0 & 0 & -1 & 1 & -1 & 0 \\
 0 & 0 & 0 & 0 & 1 & -1 \\
 1 & 0 & 0 & 0 & 0 & 1 \\
 \end{pmatrix}
 \]
Finite difference kernels

- note that, when
 \[
 h(n_1, n_2) = \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}
 \]

- we have
 \[
 H(\omega_1, \omega_2) = e^{j\omega_1} - 1 = \left(e^{j\frac{\omega_1}{2}} - e^{-j\frac{\omega_1}{2}} \right) e^{j\frac{\omega_1}{2}}
 \]
 \[
 = 2\sin\left(\frac{\omega_1}{2}\right) e^{j\frac{\omega_1}{2}}
 \]

- derivative is a high-pass filter

- \text{hw: check that this holds for all others}

- intuitive, because a derivative is a measure of the rate of change of a function
Finite differences

Q: which one do we have here? (gray=0, white=+, dark=-)
Finite differences and noise

- Because they perform high-pass filtering, finite difference filters respond strongly to noise.
- Generally, the larger the noise the stronger the response.
- For noisy images it is usually best to apply some smoothing before computing derivatives.
- What do we mean by noise?
- We only consider the simplest model:
 - independent stationary additive Gaussian noise
 - The noise value at each pixel is given by an independent draw from the same normal probability distribution.

\[y(n_1, n_2) = x(n_1, n_2) + \varepsilon(n_1, n_2), \quad \varepsilon \sim \mathcal{N}(0, \sigma^2) \]
\[\text{sigma} = 1 \]
sigma=16
Finite differences responding to noise

Increasing noise variance

- note that as the noise variance increases the estimates of the image derivative are also very noisy
- Q: would a larger filter do better?
The response of a linear filter to noise

Suppose we apply filter $h(n_1, n_2)$ to

$$y(n_1, n_2) = x(n_1, n_2) + \varepsilon(n_1, n_2), \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

By linearity

$$h^* y = \underbrace{h^* x}_{\text{output signal}} + \underbrace{h^* \varepsilon}_{\text{output noise}}$$

Consider the noise term

$$\nu(n_1, n_2) = \sum_{k_1, k_2} \varepsilon(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

By linearity of expectation

$$E[\nu(n_1, n_2)] = \sum_{k_1, k_2} E[\varepsilon(k_1, k_2)] h(n_1 - k_1, n_2 - k_2) = 0$$
The response of a linear filter to noise

and since the $\varepsilon(n_1, n_2)$ are independent

$$\text{var}[\nu(n_1, n_2)] = \sum_{k_1, k_2} \text{var}[\varepsilon(k_1, k_2)] h^2(n_1 - k_1, n_2 - k_2)$$

$$= \sigma^2 \sum_{k_1, k_2} h^2(n_1 - k_1, n_2 - k_2)$$

output error has

- zero mean
- variance that increases with the size of the filter and the input variance

increasing the filter size would definitely not help!
Smoothing reduces noise

- noise has a lot of high-frequencies
- strategy:
 1. start by low-pass filtering, to suppress noise
 2. compute derivative on smoothed image
- i.e. for a smoothing filter $g(n_1,n_2)$ compute
 \[h \ast (g \ast x) \]
- note that, by associativity of convolution, this is equal to
 \[(h \ast g) \ast x \]
- i.e. filter the image with the filter $h \ast g$
The derivative of a Gaussian

- let’s consider, for example,

\[h(n_1, n_2) = \delta(n_1 + 1, n_2) - \delta(n_1, n_2) \]

- in which case

\[h * g(n_1, n_2) = g(n_1 + 1, n_2) - g(n_1, n_2) \]

is a difference of two Gaussians

- this is the derivative of a Gaussian (DoG) filter

- for other definitions of \(h \) we have a similar result
Smoothed derivatives

no smoothing

with smoothing
Choosing the right scale

- the scale of the smoothing filter affects
 - derivative estimates,
 - the semantics of the derivative image

- trade-off between noise and ability to detect detail
Any questions?
Gradients and edges

- by now we have a good idea of how to differentiate images
- remember that edges are points of large gradient magnitude

edge detection strategy

1. determine magnitude of image gradient

$$\|\nabla f(x_0, y_0)\|^2 = \left(\frac{\partial f}{\partial x}(x_0, y_0)\right)^2 + \left(\frac{\partial f}{\partial y}(x_0, y_0)\right)^2$$

2. mark points where gradient magnitude is particularly large wrt neighbours (ideally, curves of such points)

- large gradient magnitude
- small gradient magnitude
Looks easy but

three major issues (to discuss next class):

• 1) gradient magnitude at different scales is different (see below); which should we choose?
• 2) gradient magnitude is large along thick trail; what are the significant points?
• 3) how do we link the relevant points up into curves?