Vector spaces
Vector spaces

Definition: a vector space is a set \mathcal{H} where

- addition and scalar multiplication are defined and satisfy:

 1) $x + (x' + x'') = (x + x') + x''$
 2) $x + x' = x' + x \in \mathcal{H}$
 3) $0 \in \mathcal{H}$, $0 + x = x$
 4) $-x \in \mathcal{H}$, $-x + x = 0$
 5) $\lambda x \in \mathcal{H}$
 6) $1x = x$
 7) $\lambda(\lambda' x) = (\lambda \lambda')x$
 8) $\lambda(x + x') = \lambda x + \lambda x'$
 9) $(\lambda + \lambda')x = \lambda x + \lambda'x$

- the canonical example is \mathbb{R}^d with standard vector addition and scalar multiplication
Vector spaces

• But there are much more interesting examples
• E.g., the space of functions $f: \mathcal{X} \to \mathbb{R}$ with

 $$(f + g)(x) = f(x) + g(x) \quad \quad (\lambda f)(x) = \lambda f(x)$$

• \mathbb{R}^d is a vector space of finite dimension, e.g.
 - $f = (f_1, \ldots, f_d)^T$
• When d goes to infinity we have a function
 - $f = f(t)$
• The space of all functions is an infinite dimensional vector space
Vector spaces

• Another example is the vector space of sequences with which we work in DSP
• In 1D DSP, we represent sequences as

 \[x[n], \ n \in \mathbb{Z} \]

• This is just a vector, which could be finite

 \[x = (x[1], \ldots, x[N])^T \]

 or infinite

 \[x = (\ldots, x[-1], x[0], x[1], \ldots)^T \]
In this course we will talk a lot about **sequences**

Sequences **will always be represented in a vector space:**
- A sequence is really just a **point** on such a space
- from above we know how to perform basic operations on points
- this is nice, because points can be quite abstract
- e.g. **images**:
 - an image is a **function** on the image plane
 - it assigns a color \(f(x,y) \) to each image location \((x,y)\)
 - the space \(\Psi \) of images is a vector space (note: assumes that images can be negative)
 - this image is a point in \(\Psi \)
Images

• Because of this we can manipulate images by manipulating their vector representations

• E.g., Suppose one wants to “morph” \(a(x,y) \) into \(b(x,y) \):
 – One way to do this is via the path along the line from \(a \) to \(b \).

\[
c(\alpha) = a + \alpha (b-a) \\
= (1-\alpha) a + \alpha b
\]

 – for \(\alpha = 0 \) we have \(a \)
 – for \(\alpha = 1 \) we have \(b \)
 – for \(\alpha \) in \((0,1) \) we have a point on the line between \(a \) and \(b \)

• To morph images we can simply apply this rule to their vector representations!
Images

• When we make

\[c(x,y) = (1-\alpha) a(x,y) + \alpha b(x,y) \]

we get “image morphing”:

• The point is that this is possible because the images are points in a vector space.
Images

- Images are usually represented as points in \mathbb{R}^d
 - Sample (discretize) an image on a finite grid to get an array of pixels
 \[a(x,y) \rightarrow a(i,j) \]
 - Images are always stored like this on digital computers
 - stack all the rows into a vector. E.g. a 3×3 image is converted into a 9×1 vector as follows:
 ![Image vector example](image)
 - In general a $n \times m$ image vector is transformed into a $nm \times 1$ vector
 - Note that this is yet another vector space

- The point is that there are generally multiple different, but isomorphic, vector spaces in which the data can be represented
Another common type of data is text.

Documents are represented by word counts:
- associate a counter with each word
- slide a window through the text
- whenever the word occurs increment its counter

This is the way search engines represent web pages.
Text

- E.g. word counts for three documents in a certain corpus (only 12 words shown for clarity)

- Note that:
 - Each document is a $d = 12$ dimensional vector
 - If I add two word count vectors (documents), I get a new word count vector (document)
 - If I multiply a word count vector (document) by a scalar, I get a word count vector
 - Note: once again we assume word counts could be negative (to make this happen we can simply subtract the average value)

- This means:
 - We are once again in a vector space (positive subset of \mathbb{R}^d)
 - A document is a point in this space
Dot-products and distances
Bilinear forms

- Inner product vector spaces are popular because they allow us to measure similarity between data points.
- The main tool for this is the inner product ("dot-product").
- We can define the dot-product using the notion of a bilinear form.

Definition: a bilinear form on a real vector space \mathcal{H} is a bilinear mapping

$$Q: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$

$$(x, x') \rightarrow Q(x, x')$$

"Bi-linear" means that $\forall x, x', x'' \in \mathcal{H}$

i) $Q[(\lambda x + \lambda' x'), x''] = \lambda Q(x, x'') + \lambda' Q(x', x'')$

ii) $Q[x'', (\lambda x + \lambda' x')] = \lambda Q(x'', x) + \lambda' Q(x'', x')$
Inner Products

Definition: an inner product on a real vector space \mathcal{H} is a bilinear form

$$\left< \cdot , \cdot \right> : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$

$$\left(x, x' \right) \rightarrow \left< x, x' \right>$$

such that

i) $\left< x, x \right> \geq 0$, $\forall \ x \in \mathcal{H}$

ii) $\left< x, x \right> = 0$ if and only if $x = 0$

iii) $\left< x, y \right> = \left< y, x \right>$ for all x and y

The positive-definiteness conditions i) and ii) make the inner product a natural measure of similarity

“nothing can be more similar to x than itself”

This becomes more precise with introduction of a *norm*
Inner Products and Norms

- Any inner product induces a norm via

\[\|x\|^2 = \langle x, x \rangle \]

- By definition, any norm must obey the following properties
 - Positive-definiteness: \(\|x\| \geq 0, \text{ and } \|x\| = 0 \text{ iff } x = 0 \)
 - Homogeneity: \(\|\lambda x\| = |\lambda| \|x\| \)
 - Triangle Inequality: \(\|x + y\| \leq \|x\| + \|y\| \)

- A norm defines a corresponding metric

\[d(x,y) = \|x-y\| \]

which is a measure of the distance between \(x \) and \(y \)

- Always remember that the induced norm changes with a different choice of inner product!
Inner Product

• Back to our examples:
 – In \mathbb{R}^d the standard inner product is
 \[\langle x, y \rangle = x^T y = \sum_{i=1}^{d} x_i y_i \]
 – Which leads to the standard Euclidean norm in \mathbb{R}^d
 \[\|x\| = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{d} x_i^2} \]
 – The distance between two vectors is the standard Euclidean distance in \mathbb{R}^d
 \[d(x, y) = \|x - y\| = \sqrt{(x - y)^T (x - y)} = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2} \]
Inner Product

- In signal processing these operations have special names:
 - The **inner product** is the **correlation** between the two sequences

\[
\langle x, y \rangle = x^T y = \sum_{i=1}^{d} x_i y_i
\]

- The **norm** is the **energy** of the signal

\[
\|x\| = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{d} x_i^2}
\]

- The **Euclidean distance** is the distance

\[
d(x, y) = \|x - y\| = \sqrt{(x - y)^T (x - y)} = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}
\]
Inner Products and Norms

- Note, e.g., that this immediately gives a measure of similarity between web pages
 - compute word count vector x_i from page i, for all i
 - distance between page i and page j can be simply defined as:

$$d(x_i, x_j) = \|x_i - x_j\| = \sqrt{(x_i - x_j)^T (x_i - x_j)}$$

- This allows us to find, in the web, the most similar page i to any given page j.

- In fact, this is very close to the measure of similarity used by most search engines!

- What about images and other continuous valued signals?
Inner Product

- Note that:
 - because
 \[
 \|x - y\|^2 = (x - y)^T (x - y) \\
 = x^T x - 2x^T y + y^T y \\
 = \|x\|^2 + \|y\|^2 - 2x^T y
 \]
 - The distance between sequences depends on
 - how much energy they have
 - their correlation.
 - The energy measures how long the vectors are
 - The correlation depends on their angle
 - Two signals of equal energy but low correlation
 - Two highly correlated sequences of different energy
Unit vectors

- The norm measures the **length** of a vector
- A unit vector is a vector of norm 1
- Any vector can be made a unit vector by **normalization**
 - This consists of **dividing the vector by its norm**

$$ y \rightarrow x = \frac{y}{\|y\|} $$

- Note that

$$ \|x\| = \sqrt{x^t x} = \sqrt{\frac{y^t y}{\|y\|^2}} = 1 $$

- All unit vectors are on the **unit circle**

$$ C = \{x \mid \|x\|=1\} $$
Normalized correlation

- Is the correlation between normalized sequences

\[
\rho(x, y) = \frac{x^T y}{\|x\| \|y\|} = \left(\frac{x}{\|x\|} \right)^T \frac{y}{\|y\|}
\]

- And captures distance between them

\[
\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|^2 = \frac{x^T x}{\|x\|^2} - 2 \frac{x^T y}{\|x\| \|y\|} + \frac{y^T y}{\|y\|^2}
= 2 - 2 \rho(x, y)
\]

- It can be shown that

\[
x^T y = \|x\| \|y\| \cos(\angle x, y)
\]

\[
\rho(x, y) = \cos(\angle x, y)
\]
Inner Products on Function Spaces

- Recall that the space of functions is an infinite dimensional vector space
 - The standard inner product is the natural extension of that in \mathbb{R}^d (just replace summations by integrals)
 $$\langle f(x), g(x) \rangle = \int f(x)g(x)dx$$
 - The norm becomes the "energy" of the function
 $$\|f(x)\|^2 = \int f^2(x)dx$$
 - The distance between functions the energy of the difference between them
 $$d(f(x), g(x)) = \|f(x) - g(x)\|^2 = \int [f(x) - g(x)]^2 dx$$
Inner Products on Function Spaces

• One can thus define
 – The normalized correlation between two functions
 \[\rho(f(x), g(x)) = \frac{\int f(x)g(x)dx}{\sqrt{\int f^2(x)dx} \sqrt{\int g^2(x)dx}} \]
 – And the angle between two functions
 \[\angle f(x), g(x) = \arccos\left(\frac{\int f(x)g(x)dx}{\sqrt{\int f^2(x)dx} \sqrt{\int g^2(x)dx}}\right) \]
Bases
Basis Vectors

- We know how to measure distances in a vector space.
- Another interesting property is that we can fully characterize the vector space by one of its bases.
- A set of vectors x_1, \ldots, x_k is a basis of a vector space \mathcal{H} if and only if (iff)
 - they are linearly independent
 \[\sum_i c_i x_i = 0 \iff c_i = 0, \forall i \]
 - and they span \mathcal{H}: for any v in \mathcal{H}, v can be written as
 \[v = \sum_i c_i x_i \]
- These two conditions mean that any $v \in \mathcal{H}$ can be uniquely represented in this form.
Basis

• Note that
 – By making the vectors x_i the columns of a matrix X, these two conditions can be compactly written as
 – Condition 1. The vectors x_i are linear independent:
 \[Xc = 0 \iff c = 0 \]
 – Condition 2. The vectors x_i span \mathcal{H}
 \[\forall v \neq 0, \exists c \neq 0 \text{ such that } v = Xc \]

• Also, all bases of \mathcal{H} have the same number of vectors, which is called the dimension of \mathcal{H}
 – This is valid for any vector space!
The canonical basis

- The simplest basis is the **canonical basis**

\[
\begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix} \quad \begin{bmatrix}
0 \\
1 \\
\vdots \\
0
\end{bmatrix} \quad \ldots \quad \begin{bmatrix}
0 \\
0 \\
\vdots \\
1
\end{bmatrix}
\]

- In DSP, the sequences \(e_i\) are called **impulse sequences**

\[
e_0 = \delta[n] \quad e_1 = \delta[n-1] \quad e_{N-1} = \delta[n-(N-1)]
\]

- This is the reason why the **impulse sequence** has such predominance in DSP
The impulse sequence

• For example, any sequence can be written as

\[x[n] = \sum_{k} x[k] \delta[n - k] \]

• This is a well known **DSP law**
 – convolution with the impulse \(\delta[n] \) does not change the sequence

\[x[n] = x[n] * \delta[n] \]

• Geometrically, it is just the representation of the sequence \(x[n] \) on the canonical basis

\[x[n] = x[0] \delta[n] + x[1] \delta[n - 1] + \ldots + x[N - 1] \delta[n - (N - 1)] \]
The impulse sequence

• Has unit norm

\[\| \delta[n] \| = \sum_k \delta^2[k] = 1 \]

• And is orthogonal to the other impulse sequences
 – For any \(l, m \) not equal

\[\langle \delta[n-l], \delta[n-m] \rangle = \sum_k \delta[k-l] \delta[k-m] = 1 \]

– Hence

\[\angle \delta[n-l], \delta[n-m] = \frac{\pi}{2} \]

– E.g.

\[\delta[n-1] = (0,1,0,\ldots,0)^T \]
\[\delta[n-2] = (0,0,1,\ldots,0)^T \]
Basis

- example
 - A basis of the vector space of images of faces
 - The figure only shows the first 16 basis vectors but there actually more
 - These vectors are orthonormal
Orthogonality

• Two vectors are **orthogonal** iff their inner product is zero
 – e.g. \[\int_0^{2\pi} \sin(ax) \cos(ax) \, dx = \frac{\sin^2 ax}{2a} \bigg|_0^{2\pi} = 0 \]

 in the space of functions defined on \([0,2\pi]\), \(\cos(ax)\) and \(\sin(ax)\) are orthogonal

• Two subspaces \(V\) and \(W\) are orthogonal, \(V \perp W\), if every vector in \(V\) is orthogonal to every vector in \(W\)

• A set of vectors \(x_1, \ldots, x_k\) is called
 – **orthogonal** if all pairs of vectors are orthogonal.
 – **orthonormal** if all vectors also have unit norm.

\[\langle x_i, x_j \rangle = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases} \]
Orthogonal basis

• An N-D sequence $x[n]$ can be easily represented in an N-D orthogonal basis $\{b_0[n], \ldots, b_{N-1}(n)\}$
 – Sequence is a linear combination of unit basis vectors
 \[x[n] = \alpha[0] \frac{b_0[n]}{\|b_0[n]\|} + \ldots + \alpha[N-1] \frac{b_{N-1}[n]}{\|b_{N-1}[n]\|} \]
 – Coefficients are the dot-products with unit basis vectors
 \[\alpha[0] = \langle x[n], \frac{b_0[n]}{\|b_0[n]\|} \rangle \quad \ldots \quad \alpha[N-1] = \langle x[n], \frac{b_{N-1}[n]}{\|b_{N-1}[n]\|} \rangle \]
Orthogonal basis

- Note that for the impulse basis, $b_m[n] = \delta[n-m]$
 - The basis vectors are already unit vectors
 - The sequence is

 $$x[n] = \alpha[0]b_o[n] + \ldots + \alpha[N-1]b_{N-1}[n]$$
 $$= \alpha[0]\delta[n] + \ldots + \alpha[N-1]\delta[n-(N-1)]$$
 $$= \sum_k \alpha[k]\delta[n-k]$$

 - The coefficients are

 $$\alpha[k] = \langle x[n], b_k[n] \rangle = \langle x[n], \delta[n-k] \rangle = x[k]$$

 - And we are back to the fundamental formula

 $$x[n] = \sum_k x[k]\delta[n-k]$$
Matrices and LTI systems
Matrix

- an $m \times n$ matrix represents a linear operator that maps a vector from the domain $\mathcal{X} = \mathbb{R}^n$ to a vector in the codomain $\mathcal{Y} = \mathbb{R}^m$

- E.g. the equation $y = Ax$ sends x in \mathbb{R}^n to y in \mathbb{R}^m according to

$$
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
$$

- note that there is nothing magical about this, it follows rather mechanically from the definition of matrix-vector multiplication
Linear systems

• Hence, a square matrix can be used to represent a linear system
• domain $\mathcal{X} = \mathbb{R}^N$ is the vector space of input sequences
• codomain $\mathcal{Y} = \mathbb{R}^N$ is the vector space of output sequences
• Note that if the input is a linear combination of sequences

 $x[n] = ax_1[n] + bx_2[n]$

• The output is the same linear combination of the corresponding outputs

 $y[n] = Ax[n] = A(ax_1[n] + bx_2[n])$

 $= aAx_1[n] + bAx_2[n] = ay_1[n] + by_2[n]$

• This is the definition of linear system
Matrix-Vector Multiplication I

• Consider \(y = Ax \), i.e. \(y_i = \sum_{j=1}^{n} a_{ij} x_j \), \(i = 1,\ldots,m \)

• We can think of this as

\[
\begin{bmatrix}
\vdots \\
y_i \\
\vdots
\end{bmatrix}
= \begin{bmatrix}
a_{i1} & \cdots & a_{in}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
= \sum_{j=1}^{n} a_{ij} x_j
= \begin{bmatrix}
a_{i1} & \cdots & a_{in}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
= \begin{bmatrix}
-x_i - x
\end{bmatrix}
\text{(m rows)}
\]

• where \((- a_i -) \) means the \(i \)th row of \(A \). Hence

 – the \(i \)th component of \(y \) is the inner product of \((- a_i -) \) and \(x \).

 – \(y \) is the projection of \(x \) on the subspace (of the domain space) spanned by the rows of \(A \)
Matrix-Vector Multiplication II

• But there is more. Let \(y = Ax \), i.e. \(y_i = \sum_{j=1}^{n} a_{ij}x_j \), now be written as

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{bmatrix} = \sum_{j=1}^{n} \begin{bmatrix}
 a_{1j} \\
 \vdots \\
 a_{mj}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix} = \begin{bmatrix}
 a_{11}x_1 + \cdots + a_{1n}x_n \\
 \vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n
\end{bmatrix} = \begin{bmatrix}
 a_1 \\
 \vdots \\
 a_n
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

• where \(a_i \) with “\(|\)” above and below means the \(i \)th column of \(A \).

• hence
 – \(x_i \) is the \(i \)th component of \(y \) in the subspace (of the co-domain) spanned by the columns of \(A \)
 – \(y \) is a linear combination of the columns of \(A \)
Matrix-Vector Multiplication

- two alternative (dual) pictures of $y = Ax$:
 - $y = \text{coordinates of } x \text{ in row space of } A$ (The $\mathcal{X} = \mathbb{R}^n$ viewpoint)
 - $x = \text{coordinates of } y \text{ in column space of } A$ (The $\mathcal{Y} = \mathbb{R}^m$ viewpoint)

$\text{Domain } \mathcal{X} = \mathbb{R}^n$

$\text{Codomain } \mathcal{Y} = \mathbb{R}^m$

- $x = \text{coordinates of } y \text{ in column space of } A$ ($\mathcal{Y} = \mathbb{R}^m$ viewpoint)
A cool trick

- **the matrix multiplication formula**

\[C = AB \iff c_{ij} = \sum_k a_{ik} b_{kj} \]

also applies to “block matrices” when these are defined properly

- **for example, if** \(A,B,C,D,E,F,G,H \) \(\) are matrices,

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}
\]

- **only but important caveat:** the sizes of \(A,B,C,D,E,F,G,H \) have to be such that the intermediate operations make sense! (they have to be “conformal”)

![Matrix Multiplication Diagram](image-url)
Matrix-Vector Multiplication

- This makes it easy to derive the two alternative pictures
- The row space picture (or viewpoint):
 \[
 \begin{bmatrix}
 y_i \\
 \vdots \\
 \vdots \\
 \vdots \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 a_{in} & \cdots & a_{in} \\
 \vdots & \ddots & \vdots \\
 \vdots & \cdots & \vdots \\
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 (-a_i)_{1xn} \\
 \vdots \\
 \vdots \\
 \end{bmatrix}
 x_{nx1}
 =
 \begin{bmatrix}
 (-a_i)x \\
 \vdots \\
 \vdots \\
 \end{bmatrix}
 \]

 is just like scalar multiplication, with blocks \(-a_i\) and \(x\)
- The column space picture (or viewpoint):
 \[
 \begin{bmatrix}
 y_i \\
 \vdots \\
 \vdots \\
 \vdots \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 a_{in} & \cdots & a_{in} \\
 \vdots & \ddots & \vdots \\
 \vdots & \cdots & \vdots \\
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 a_1 & \cdots & a_n \\
 \vdots & \ddots & \vdots \\
 \vdots & \cdots & \vdots \\
 \end{bmatrix}
 \begin{bmatrix}
 (x_1)_{1x1} \\
 \vdots \\
 (x_n)_{1x1} \\
 \end{bmatrix}
 =
 \sum_i \begin{bmatrix} a_i \end{bmatrix} x_i
 \]

 is just a inner product, with (scalar) blocks \(x_i\) and the column blocks of \(A\).
Matrix-Vector Multiplication

- two alternative (dual) pictures of \(y = Ax \):
 - \(y = \) coordinates of \(x \) in row space of \(A \) (The \(\mathcal{X} = \mathbb{R}^n \) viewpoint)

\[y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} -a_1 - x \\ \vdots \\ \vdots \end{bmatrix} \quad (m \text{ rows}) \]

- \(x = \) coordinates of \(y \) in column space of \(A \) (\(\mathcal{Y} = \mathbb{R}^m \) viewpoint)

\[y = \begin{bmatrix} a_1 \end{bmatrix} x_1 + \cdots + \begin{bmatrix} a_n \end{bmatrix} x_n \]
Square $n \times n$ matrices

- in this case $m = n$ and the row and column subspaces are both equal to (copies of) \mathbb{R}^n
LTI systems

- A is time invariant when
 - $x[n]$ has response $y[n]$
 - If and only if, for any m, $x[n-m]$ has response $y[n-m]$

$$y[n] = Ax[n] \iff y[n-m] = Ax[n-m]$$

- How does this constrain A?
 - Let $x[n] = \delta[n]$
 - Call the output impulse response
 $$h[n] = A\delta[n]$$
 - Using the codomain viewpoint
 $$h[n] = \begin{bmatrix} a_1 \end{bmatrix} \times 1 + \begin{bmatrix} a_2 \end{bmatrix} \times 0 + \ldots + \begin{bmatrix} a_{N-1} \end{bmatrix} \times 0 = \begin{bmatrix} a_1 \end{bmatrix}$$
 “Impulse response is first column of A”
LTI systems

- A is time invariant when
 - Let \(x[n] = \delta[n-1] \)
 - the output is shifted impulse response
 \[
 h[n - 1] = A\delta[n - 1]
 \]
 - Using the codomain viewpoint
 \[
 h[n - 1] = \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix} \times 0 + \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix} \times 1 + \cdots + \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix} \times 0 = \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix}
 \]
 “\(h[n-1] \) is second column of \(A \)”

- Repeating this for all shifts of the input we have
 - The \(k^{th} \) column of \(A \) is \(h[n-k] \)!
LTI systems

• The matrix A has the structure

$$A = \begin{bmatrix}
h[n] & h[n-1] & \ldots & h[n-(N-1)] \\
\end{bmatrix}$$

• Columns are shifts of the impulse response

 – Check:
 – what if impulse response is the impulse?
 – A is the identity matrix
 – $Ax = x$ for all x
 – The system does not change the input
 – It is an all-pass filter

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 1 \\
\end{bmatrix}
\]
LTI systems

- What are the rows?
 - Note that we can write
 \[
 A = \begin{bmatrix}
 h[0] & h[-1] & h[-N + 1] \\
 h[1] & h[0] & h[-N + 2] \\
 \vdots & \vdots & \ddots \\
 h[N-1] & h[N-2] & h[0]
 \end{bmatrix}
 \]
 - The kth row of Ax is
 \[
 [h[k] \quad h[k-1] \quad \ldots \quad h[k-(N-1)]
 \]
 - This is the sequence
 \[
 g_k[n] = h[k-n]
 \]
 - Obtained by flipping h and shifting by k
LTI systems

- Hence, we have

\[
A = \begin{bmatrix}
- & g_0[n] & - \\
& \vdots & \\
- & g_{N-1}[n] & -
\end{bmatrix} = \begin{bmatrix}
- & h[-n] & - \\
& \vdots & \\
- & h[N-1-n] & -
\end{bmatrix} \\
y_i = (-a_i-)x
\]

- And two views of an LTI system

\[
A = \begin{bmatrix}
| & h[n] & | & h[n-1] & | & \ldots & | & h[n-(N-1)] & | \\
| & | & | & | & | & \ldots & | & | & | \\
| & | & | & | & | & \ldots & | & | & | \\
\end{bmatrix} \\
y = \begin{bmatrix}
| \\
| \\
| \\
\end{bmatrix} x_1 + \ldots + \begin{bmatrix}
| \\
| \\
| \\
\end{bmatrix} x_n
\]
Convolution

- Two ways to compute the output
- Under the domain viewpoint

\[
\begin{bmatrix}
y[0] \\
\vdots \\
y[N-1]
\end{bmatrix}
=
\begin{bmatrix}
- & h[-n] & - \\
\vdots \\
- & h[N-1-n] & - \\
\end{bmatrix}
\begin{bmatrix}
x[n] \\
\vdots \\
x[n]
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\langle h[-n], x[n] \rangle \\
\vdots \\
\langle h[N-1-n], x[n] \rangle
\end{bmatrix}
\]

• We obtain the convolution formula

\[
y[k] = \langle h[k-n], x[n] \rangle = \sum_{n} h[k-n]x[n]
\]
Convolution

• Under the codomain viewpoint

\[
\begin{bmatrix}
 y[n] \\
 \vdots
\end{bmatrix} = \begin{bmatrix}
 h[n] & h[n-1] & \cdots & h[n-(N-1)] \\
 \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix} \begin{bmatrix}
 x[n] \\
 \vdots
\end{bmatrix}
\]

= \begin{bmatrix}
 h[n] x[0] + \cdots + h[n-(N-1)] x[N-1] \\
 \vdots
\end{bmatrix}

• We obtain the alternative view of convolution

\[y[n] = \sum_{k} h[n-k] x[k] \]

• Note that the formulas are the same, but interpretation is different
Example

• Impulse response:

• Input:

• System:

\[
A = \begin{bmatrix}
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
\end{bmatrix}
\]
Example

- convolution:

\[
A = \left[\begin{array}{ccc}
\begin{array}{c}
\quad \quad \quad \quad \\
\end{array}
\end{array}
\right]
\]

\[
y[n] = \left[\langle \quad \quad \quad \quad \quad \quad \rangle \langle \quad \quad \quad \quad \quad \quad \rangle \langle \quad \quad \quad \quad \quad \quad \rangle \right]
\]

\[
y[n] = d \times \left[\begin{array}{c}
\begin{array}{c}
\quad \quad \quad \quad \\
\quad \quad \quad \quad \\
\quad \quad \quad \quad \\
\end{array}
\end{array}
\right] + e \times \left[\begin{array}{c}
\begin{array}{c}
\quad \quad \quad \quad \\
\quad \quad \quad \quad \\
\quad \quad \quad \quad \\
\end{array}
\end{array}
\right]
\]
The fundamental spaces
Orthogonal matrices

• A matrix is called **orthogonal** if it is square and has orthonormal columns.

• Important properties:

 1) The inverse of an orthogonal matrix is its transpose
 - this can be easily shown with the block matrix trick. (Also see later.)
 \[
 A^T A = \begin{bmatrix}
 \vdots \\
 -a_i^T \\
 \vdots \\
 \end{bmatrix}
 \begin{bmatrix}
 \ldots & \begin{pmatrix} 1 \end{pmatrix} \\
 \begin{pmatrix} a_j \end{pmatrix} \\
 \ldots \\
 \end{bmatrix}
 = \begin{bmatrix}
 1 & 0 & \ldots & 0 \\
 0 & 1 & 0 \\
 \vdots & \vdots & \vdots \\
 0 & 0 & \ldots & 1 \\
 \end{bmatrix}
 \]

 2) A proper (\(\det(A) = 1\)) orthogonal matrix is a rotation matrix
 - this follows from the fact that it does not change the norms ("sizes") of the vectors on which it operates,
 \[
 \|Ax\|^2 = (Ax)^T (Ax) = x^T A^T Ax = x^T x = \|x\|^2,
 \]
 and does not induce a reflection.
Rotation matrices

- The combination of
 1. “operator” interpretation
 2. “block matrix trick”

 is useful in many situations

- Poll:
 - “What is the matrix R that rotates the plane \mathbb{R}^2 by θ degrees?”

\begin{figure}
\centering
\begin{tikzpicture}
\draw[->, thick] (0,0) -- (2,0) node[below] {e_1};
\draw[->, thick] (0,0) -- (0,2) node[left] {e_2};
\draw[->, thick] (0,0) -- (1,1) node[above right] {e^\wedge};
\draw[->, thick] (0,0) -- (1,-1) node[below left] {e_\wedge};
\draw (0,0) -- (1,0) node[below] {θ};
\end{tikzpicture}
\end{figure}
Rotation matrices

- The key is to consider how the matrix operates on the vectors e_i of the canonical basis
 - note that R sends e_1 to e'_1

\[
e'_1 = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

- using the column space picture

\[
e'_1 = \begin{bmatrix} r_{11} \\ r_{21} \end{bmatrix} \times 1 + \begin{bmatrix} r_{12} \\ r_{22} \end{bmatrix} \times 0 = \begin{bmatrix} r_{11} \\ r_{21} \end{bmatrix}
\]

- from which we have the first column of the matrix

\[
R = \begin{bmatrix} e'_1 \\ r_{22} \end{bmatrix} = \begin{bmatrix} \cos \theta & r_{12} \\ \sin \theta & r_{22} \end{bmatrix}
\]
Rotation Matrices

- and we do the same for \(e_2 \)

 \(R \) sends \(e_2 \) to \(e'_2 \)

\[
e'_2 = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} \\ r_{21} \end{bmatrix} \times 0 + \begin{bmatrix} r_{12} \\ r_{22} \end{bmatrix} \times 1 = \begin{bmatrix} r_{12} \\ r_{22} \end{bmatrix}
\]

- from which

\[
R = [e'_1 \quad e'_2] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
\]

- check

\[
R^T R = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = I
\]
Analysis/synthesis

• one interesting case is that of matrices with orthogonal columns

• note that, in this case, the columns of A are
 – a basis of the column space of A
 – a basis of the row space of A^T

• this leads to an interesting interpretation of the two pictures
 – consider the projection of x into the row space of A^T
 $$y = A^T x$$
 – due to orthonormality, x can then be synthesized by using the column space picture
 $$x' = A y$$
Analysis/synthesis

• note that this is your most common use of basis
• let the columns of \(A \) be the basis vectors \(a_i \)
 -- the operation \(y = A^T x \) projects the vector \(x \) into the basis, e.g.

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\iff
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix} =
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]
 this is called the canonical basis of \(\mathbb{R}^n \)

-- The vector \(x \) can then be reconstructed by computing \(x' = A y \), e.g.

\[
\begin{bmatrix}
 x'_1 \\
 x'_2 \\
 \vdots \\
 x'_n
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
 \vdots \\
 0 & 0
\end{bmatrix}
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix} + \cdots +
\begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 1
\end{bmatrix}
\begin{bmatrix}
 y_n
\end{bmatrix} =
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

-- Q: is the synthesized \(x' \) always equal to \(x \)?
Projections

- **A: not necessarily!** Recall
 - $y = A^T x$ and $x' = A y$
 - $x' = x$ if and only if $AA^T = I$!
 - this means that A has to be orthonormal.

- **what happens when this is not the case?**
 - we get the projection of x on the column space of A
 - e.g. let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

and

$$x' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

\[\text{column space of } A = \text{row space of } A^T\]
Null Space of a Matrix

• What happens to the part that is lost?
• This is the “null space” of A^T

\[N \ A^T = x \mid A^T x = 0 \]

 – In the example, this is comprised of all vectors of the type \[
 \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}
 \]
 since

\[
A^T x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0
\]

• FACT: $N(A)$ is always orthogonal to the row space of A:
 – x is in the null space iff it is orthogonal to all rows of A
• For the previous example this means that $N(A^T)$ is orthogonal to the column space of A
Orthonormal matrices

- Q: why is the orthonormal case special?
- because here there is no null space of A^T
- recall that for all x in $N(A^T)$
 - $A^T x = 0 \iff x = A0 = 0$
- the only vector in the null space is 0
- this makes sense:
 - A has n orthonormal columns, e.g. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - these span all of \mathbb{R}^n
 - there is no extra room for an orthogonal space
 - the null space of A^T has to be empty
 - the projection into row space of A^T (column space of A) is the vector x itself
- in this case, we say that the matrix has full rank
The **Four Fundamental Subspaces**

- These exist for any matrix:
 - **Column Space**: space spanned by the columns
 - **Row Space**: space spanned by the rows
 - **Nullspace**: space of vectors orthogonal to all rows (also known as the orthogonal complement of the row space)
 - **Left Nullspace**: space of vectors orthogonal to all columns (also known as the orthogonal complement of the column space)

- You can think of these in the following way
 - **Row and Nullspace** characterize the **domain** space (inputs)
 - **Column and Left Nullspace** characterize the **codomain** space (outputs)
Domain viewpoint

- Domain $\mathcal{X} = \mathbb{R}^n$
 - $y = \text{coordinates of } x \text{ in row space of } A$
 - Row space: space of “useful inputs”, which A maps to non-zero output
 - Null space: space of “useless inputs”, mapped to zero
 - Operation of a matrix on its domain $\mathcal{X} = \mathbb{R}^n$

$$
\begin{bmatrix}
 \vdots \\
y_i \\
 \vdots \\
\end{bmatrix} =
\begin{bmatrix}
 \vdots \\
 -a_i - x \\
 \vdots \\
\end{bmatrix} \quad (m \text{ rows})
$$

$$N(A) = \{ x \mid Ax = 0 \}$$

- Q: what is the null space of a low-pass filter?
Codomain viewpoint

- Codomain $\mathcal{y} = \mathbb{R}^m$
 - $x = \text{coordinates of } y \text{ in column space of } A$
 - Column space: space of “possible outputs”, which A can reach
 - Left Null space: space of “impossible outputs”, cannot be reached
 - Operation of a matrix on its codomain $\mathcal{y} = \mathbb{R}^m$

\[
y = \begin{bmatrix} a_1 \end{bmatrix} x_1 + \cdots + \begin{bmatrix} a_n \end{bmatrix} x_n
\]

\[
L(A) = \{ y \mid y^T A = 0 \}
\]

- Q: what is the column space of a low-pass filter?
The **Four Fundamental Subspaces**

Assume Domain of $A = \text{Codomain of } A$. Then:

- **Special Case I:** Square Symmetric Matrices ($A = A^T$):
 - Column Space is equal to the Row Space
 - Nullspace is equal to the Left Nullspace, and is therefore orthogonal to the Column Space

- **Special Case II:** $n \times n$ Orthogonal Matrices ($A^TA = AA^T = I$)
 - Column Space = Row Space = \mathbb{R}^n
 - Nullspace = Left Nullspace = $\{0\}$ = the Trivial Subspace
Linear systems as matrices

- A linear and time invariant system
 - of impulse response $h[n]$
 - responds to signal $x[n]$ with output
 $y[n] = \sum_{k} x[k]h[n-k]$
 - this is the convolution of $x[n]$ with $h[n]$
- The system is characterized by a matrix
 - note that
 $y[n] = \sum_{k} x[k]g_n[k]$,
 with $g_n[k] = h[n-k]$
 - the output is the projection of the input on the space spanned by
 the functions $g_n[k]$

\[
\begin{bmatrix}
 y[1] \\
 y[2] \\
 \vdots \\
 y[n]
\end{bmatrix} = \begin{bmatrix} -g_1 & - \end{bmatrix} \begin{bmatrix} \vdots \\
 x[1] \\
 x[2] \\
 \vdots \\
 x[n]
\end{bmatrix}
\begin{bmatrix}
 h[0] & h[-1] & \cdots & h[-(n-1)] \\
 h[1] & h[0] & \cdots & h[-(n-2)] \\
 \vdots & \vdots & \ddots & \vdots \\
 h[n-1] & h[n-2] & \cdots & h[0]
\end{bmatrix}
\]
Linear systems as matrices

- the matrix

\[
A = \begin{bmatrix}
 h[0] & h[-1] & \cdots & h[-(n-1)] \\
 h[1] & h[0] & \cdots & h[-(n-2)] \\
 \vdots & \vdots & \ddots & \vdots \\
 h[n-1] & h[n-2] & \cdots & h[0]
\end{bmatrix}
\]

- characterizes the response of the system to any input
- the system projects the input into shifted and flipped copies of its impulse response \(h[n] \)
- note that the column space is the space spanned by the vectors \(h[n], h[n-1], \ldots \)
- this is the reason why the impulse response determines the output of the system
- e.g. a low-pass filter is a filter such that the column space of \(A \) only contains low-pass low pass signals
- e.g. if \(h[n] \) is the delta function, \(A \) is the identity
Any questions?