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Vector spaces



Vector spaces

* Definition: a vector space is a set # where
— addition and scalar multiplication are defined and satisfy:

1) X+(X'+x) = (X+x’)+x” 5) A X € H

2) XX =X+X e H 6) 1X = X
3)0eH,0+x=X 7) AM(A x) = (AL))x
4)—X e H,-Xx+x=0 8) A(X+X’) = AX + AX’
(A =scalar; x, X', X" € H) 9) (A+1))x = AX + A'X

* the canonical example is R¢ with standard
vector addition and scalar multiplication

A A
ey €y

ax




Vector spaces

« But there are much more interesting examples
* E.g., the space of functions f: X - R with

(f +9)(x) = f(x) + g(x) (AF)(x) = Af(X)
« Rdijs avector space of w —
finite dimension, e.g. % o5
— f=(fy, .., )7 )
* When d goes to infinity
we have a function
— f=1(t)
* The space of all functions ..
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Vector spaces

« Another example is the vector space of sequences with
which we work in DSP

* In 1D DSP, we represent sequences as

X[n], neZ
 This is just a vector, which could be finite
X=(X[],...,Xx[N])'
or infinite

x = (..., x[-1], x[0], x[1],...)"



Data Vector Spaces

* In this course we will talk a lot about sequences

« Seqguences will always be represented in a vector space:
— A sequence is really just a point on such a space
— from above we know how to perform basic operations on points
— this is nice, because points can be quite abstract
— e.g. iImages:
= animage is a function
on the image plane

= it assigns a color f(x,y) to
each image
location (X,y)

» the space ¥ of images
IS a vector space (note: assumes
that images can be negative)

= this image is a point in ¥

200~




Images

« Because of this we can manipulate images by
manipulating their vector representations

* E.g., Suppose one wants to “morph” a(x,y) into b(x,y):
— One way to do this is via the path along the line from a to b.

c(a) =a + a(b-a) A
=(l-a)a+ab

"~ b-a
— for a =0 we have a
— for «=1 we have b s a(b-a)
— for ain (0,1) we have a point
on the line between a and b

* To morph images we can simply

v

apply this rule to their vector
representations!



Images A
* When we make “b-a

c(x.y) = (1-0) a(x.y) + a b(x.y) AN

we get “image morphing”:

a=0 a=0.2 a=0.4 a

v

* The point is that this is possible because the images are
points in a vector space.



Images

* Images are usually represented as points in R
— Sample (discretize) an image on a finite grid to get an array of pixels
a(x,y) - afi,))
— Images are always stored like this on digital computers

— stack all the rows into a vector. E.g. a 3 x 3 image is converted into
a 9 x 1 vector as follows:

o

— In general a n x m image vector is transformed into a nm x 1 vector
— Note that this is yet another vector space

* The point is that there are generally multiple different, but
Isomorphic, vector spaces in which the data can be
represented



Text

« Another common type
of data is text

e Documents are
represented by
word counts:

— associate a counter
with each word

— slide a window through
the text

— whenever the word
occurs increment
Its counter
* This is the way search
engines represent
web pages
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Text e

* E.g. word counts for three

documents in a certain corpus
(only 12 words shown for clarity

* Note that:;

— Each document isad =12
dimensional vector

— If I add two word count vectors (documents), | get a new word
count vector (document)

— If I multiply a word count vector (document) by a scalar, | get a
word count vector

— Note: once again we assume word counts could be negative (to
make this happen we can simply subtract the average value)

* This means:
— We are once again in a vector space (positive subset of R9)
— A document is a point in this space

%
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Jamsion fish
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Dot-products and distances



Bilinear forms

 Inner product vector spaces are popular because they
allow us to measure similarity between data points

* The main tool for this is the inner product (“dot-product”).

« We can define the dot-product using the notion of a
bilinear form.

« Definition: a bilinear form on a real vector space # Is a
bilinear mapping

Q. HXH->R
(X,X?) = Q(x,x’)
‘Bi-linear” means that Vx,x’ x”" e H

) Q[(AX+A'X),X"] = AQ(X,X") + 1’Q(x’,X")
1) Q[x”,(Ax+AX)] = AQ(x”,x) + ’'Q(x”,x’)




Inner Products

| Definition: an inner product on a real vector space # Is

a bilinear form
<> HXH—->R
(X,X’) > <x,x’>

such that
) <X,x>>0, VXeH
) <x,x>=0 ifandonly if x=0
) <x,y>=<y,x>forall xandy

* The positive-definiteness conditions i) and i) make the
Inner product a natural measure of similarity

* “nothing can be more similar to x than itself’
* This becomes more precise with introduction of a norm



Inner Products and Norms
« Any inner product induces a norm via

IXI12 = <x,x>

By definition, any norm must obey the following properties

— Positive-definiteness:
— Homogeneity:
— Triangle Inequality:

x|| >0, & ||x|| = 0 iff x = 0
AX[| = 1A] x|
x+ y|| < ||x]| + |y

« A norm defines a corresponding metric

d(x,y) = [[x-yl|

which is a measure of the distance between x and y

« Always remember that the induced norm changes with a
different choice of inner product!



Inner Product

« Back to our examples:
— In R9the standard inner product is

d
<X’ y>: XTy:ZXiyi
i1

— Which leads to the standard Euclidean norm in R¢

W= xS

— The distance between two vectors is the standard Euclidean
distance in Rd

d

d(x,y) =[x=y] =/ (x=y)" (x-y) =\/Z(Xi - i)’

=1




Inner Product

* In signal processing these operations have special names:
— The inner product is the correlation between the two sequences

d
<X’ y>: XTy:ZXiyi
i1

— The norm is the energy of the signal

W= xS

— The Euclidean distance is the distance

d

d(x,y) =[x=y] =/ (x=y)" (x-y) =\/Z(Xi - i)’

=1




Inner Products and Norms

* Note, e.g., that this immediately gives
a measure of similarity U — R
between web pages HRNRRESES 7]

— compute word count vector x; (111111 |
from page I, for all | ‘

_]
B =

@
o

kN
o

ne
o

o
o

Beakog fish
skog EROD ==

— distance between page i and e o 3 2458} %

i i - : $ S 3 & 2 54 % 7|
page j can be simply defined as: W SEEEERRE
@ <537 356" 5

d06.,) = = =0 =) 0y =)
— This allows us to find, in the web, the most similar page i to any given
page |.

* In fact, this is very close to the measure of similarity used by
most search engines!

« What about images and other continuous valued signals?

Normalized valuss



Inner Product

* Note that:
— because iy _y)®— (x—y)T(x-y)
=X X=2X"y+Vy'y
=[x +[yl" = 2xTy

— The distance between sequences depends on
= how much energy they have
= their correlation.

— The energy measures how long the vectorg‘are

— The correlation depends on their angl

= Two signals of equal energy but
low correlation

= Two highly correlated sequences /

of different energy

N
\\Y-X
N
N
N

v

v



Unit vectors

 The norm measures the length of a vector
A unit vector is a vector of norm 1

« Any vector can be made a unit vector by normalization
— This consists of dividing the vector by its norm

— Note that

t
= x'x :w/uyu{ -1 :
y 1

— All unit vectors are on the unit circle

C=U|IxIF1}




Normalized correlation

* |s the correlation between normalized sequences

X'y ' y
p(X,y) = [ ]
Xyl W) [y

* And captures distance between them

2

Xyl _x'x 5 X'y y y
M T KA
=2-2p(X,Y)

|t can be shown that

y/lyll

x/IxI],

x"y =[xy cos(£x, y)©

p(X,y) = Cos(£X, Y)

angle between x and y



Inner Products on Function Spaces

* Recall that the space of functions is an infinite
dimensional vector space

— The standard inner product is the natural extension of that in Rd
(Just replace summations by integrals)

(F(¥), 900y = [f(x)g(x)dx

— The norm becomes the “energy” of the function

[ = [£2(x)dx

— The distance between functions the energy of the difference
between them

d(f(x),900) =] () -9 = [[F()-g(x)] dx




Inner Products on Function Spaces

 One can thus define
— The normalized correlation between two functions

[ £ (09(x)dx
j f 2(x)dx j g2 (x)dx

p(T(x),9(x)) =

— And the angle between two functions

[ f(x)g(x)dx
[ £2(x)dx [g° (x)dx

Zf(X),9(x) = arccos[




Bases



Basis Vectors

 We know how to measure distances in a vector space

« Another interesting property is that we can fully
characterize the vector space by one of its bases

» A set of vectors x., ..., X, Is a basis of a vector space # if
and only if (iff)

— they are linearly independent

Y ¢x =0<¢ =0,Vi

— and they span #: for any v in #, v can be written as

V=> CX
|

« These two conditions mean that any V € H can be
uniquely represented in this form.



Basis

* Note that

— By making the vectors x; the columns of a matrix X, these two
conditions can be compactly written as

— Condition 1. The vectors x; are linear independent:

Xc=0<c¢c=0

— Condition 2. The vectors X; span #

Vv #0, 3¢ # 0 such that v= Xc

e Also, all bases of # have the same number of vectors,
which is called the dimension of #

— This is valid for any vector space!



The canonical basis

« The simplest basis is the canonical basis

1 0 0 o
1 0
€ =| . e = - R
0 0 1

EN-1

 In DSP, the sequences g, are called impulse sequences

e, =o[n] e, =o[n-1j ey =0[N—(N -1)]

* This is the reason why the impulse sequence has such
predominance in DSP



The impulse seguence

* For example, any sequence can be written as
x[n]= > x[k]s[n—k]
k

* This is a well known DSP law
— convolution with the impulse dn] does not change the sequence

X[n] = x[n]*o[N]

« Geometrically, it is just the representation of the
sequence x[n] on the canonical basis

A §[n-1]

X[n] = X[0]o[n] + X[1]o[n-1] +...
+ X[N =1]o6[n— (N -1)]

(X[0], ..., XN-1])

8[n]

8[n-(N-1)]



The impulse seguence

 Has unit norm

Tl = Y 6°K] =1

« And is orthogonal to the other impulse sequences
— For any I, m not equal

(8[n-1],6[n-m]) =D 5[k —115[k —m] =1

— Hence

— E.Q.

Orthogonal
sequences 5

T A 3[n-1]
Zo[n—1],0[n—m] =5

(x[0], ..., x[N-1])

n—1]=(0.10,...,0)"

3[n]

n—2]=(0,01....0)

d[n-(N-1)]



Basis

« example

— A basis
of the vector
space of images
of faces

— The figure
only shows the
first 16 basis
vectors but
there actually
more

— These vectors are
orthonormal




Orthogonality
« Two vectors are orthogonal iff their inner product is zero
- eg 5, i

sin® ax

j sin(ax) cos(ax)dx = =0
0 23. 0

2

In the space of functions defined on [0,2r], cos(ax) and sin(ax)
are orthogonal

* Two subspaces V and W are orthogonal, V| W, if
every vector in V is orthogonal to every vector in W

* a set of vectors x4, ..., X, is called
— orthogonal if all pairs of vectors are orthogonal.
— orthonormal if all vectors also have unit norm.

0, if i #
<X"XJ’>:{1, if i = j




Orthogonal basis

* An N-D sequence x[n] can be easily represented in an N-
D orthogonal basis {by[n], ..., by.1(N)}

— Sequence is a linear combination of unit basis vectors

X[n] = «[0] HE"{E}H +...+ [N -1] HEI\H{E}H

— Coefficients are the dot-products with unit basis vectors

a[0] = <x[n], HEOEE}H> - a[N=1]= <x[n], HEMEHO




Orthogonal basis

* Note that for the impulse basis, b, [n] = Jn-m]
— The basis vectors are already unit vectors
— The sequence is

x[n] = «[0Jb,[n] +...+ [N -1]b_,[n]
= a[0]o[n]+...+ [N —=1]6[n— (N —-1)]
= Za[k]5[n —K]

— The coefficients are

efk] = (x[n],b, [n]) = (x[n], 6[n - K]) = X[K]

— And we are back to the fundamental formula

X[n]=) xk]oTn-k]




Matrices and LTI systems



Matrix

e an m x n matrix represents a linear operator that maps a vector
from the domain ¥ = R" to a vector in the codomain ¢ = R™

* E.g. the equation y = AX ——

sendsxinR"toy in R™M Y, a, a, | X
according to S T T
ym_ aml amn_ Xn
% 4 e A e Gg

><
>
,\

€,

» note that there is nothing magical about this, it follows rather
mechanically from the definition of matrix-vector multiplication



Linear systems

* Hence, a square matrix can be used to represent a linear
system
« domain ¥ = RN is the vector space of input sequences

 codomain 9 = RNis the vector space of output sequences
* Note that if the input is a linear combination of sequences

x[n] =ax,[n]+Dbx,[n]

* The output is the same linear combination of the
corresponding outputs

y[n] = Ax[n] = Aax, ] +bx,[n])
— aAx,[n] +bAX,[n] = ay,[n] + by, 1]

 This is the definition of linear system



Matrix-Vector Multiplication |

» Considery =Ax, i.€.¥;= 25" X i=1,..m
« We can think of this as _

n
Yi|l=|@ o & || | T Zaijxj =1 & = X1 (mrows)
. . j=1 .

n [ ) _

« where “(— a, —)” means the i"" row of A. Hence
— the i'" component of y is the inner product of (- a, —) and x.
— Yy is the projection of x on the subspace (of the domain space) spanned
by the rows of A

A e, %:Rr

« A’s action in &

[
»

€4




Matrix-Vector Multiplication lI

* Butthere is more. Lety = Ax, i.e. y; = 2,," a;X; , now be written as

_yl_ n : _a11X1+'”+a1an_ _|_ _|_
Pl=| DX | = : =|a, [x +-+|a |[x
j=1
_ym_ J : _am1X1+“°+aman_ | | | | | |
« where a; with “|” above and below means the it" column of A.

* hence
— X; is the i component of y in the subspace (of the co-domain) spanned
by the columns of A
— Yy is alinear combination of the columns of A

& g =R

X

A maps from % to %

»

€4




Matrix-Vector Multiplication

 two alternative (dual) pictures of y = Ax:
— y = coordinates of x in row space of A (The X = R" viewpoint)

-a,- Domain ¥ = R" viewpoint

Domain % = R"

A
n

— X = coordinates of y in column space of A (% = R™ viewpoint)



A cool trick

 the matrix multiplication formula
C=AB <c; =) aby,
k

also applies to “block matrices” when these are defined
properly
- for example, if A,B,C,D,E,F,G,H are matrices,

A B||E F| |AE+BG AF+BH
C D||G H| |CE+DG CF+DH
 only but important caveat: the sizes of A,B,C,D,E,F,G,H

have to be such that the intermediate operations make
sense! (they have to be “conformal”)



Matrix-Vector Multiplication

* This makes it easy to derive the two alternative pictures

* The row space picture (or viewpoint):

Yi

(_ai _)1xn

nxl

= (_ai _)X

IS Just like scalar multiplication, with blocks (—a;-) and x
* The column space picture (or viewpoint):

Yi |=

| mx1

| |
a1 an
| |

mx1_|

_(Xl)lxl_

_(Xn)lxl_

|

|
a'i

;

IS Just a inner product, with (scalar) blocks x; and the
column blocks of A.



Matrix-Vector Multiplication

 two alternative (dual) pictures of y = Ax:
— y = coordinates of x in row space of A (The X = R" viewpoint)

-a,- Domain ¥ = R" viewpoint

Domain % = R"

A
n

— X = coordinates of y in column space of A (% = R™ viewpoint)



Sguare n x n matrices

* In this case m = n and the row and column subspaces are
both equal to (copies of) R"




LTI systems

« A iIs time invariant when
— X[n] has response y[n]
— If and only if, for any m, x[n-m] has response y[n-m]

yln]= AX[n] < y[n—m] = Ax[n—m]

— How does this constrain A?
= Let x[n] = Jn] |
= call the output impulse response | 1

h[n] = Ad[n]

= Using the codomain viewpoint

| | | |
hin]=|a, [x1+|a, |x0+...+|ay, |x0=|q [q {I}
| | | | o A A

“Impulse response is first column of A”



LTI systems

« A is time invariant when
= Let x[n] = Jn-1]
= the output is shifted impulse response

h[n—1] = Ao[n—1]

= Using the codomain viewpoint

h[n-1]=|a, |[x0+|a, [x1+...+|a,, |[x0=]|a,

“h[n-1] is second column of A”

» Repeating this for all shifts of the input we have
— The k' column of A is h[n-K]!



LTI systems

 The matrix A has the structure

| | |
A=|h[n] h[n-1 ... h[n—(N-1)]

» Columns are shifts of the impulse response
— Check:
— what if impulse response is the impulse? _
— Ais the identity matrix
— Ax =xfor all x

— The system does not change
the input

— Itis an all-pass filter 0

A =




LTI systems

« What are the rows?
— Note that we can write

" h[0] h[-1] h[-N +1]
h[1] h[0] h[-N +2]
A - . . ",
'h[N -1] h[N -2] h[0]

— the k" row of Ax is
[h[k] h[k-1] ... h[k—(N-=1)]
— This is the sequence

gc[n]=hlk-n]
— Obtained by flipping h and shifting by k



LTI systems

* Hence, we have

Domain % viewpoint

—  go[n] -]

| 9 N—1[n] ]

— h[-n] -

_ h[N—.l—n] _

« And two views of an LTI system

| |
h[n]  h[n—1]

|
h[n—(N-1)]

:

Yi =] (—a-)X

Codomain % viewpoint



Convolution

« Two ways to compute the output
« Under the domain viewpoint

- y[0]

Y[N -1] |

(h[-n], x[n])

(h[N —1;n],x[n]>

bl

- h[N—.l—n] -

X[n]

* \We obtain the convolution formula

Domain X viewpoint

{ —ai.— x} (m rows)

1
|
I

y[k] = (h[k —n],x[n]) = ¥ h[k —n]x[n]




Convolution

« Under the codomain viewpoint

Codomain X viewpoint

| | | | |
| |
yln]|=|hln] ~ h[n-1] ... h[n—(N-DJ| x[n] y{al}Xﬁ--d{arlxn
|

| | |
=| h[n] [X[O]+...+| h[n—(N =1)] [X[N —1] ain‘_

 \We obtain the alternative view of
convolution

y[n] = h[n—K]x[k]

* Note that the formulas are the same, but interpretation is
different



Example

* Impulse response:

* Input:

e System:

Domain viewpoint

Rl

A= 1]

il

hin]
C

1]

n

xnl ¢ .
| I
I

n

A}gf_

Codomain viewpoint




Example

e convolution:

Domain viewpoint
HEs
A=| _l1t

y[n] = <_LI_L ,.L’_

< .rI ,J_’_

1| /

_< IH,I’

NN\

y[n] =d x E‘ +ex E‘




The fundamental spaces



Orthogonal matrices

« A matrix is called orthogonal if it is square and has
orthonormal columns.

 Important properties:

— 1) The inverse of an orthogonal matrix is its transpose
= this can be easily shown with the block matrix trick. (Also see later.)

- . Tr 10 ... 0
: |
0 1 0
A'A=| —a/ - ||... |a =] L
. | s 0 0 ... 1)

— 2) A proper (det(A) = 1) orthogonal matrix is a rotation matrix

= this follows from the fact that it does not change the norms (“sizes”)
of the vectors on which it operates,

|AX||" = (AX)" (Ax) = x" A" Ax = x"x =|| x|,

and does not induce a reflection.



Rotation matrices

e The combination of
1. “operator” interpretation
2. “block matrix trick”

IS useful in many situations

« Poll:
—  “What is the matrix R that rotates the plane R? by 6 degrees?”

e2 A

e




Rotation matrices

* The key is to consider how the matrix operates on the

vectors e; of the canonical basis
— note that R sends e, to e’

el =
r21 r-22 O

— using the column space picture

I’ I’ I’
e.1:£ ﬂ}(l_"[ 12))(0:( 11)
21 2 I

e, 1

sin O

— from which we have the first column of the matrix

Rl Mo | _ coséd r,
‘r,| |sind r,

cos O e,



Rotation Matrices

« and we do the same for e,
— Rsends e, to e’,

I r. || O I I I
e|2:|:11 12:||: i|:[1l]xo+(12]><1:(12]
r21 r-22 1 r21 I"22 r-22
— from which ©2 s
) -
- SIN
R=[¢ . cosd -sin@ 0 KN
=1|e e = ]
L' 720 sing cosd@ <
— check <in o cos0 €,

T cosd
R'R

—sing@ cos@}{

sin@

Cosd
sing

—sin@
cosé

|



Analysis/synthesis

* one interesting case is that of matrices with orthogonal
columns

 note that, in this case, the columns of A are
— a basis of the column space of A
— a basis of the row space of AT

* this leads to an interesting interpretation of the two
pictures
— consider the projection of x into the row space of AT
y = AT X
— due to orthonormality, x can then be synthesized by using the

column space picture
X =Ay



Analysis/synthesis

 note that this is your most common use of basis

* let the columns of A be the basis vectors a,
— the operation y = AT x projects the vector x into the basis, e.g.

Y1 _1 0 - 0 X Y1 X
Y2 0 1 - 0)x Y2 X

= < = this is called
' ’ ' ' ‘ the canonical
Yol 10 O -+ 1]X, Y, X basis of R"
| Yn | < TS L] L
— The vector x can then be reconstructed by computing x' = Ay,
e.g. N - _ o
J x,7 1] [0 o] [v,] %
X' 0 1 0 X
'2 - : yl+ : y2+...+ : yn: >/:2 — :2
X'y 0 0 1 Yo | [X

— Q: is the synthesized x’ always equal to x?




Projections

« A: not necessarily! Recall
—y=ATx and x’=Ay
— x’=xifand only if AAT = | !
— this means that A has to be orthonormal.
« what happens when this is not the case?
— we get the projection of x on the column space of A

— e.g.let 1a7 then [ X
10 100
A=(01 y= 010
00 L
and o
10 (%) (0)
X 1
X'=|01 1}: 0 |+| %, [=]X,
X, column space of A=
_00_‘ \0) \0) _O_ row space of AT




Null Space of a Matrix

 What happens to the part that is lost?
* This is the “null space” of AT

column space of A=

N A" = XlATX:O row space of AT

— In the example, this is comprised of all vectors of the type {o} since

0
_ [100 0
010 0

o
* FACT: N(A) is always orthogonal to the row space of A:
— X s in the null space iff it is orthogonal to all rows of A

 For the previous example this means that N(AT) is
orthogonal to the column space of A




Orthonormal matrices

* Q: why Is the orthonormal case special?
* because here there is no null space of AT
» recall that for all x in N(AT)
- A'x=0<x=A0=0
* the only vector in the null space is O
. this makes sense: 1 0 O]
— A has n orthonormal columns,e.g. A=|{0 1 O
— these span all of R" 0 0 1
— there is no extra room for an orthogonal space

— the null space of AT has to be empty

— the projection into row space of AT (=column space of A) is the
vector X itself

* In this case, we say that the matrix has full rank




The Four Fundamental Subspaces

* These exist for any matrix:
— Column Space: space spanned by the columns
— Row Space: space spanned by the rows

— Nullspace: space of vectors orthogonal to all rows (also known as
the orthogonal complement of the row space)

— Left Nullspace: space of vectors orthogonal to all columns (also
known as the orthogonal complement of the column space)

* You can think of these in the following way
— Row and Nullspace characterize the domain space (inputs)

— Column and Left Nullspace characterize the codomain space
(outputs)



Domain viewpoint

* Domain ¥=R"
— y = coordinates of x in row space of A

yi}—{ —-a, — x} (m rows)
— Row space: space of “useful inputs”, : :
which A maps to non-zero output
— Null space: space of “useless inputs”, N(A) ={x| Ax =0}
mapped to zero
— Operation of a matrix on its domain ¥ = R"

Null
space

v

€,

— Q: what is the null space of a low-pass filter?



Codomain viewpoint

« Codomain ¢4 =R™ | |
— X = coordinates of y in column space of A y=|ag [ X+t | X,
— Column space: space of “possible outputs”, | |
which A can reach
— Left Null space: space of “impossible L(A) ={y|y'A=0}
outputs”, cannot be reached
— Operation of a matrix on its codomain 4% = R™

Left Nu
space

v

€,

— Q: what is the column space of a low-pass filter?



The Four Fundamental Subspaces

Assume Domain of A = Codomain of A. Then:

« Special Case I: Square Symmetric Matrices (A = AT):
— Column Space is equal to the Row Space
— Nullspace is equal to the Left Nullspace, and is therefore
orthogonal to the Column Space
« Special Case Il: nxn Orthogonal Matrices (ATA = AAT =)
— Column Space = Row Space = R"
— Nullspace = Left Nullspace = {0} = the Trivial Subspace



Linear systems as matrices

A linear and time invariant system
— of impulse response h[n]
— responds to signal x[n] with output Y[n]=>_ x[k]h[n—k]
— this is the convolution of x[n] with h[n] ‘
* The system is characterized by a matrix
— note that
y[nl= > x[klg,[k], with g,[k]=h[n—K]

k
— the output is the projection of the input on the space spanned by

the functions g,[K]

oyl [-9.-] [ hlO1  h[=1 - h[=(n-D] | x4 ]
yl2l| | -9.- hii]  h[0] .- h[=(n-2)] | x[2]

yInl] [-9,—) [h[n=1] h[n-2] --- h[O] ]| x[n]]



Linear systems as matrices

* the matrix O] bl - h(n-1)]
A_| DOl ho] - h{=(n-2)]
'h[n-1] h[n-2] . h[0]

— characterizes the response of the system to any input

— the system projects the input into shifted and flipped copies of its
Impulse response h[n]

— note that the column space is the space spanned by the vectors
h[n], h[n-1], ...

— this is the reason why the impulse response determines the
output of the system

— e.g. a low-pass filter is a filter such that the column space of A
only contains low-pass low pass signals

— e.g. if h[n] is the delta function, A is the identity






