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Vector spaces 



Vector spaces 

• Definition: a vector space is a set H  where  

– addition and scalar multiplication are defined and satisfy: 
 

1) x+(x’+x’’) = (x+x’)+x”  5) x H 

2) x+x’ = x’+x H   6) 1x = x 

3) 0 H, 0 + x = x   7) ( ’ x) = ( ’)x 

4) –x H, -x + x = 0  8) (x+x’) = x + x’ 

 ( scalar;  x, x’, x” H )   9) ( + ’)x = x + ’x 

 

• the canonical example is Rd with standard  

    vector addition       and     scalar multiplication 
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Vector spaces 

• But there are much more interesting examples 

• E.g., the space of functions f:X  R with 
 

 (f + g)(x) = f(x) + g(x)   ( f)(x) = f(x) 

•  Rd is a vector space of  

finite dimension, e.g. 

– f = ( f1 , ... , fd )
T 

• When d goes to infinity  

we have a function 

– f = f (t ) 

• The space of all functions  

is an infinite dimensional 

vector space 

 



Vector spaces 

• Another example is the vector space of sequences with 

which we work in DSP 

• In 1D DSP, we represent sequences as 

 

 

• This is just a vector, which could be finite 

 

 

 

or infinite  
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• In this course we will talk a lot about sequences 

• Sequences will always be represented in a vector space: 

– A sequence is really just a point on such a space 

– from above we know how to perform basic operations on points 

– this is nice, because points can be quite abstract 

– e.g. images: 

 an image is a function  

on the image plane 

 it assigns a color f(x,y) to 

each image  

location (x,y)  

 the space   of images 

is a vector space (note: assumes 

that images can be negative) 

 this image is a point in   

Data Vector Spaces 



• Because of this we can manipulate images by 

manipulating their vector representations 

• E.g., Suppose one wants to “morph” a(x,y) into b(x,y): 

– One way to do this is via the path along the line from a to b.  

 

 c( ) = a + (b-a) 

            = (1- ) a +  b 

 

– for  = 0 we have a 

– for  = 1 we have b 

– for  in (0,1) we have a point 

on the line between a and b 

• To morph images we can simply  

apply this rule to their vector 

representations! 

Images 

b 

a 

b-a 

(b-a) 



• When we make 

  c(x,y) = (1- ) a(x,y) +  b(x,y) 

   we get “image morphing”: 

 

 

 

 

 

 

 

 

 

 

• The point is that this is possible because the images are 

points in a vector space. 
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• Images are usually represented as points in Rd  

– Sample (discretize) an image on a finite grid to get an array of pixels 

   a(x,y)  a(i,j) 

– Images are always stored like this on digital computers 

– stack all the rows into a vector.  E.g. a 3 x 3 image is converted into 

a 9 x 1 vector as follows: 

 

 

 

 

 

– In general a n x m image vector is transformed into a nm x 1 vector 

– Note that this is yet another vector space 

• The point is that there are generally multiple different, but 

isomorphic, vector spaces in which the data can be 

represented 
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Text 

• Another common type 

of data is text 

• Documents are  

represented by  

word counts: 

– associate a counter 

with each word 

– slide a window through 

the text 

– whenever the word 

occurs increment  

its counter 

• This is the way search 

engines represent 

web pages 



Text 

• E.g. word counts for three  

documents in a certain corpus  

(only 12 words shown for clarity) 

• Note that: 

– Each document  is a d = 12  

dimensional vector 

– If I add two word count vectors (documents), I get a new word 

count vector (document) 

– If I multiply a word count vector (document) by a scalar, I get a 

word count vector 

– Note: once again we assume word counts could be negative (to 

make this happen we can simply subtract the average value) 

• This means: 

– We are once again in a vector space (positive subset of Rd ) 

– A document is a point in this space 



Dot-products and distances 



Bilinear forms 
• Inner product vector spaces are popular because they 

allow us to measure similarity between data points 

• The main tool for this is the inner product (“dot-product”). 

• We can define the dot-product using the notion of a 
bilinear form. 

• Definition: a bilinear form on a real vector space H  is a 
bilinear mapping 
 
              Q: H  x H R 
                                  (x,x’)  Q(x,x’) 
 

“Bi-linear” means that x,x’,x’’  H 
 

  i)  Q[( x+ ’x’),x”] = Q(x,x”) + ’Q(x’,x”) 
 ii) Q[x”,( x+ ’x’)] = Q(x”,x) + ’Q(x”,x’)  



Inner Products 
• Definition: an inner product on a real vector space H  is 

a bilinear form  
          <.,.>: H x H R 

                                  (x,x’)  <x,x’> 
 

such that 
 

  i)  <x,x> 0,  x  H 

 ii) <x,x> = 0  if and only if  x = 0 

  iii) <x,y> = <y,x> for all x and y 

 

• The positive-definiteness conditions i) and ii) make the 

inner product a natural measure of similarity 

• “nothing can be more similar to x than itself” 

• This becomes more precise with introduction of a norm 
 



Inner Products and Norms 
• Any inner product induces a norm via  

 

   ||x||2 = <x,x> 

 

• By definition, any norm must obey the following properties 

– Positive-definiteness:   ||x||  0, & ||x||  0 iff x  

– Homogeneity:  ||  x|| = | | ||x|| 

– Triangle Inequality: ||x + y|| ≤ ||x|| + ||y|| 

 

• A norm defines a corresponding metric 
 

  d(x,y) = ||x-y|| 
 

which is a measure of the distance between x and y 

• Always remember that the induced norm changes with a 

different choice of inner product! 

     



Inner Product 

• Back to our examples: 

– In Rd the standard inner product is  

 

 

 

– Which leads to the standard Euclidean norm in Rd  

 

 

 

 

– The distance between two vectors is the standard Euclidean 
distance in Rd 

i

d

i

i

T yxyxyx
1

,

d

i

i

T xxxx
1

2

d

i

ii

T yxyxyxyxyxd
1

2)()()(),(



Inner Product 

• In signal processing these operations have special names: 

– The inner product is the correlation between the two sequences  

 

 

 

– The norm is the energy of the signal  

 

 

 

 

– The Euclidean distance is the distance 
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Inner Products and Norms 
• Note, e.g., that this immediately gives  

a measure of similarity  

between web pages 

– compute word count vector xi 

from page i, for all i 

– distance between page i and 

page j can be simply defined as: 

 

 

 

– This allows us to find, in the web, the most similar page i to any given 

page j. 

• In fact, this is very close to the measure of similarity used by 

most search engines! 

• What about images and other continuous valued signals? 
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Inner Product 

• Note that: 

– because 

 

 

 

 

– The distance between sequences depends on  

 how much energy they have  

 their correlation. 

– The energy measures how long the vectors are 

– The correlation depends on their angle 

 Two signals of equal energy but  

low correlation 

 Two highly correlated sequences  

of different energy 
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Unit vectors 

• The norm measures the length of a vector 

• A unit vector is a vector of norm 1 

• Any vector can be made a unit vector by normalization 

– This consists of dividing the vector by its norm  

 

 

 

– Note that 

 

 

 

 

– All unit vectors are on the unit circle  
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Normalized correlation 

• Is the correlation between normalized sequences 

 

 

 

 

• And captures distance between them 

 

 

 

 

 

• It can be shown that 
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Inner Products on Function Spaces 

• Recall that the space of functions is an infinite 

dimensional vector space 

– The standard inner product is the natural extension of that in Rd  

(just replace summations by integrals) 

 

 

 

– The norm becomes the “energy” of the function  

 

 

 

– The distance between functions the energy of the difference 

between them 
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Inner Products on Function Spaces 

• One can thus define 

– The normalized correlation between two functions 

 

 

 

 

 

– And the angle between two functions 
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Bases 



Basis Vectors 
• We know how to measure distances in a vector space 

• Another interesting property is that we can fully 

characterize the vector space by one of its bases 

• A set of vectors x1, …, xk is a basis of a vector space H  if 

and only if (iff) 

– they are linearly independent 

 

 

 

– and they span H : for any v in H, v can be written as 

 

 

 

• These two conditions mean that any             can be 

uniquely represented in this form. 
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Basis 

• Note that 

– By making the vectors xi the columns of a matrix X, these two 

conditions can be compactly written as 

– Condition 1.  The vectors xi  are linear independent: 

 

 

 

– Condition 2.  The vectors  xi span H 
 

 

 

• Also, all bases of H  have the same number of vectors, 
which is called the dimension of H  

– This is valid for any vector space! 
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The canonical basis 

• The simplest basis is the canonical basis 

 

 

 

 

 

 

 

• In DSP, the sequences ei are called impulse sequences 

 

 

 

• This is the reason why the impulse sequence has such 

predominance in DSP 
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The impulse sequence 

• For example, any sequence can be written as 

 

 

• This is a well known DSP law 

– convolution with the impulse [n] does not change the sequence 

 

 

• Geometrically, it is just the representation of the 

sequence x[n] on the canonical basis 
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The impulse sequence 

• Has unit norm 

 

 

• And is orthogonal to the other impulse sequences 

– For any l, m not equal 

 

 

 

– Hence 

 

 

– E.g. 
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Basis 

• example 

– A basis  

of the vector  

space of images  

of faces 

 

– The figure 

only shows the 

first 16 basis 

vectors but 

there actually 

more 

 

– These vectors are 

orthonormal 



Orthogonality 

• Two vectors are orthogonal  iff their inner product is zero 

– e.g. 

 

 

 

in the space of functions defined on [0,2 ], cos(ax) and sin(ax) 

are orthogonal  

• Two subspaces V and W are orthogonal,  V     W,  if 

every vector in V is orthogonal to every vector in W 

• a set of vectors x1, …, xk is called 

– orthogonal if all pairs of vectors are orthogonal. 

– orthonormal if all vectors also have unit norm. 
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Orthogonal basis 

• An N-D sequence x[n] can be easily represented in an N-

D orthogonal basis {b0[n], …, bN-1(n)} 

– Sequence is a linear combination of unit basis vectors 

 

 

 

 

 

– Coefficients are the dot-products with unit basis vectors 
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Orthogonal basis 

• Note that for the impulse basis, bm[n] = [n-m] 

– The basis vectors are already unit vectors 

– The sequence is 

 

 

 

 

 

 

– The coefficients are  

 

 

– And we are back to the fundamental formula 
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Matrices and LTI systems 



Matrix 

• an m x n matrix represents a linear operator that maps a vector 
from the domain X = Rn to a vector in the codomain Y = Rm 

 

• E.g. the equation y = Ax 

 sends x in Rn to y in Rm 

     according to  

 
 

                      X                                                                                                               Y 

 

 

 

 

 

 

 

 

 

• note that there is nothing magical about this, it follows rather    

mechanically from the definition of matrix-vector multiplication 
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Linear systems 

• Hence, a square matrix can be used to represent a linear 

system 

• domain X = RN is the vector space of input sequences 

• codomain Y = RN is the vector space of output sequences 

• Note that if the input is a linear combination of sequences 

 

 

• The output is the same linear combination of the 

corresponding outputs 

 

 

 

 

• This is the definition of linear system 
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Matrix-Vector Multiplication I 

• Consider y = Ax, i.e. yi = j=1
n aijxj  

• We can think of this as 

 

                                                                                          

                                                                                         

 

• where “(– ai –)” means the ith row of A.  Hence 

– the ith component of y is the inner product of (– ai –) and x.  

– y is the projection of x on the subspace (of the domain space) spanned 

by the rows of A 
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Matrix-Vector Multiplication II 

• But there is more. Let y = Ax, i.e. yi = j=1
n aijxj , now be written as 

 

 

 

 

• where ai with “|” above and below  means the ith column of A. 

• hence 

– xi is the ith component of y in the subspace (of the co-domain) spanned 

by the columns of A 

– y is a linear combination of the columns of A 
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Matrix-Vector Multiplication 

• two alternative (dual) pictures of y = Ax: 

– y = coordinates of x in row space of A (The X = Rn  viewpoint) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– x = coordinates of y in column space of A (Y = Rm viewpoint) 
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A cool trick 

• the matrix multiplication formula 

 

 

 

also applies to “block matrices” when these are defined 

properly 

• for example, if A,B,C,D,E,F,G,H are matrices, 

 

 

 

 

• only but important caveat: the sizes of A,B,C,D,E,F,G,H 

have to be such that the intermediate operations make 

sense! (they have to be “conformal”) 
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Matrix-Vector Multiplication 

• This makes it easy to derive the two alternative pictures 

• The row space picture (or viewpoint): 

 

 

 

 

 is just like scalar multiplication,  with blocks (–ai-) and x 

• The column space picture (or viewpoint): 

 

 

 

 

 

is just a inner product, with (scalar) blocks xi and the 

column blocks of A. 
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Matrix-Vector Multiplication 

• two alternative (dual) pictures of y = Ax: 

– y = coordinates of x in row space of A (The X = Rn  viewpoint) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– x = coordinates of y in column space of A (Y = Rm viewpoint) 
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Square n x n matrices 

• in this case m = n and the row and column subspaces are 

both equal to (copies of) Rn 
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LTI systems 

• A is time invariant when 

– x[n] has response y[n] 

– If and only if, for any m, x[n-m] has response y[n-m] 

 

 

 

– How does this constrain A? 

 Let x[n] = [n]  

 call the output impulse response  

 

 

 Using the codomain viewpoint 
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LTI systems 

• A is time invariant when 
 Let x[n] = [n-1]  

 the output is shifted impulse response  

 

 

 Using the codomain viewpoint 

 

 

 

 

 

 

 

• Repeating this for all shifts of the input we have 

– The kth column of A is h[n-k]! 
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LTI systems 

• The matrix A has the structure 

 

 

 

 

 

• Columns are shifts of the impulse response 

– Check:  

– what if impulse response is the impulse? 

– A is the identity matrix  

– Ax = x for all x 

– The system does not change  

the input 

– It is an all-pass filter 
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LTI systems 

• What are the rows? 

– Note that we can write 

 

 

 

 

 

 

 

– the kth row of Ax is 

 

 

– This is the sequence 

 

 

– Obtained by flipping h and shifting by k 
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LTI systems 

• Hence, we have 

 

 

 

 

 

 

• And two views of an LTI system 
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Convolution 

• Two ways to compute the output 

• Under the domain viewpoint 

 

 

 

 

 

 

 

 

 

• We obtain the convolution formula 
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Convolution 

• Under the codomain viewpoint 

 

 

 

 

 

 

 

• We obtain the alternative view of 

convolution 

 

 

 

• Note that the formulas are the same, but interpretation is 

different 

  Codomain X viewpoint 
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Example 

• Impulse response: 

 

 

 

• Input:  

 

 

• System: 
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Example 

• convolution: 
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The fundamental spaces 



Orthogonal matrices 

• A matrix is called orthogonal  if it is square and has 

orthonormal columns. 

• Important properties:  

– 1) The inverse of an orthogonal matrix is its transpose 

 this can be easily shown with the block matrix trick. (Also see later.) 

 

 

 

 

 

 

– 2) A proper (det(A) = 1) orthogonal matrix is a rotation matrix 

 this follows from the fact that it does not change the norms (“sizes”) 

of the vectors on which it operates, 

 

 

    and does not induce a reflection. 
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Rotation matrices 

• The combination of 

1.  “operator” interpretation  

2.  “block matrix trick”  

      is useful in many situations 

• Poll: 

–  “What is the matrix R that rotates the plane R2 by  degrees?” 
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Rotation matrices 

• The key is to consider how the matrix operates on the 

vectors ei  of the canonical basis 

– note that R sends e1 to e’1 

 

 

 

 

 

 

– using the column space picture 

 

 

 

– from which we have the first column of the matrix 
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Rotation Matrices 

• and we do the same for e2  

– R sends e2 to e’2 

 

 

 

 

 

 

– from which 

 

 

 

 

– check e1 
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Analysis/synthesis 

• one interesting case is that of matrices with orthogonal 

columns 

• note that, in this case, the columns of A are 

– a basis of the column space of A 

– a basis of the row space of AT 

• this leads to an interesting interpretation of the two 

pictures 

– consider the projection of x into the row space of AT 

   y = AT x 

– due to orthonormality, x can then be synthesized by using the 

column space picture 

   x’ = A y 



Analysis/synthesis 

• note that this is your most common use of basis 

• let the columns of A be the basis vectors ai 

– the operation  y = AT x projects the vector x into the basis, e.g. 

 
 

 

 

 

 

– The vector x can then be reconstructed by computing  x’ = A y,  

e.g. 

 

 

 

 

 

– Q: is the synthesized x’ always equal to x? 
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Projections 

• A: not necessarily! Recall 

– y = AT x  and  x’ = A y 

– x’ = x if and only if AAT = I ! 

– this means that A has to be orthonormal. 

• what happens when this is not the case? 

– we get the projection of x on the column space of A 

– e.g. let           then     
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Null Space of a Matrix 

• What happens to the part that is lost? 

• This is the “null space” of AT 

 

 

 

– In the example, this is comprised of  all vectors of the type        since 

 

 

 

 

 

• FACT:  N(A) is always orthogonal to the row space of A: 

– x is in the null space iff it is orthogonal to all rows of A 

• For the previous example this means that N(AT) is 

orthogonal to the column space of A 
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Orthonormal matrices 

• Q: why is the orthonormal case special? 

• because here there is no null space of AT 

• recall that for all x in N(AT) 

–   

• the only vector in the null space is 0  

• this makes sense: 

– A has n orthonormal columns, e.g. 

– these span all of Rn 

– there is no extra room for an orthogonal space 

– the null space of AT has to be empty 

– the projection into row space of AT (=column space of A) is the 

vector x itself 

• in this case, we say that the matrix has full rank 
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The Four Fundamental Subspaces 

• These exist for any matrix: 

– Column Space: space spanned by the columns 

– Row Space: space spanned by the rows 

– Nullspace: space of vectors orthogonal to all rows (also known as 

the orthogonal complement of the row space) 

– Left Nullspace: space of vectors orthogonal to all columns (also 

known as the orthogonal complement of the column space) 

 

• You can think of these in the following way 

– Row and Nullspace characterize the domain space (inputs) 

– Column and Left Nullspace characterize the codomain space 

(outputs) 



• Domain X = Rn 

– y = coordinates of x in row space of A 

– Row space: space of “useful inputs”,  

which A maps to non-zero output 

– Null space: space of “useless inputs”, 

mapped to zero 

– Operation of a matrix on its domain X = Rn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Q: what is the null space of a low-pass filter? 
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• Codomain Y = Rm 

– x = coordinates of y in column space of A  

– Column space: space of “possible outputs”,  

which A can reach 

– Left Null space: space of “impossible  

outputs”, cannot be reached 

– Operation of a matrix on its codomain Y = Rm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Q: what is the column space of a low-pass filter? 
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The Four Fundamental Subspaces 

Assume Domain of A = Codomain of A.  Then: 

• Special Case I: Square Symmetric Matrices (A = AT): 

– Column Space is equal to the Row Space 

– Nullspace is equal to the Left Nullspace, and is therefore 

orthogonal to the Column Space 

• Special Case II: nxn Orthogonal Matrices (ATA = AAT = I)  

– Column Space = Row Space = Rn 

– Nullspace = Left Nullspace = {0} = the Trivial Subspace 



Linear systems as matrices 

• A linear and time invariant system  

– of impulse response h[n] 

– responds to signal x[n] with output  

– this is the convolution of x[n] with h[n] 

• The system is characterized by a matrix 

– note that  

 

 

– the output is the projection of the input on the space spanned by 

the functions gn[k] 
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Linear systems as matrices 

• the matrix  

 

 

 

 

– characterizes the response of the system to any input 

– the system projects the input into shifted and flipped copies of its 

impulse response h[n] 

– note that the column space is the space spanned by the vectors 

h[n], h[n-1], …  

– this is the reason why the impulse response determines the 

output of the system 

– e.g. a low-pass filter is a filter such that the column space of A 

only contains low-pass low pass signals 

– e.g. if h[n] is the delta function, A is the identity 
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