2D DSP

Nuno Vasconcelos
UCSD

Images

- the incident light is collected by an image sensor
- that transforms it into a 2D signal

2D-DSP

- in summary:
- image is a $N \times M$ array of pixels
- each pixel contains three colors
- overall, the image is a 2D discrete-space signal
- each entry is a 3D vector

$$
\begin{aligned}
x\left[n_{1}, n_{2}\right]=(r, g, b), & n_{1} \in\{0, \ldots, N\} \\
& n_{2} \in\{0, \ldots, M\}
\end{aligned}
$$

- for simplicity, we consider only single channel images

$$
\begin{aligned}
x\left[n_{1}, n_{2}\right], & n_{1}
\end{aligned} \in\{0, \ldots, N\}
$$

- but everything extends to color in a straightforward manner

Separable sequences

- a trivial concept,
- but probably the only real novelty in this lecture
- very important in practice, because it reduces 2D problem to collection on 1D problems
- Definition: a sequence is separable if and only if

$$
x\left[n_{1}, n_{2}\right]=f\left[n_{1}\right] \times g\left[n_{2}\right]
$$

where $f[$.$] and g[$.$] are 1D functions$

- note: there are many examples of separable sequences
- but most sequences are not separable

Linear Shift Invariant (LSI) systems

- straightforward extension of LTI systems
- Definition: a system T that maps $x\left[n_{1}, n_{2}\right]$ into $y\left[n_{1}, n_{2}\right]$ is LSI if and only if
- it is linear

$$
\begin{aligned}
\hline T\left\{a x _ { 1 } \left[n_{1},\right.\right. & \left.\left.n_{2}\right]+b x_{2}\left[n_{1}, n_{2}\right]\right\}= \\
& =a T\left\{x_{1}\left[n_{1}, n_{2}\right]\right\}+b T\left\{x_{2}\left[n_{1}, n_{2}\right]\right\} \\
& =a y_{1}\left[n_{1}, n_{2}\right]+b y_{2}\left[n_{1}, n_{2}\right]
\end{aligned}
$$

- it is shift invariant

$$
T\left\{x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]\right\}=y\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
$$

2D convolution

- the operation

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

is the 2D convolution of x and h

- we will denote it by

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * h\left[n_{1}, n_{2}\right]
$$

- this is of great practical importance:
- for an LSI system the response to any input can be obtained by the convolution with this impulse response
- the IR fully characterizes the system
- it is all that I need to measure

2D convolution

- has various properties of interest
- but these are the ones that you have already seen in 1D (check handout)
- some of the more important:
- commutative:

$$
X * Y=Y * X
$$

- associative:

$$
(x * y) * z=x *(y * z)
$$

- distributive:

$$
x *(y+z)=x * y+x * z
$$

- convolution with impulse:

$$
x\left[n_{1}, n_{2}\right] * \delta\left[n_{1}-m_{1}, n_{2}-m_{2}\right]=x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
$$

2D convolution

- as in 1D, it is most easily done in graphical form
- e.g. how do we convolve these two sequences?

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

$x\left[n_{1}, n_{2}\right]$

$h\left[n_{1}, n_{2}\right]$

- we need four steps

2D convolution

- step 1): express sequences in terms of (k_{1}, k_{2})

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

$x\left[k_{1}, k_{2}\right]$

$h\left[k_{1}, k_{2}\right]$

2D convolution

- step 2): invert $h\left(k_{1}, k_{2}\right)$

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

$h\left[k_{1}, k_{2}\right]$
$h\left[k_{1},-k_{2}\right]$
$g\left[k_{1}, k_{2}\right]=h\left[-k_{1},-k_{2}\right]$

2D convolution

- step 3): shift $g\left(k_{1}, k_{2}\right)$ by $\left(n_{1}, n_{2}\right)$

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

$$
g\left[k_{1}, k_{2}\right]=h\left[-k_{1},-k_{2}\right]
$$

$$
\begin{aligned}
& g\left[k_{1}-n_{1}, k_{2}-n_{2}\right]= \\
& \quad h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
\end{aligned}
$$

2D convolution

- step 4): point-wise multiply the two signals and sum

$$
\begin{aligned}
& y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right] \\
& - \text { e.g. for }\left(n_{1}, n_{2}\right)=(1,0)
\end{aligned}
$$

2D convolution

- step 4): point-wise multiply the two signals and sum

$$
\begin{aligned}
& y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right] \\
& - \text { e.g. for }\left(n_{1}, n_{2}\right)=(2,0)
\end{aligned}
$$

etc.

2D convolution

- is this the only way to look at convolution?
- any signal can be written as

$$
x\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

- e.g.

2D convolution

- we combine this

$$
x\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

with the properties of the convolution

- commutative: $x * y=y * x$
- associative:

$$
(x * y) * z=x *(y * z)
$$

- distributive:

$$
x *(y+z)=x * y+x * z
$$

- convolution with impulse:

$$
x\left[n_{1}, n_{2}\right] * \delta\left[n_{1}-m_{1}, n_{2}-m_{2}\right]=x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
$$

- to obtain another interpretation

2D convolution

- it is done like this

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =x\left[n_{1}, n_{2}\right] * h\left[n_{1}, n_{2}\right] \\
& =\left(\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right]\right) * h\left[n_{1}, n_{2}\right]
\end{aligned}
$$

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right]\left(\delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right] * h\left[n_{1}, n_{2}\right]\right)
$$

- note that this is just our definition of convolution

$$
\begin{aligned}
& x\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] \delta\left[p_{1}-k_{1}, n_{2}-k_{2}\right] \\
& \text { (no surprises here) }
\end{aligned}
$$

- but we want to think about it like this, not like this

2D convolution

- we can think of

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right]\left(\delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right] * h\left[n_{1}, n_{2}\right]\right)
$$

as the following sequence of operations

1. set $y\left[n_{1}, n_{2}\right]=0$, for all $\left(n_{1}, n_{2}\right)$
2. for each $\left(k_{1}, k_{2}\right)$ such that $x\left[k_{1}, k_{2}\right]$ is not zero

- set $\alpha=x\left[k_{1}, k_{2}\right]$
- shift $h\left[n_{1}, n_{2}\right]$ by $\left(k_{1}, k_{2}\right)$
- multiply the entire sequence by α

$$
z\left[n_{1}, n_{2}\right]=\alpha\left(\delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right] * h\left[n_{1}, n_{2}\right]\right)
$$

- add the entire sequence to $y\left[n_{1}, n_{2}\right]$

$$
y\left[n_{1}, n_{2}\right]=y\left[n_{1}, n_{2}\right]+z\left[n_{1}, n_{2}\right]
$$

2D convolution

- example

- $\left(k_{1}, k_{2}\right)=(0,0)$

$y\left[n_{1}, n_{2}\right]$

$y\left[n_{1}, n_{2}\right]$

$h\left[n_{1}-k_{1}, n_{2}-k_{8}\right]$

2D convolution

- example

- $\left(k_{1}, k_{2}\right)=(1,0)$

$y\left[n_{1}, n_{2}\right]$

$y\left[n_{1}, n_{2}\right]$

$h\left[n_{1}-k_{1}, n_{2}-k q_{2}\right]$

2D convolution

- example

- $\left(k_{1}, k_{2}\right)=(0,1)$

$y\left[n_{1}, n_{2}\right]$

$$
=
$$

$y\left[n_{1}, n_{2}\right]$

$$
h\left[n_{1}-k_{1}, n_{2}-k_{2} 2 b\right.
$$

2D convolution

- example

- $\left(k_{1}, k_{2}\right)=(1,1)$

$y\left[n_{1}, n_{2}\right]$

$y\left[n_{1}, n_{2}\right]$

$$
h\left[n_{1}-k_{1}, n_{2}-k_{2} 2\right]
$$

2D convolution

- note the differences with the previous convolution
- before we were computing one $y\left[n_{1}, n_{2}\right]$ at a time

- now we update the entire sequence at a time

Convolution

- When do I use the serial vs parallel method?
- serial always works
- parallel is useful when one of the sequences is small
- example

Convolution

- serial
$g_{n}[k]=h[n-k]$

Convolution

- parallel

Convolution

- parallel

Separable systems

- Definition: a system is separable if and only if its impulse response is a separable sequence

$$
h\left[n_{1}, n_{2}\right]=h_{1}\left[n_{1}\right] \times h_{2}\left[n_{2}\right]
$$

- note that, in this case the convolution simplifies

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right] \\
& =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h_{1}\left[n_{1}-k_{1}\right] h_{2}\left[n_{2}-k_{2}\right] \\
& =\sum_{k_{1}=-\infty}^{\infty} h_{1}\left[n_{1}-k_{1} \sum_{\kappa_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h_{2}\left[n_{2}-k_{2}\right]\right. \\
& =\sum_{k_{1}=-\infty}^{\infty} h_{1}\left[n_{1}-k_{1}\right] f\left[k_{1}, n_{2}\right]
\end{aligned}
$$

Separable systems

- the convolution simplifies to

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} h_{1}\left[n_{1}-k_{1}\right] f\left[k_{1}, n_{2}\right]
$$

with

$$
f\left[k_{1}, n_{2}\right]=\sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h_{2}\left[n_{2}-k_{2}\right]
$$

- note that:
- for a fixed $k_{1}, f\left[k_{1}, n_{2}\right]$ is 1 D convolution of $x\left[k_{1}, n_{2}\right]$ and $h_{2}\left[n_{2}\right]$

$$
f\left[k_{1}, n_{2}\right]=x\left[k_{1}, n_{2}\right] * h_{2}\left[n_{2}\right]
$$

- for a fixed $n_{2}, y\left[n_{1}, n_{2}\right]$ is 1 D convolution of $f\left[n_{1}, n_{2}\right]$ and $h_{1}\left[n_{1}\right]$

$$
y\left[n_{1}, n_{2}\right]=f\left[n_{1}, n_{2}\right] * h_{1}\left[n_{1}\right]
$$

Separable systems

- the convolution simplifies to a sequence of 1D steps
- step1) for every k_{1},
- $f\left[k_{1}, n_{2}\right]$ is 1D convolution of $x\left[k_{1}, n_{2}\right]$ and $h_{2}\left[n_{2}\right]$

$$
f\left[k_{1}, n_{2}\right]=x\left[k_{1}, n_{2}\right] * h_{2}\left[n_{2}\right]
$$

- which means: "convolve the columns of x with h_{2} to obtain columns of f^{\prime}

Separable systems

- step2) for every n_{2},
- $y\left[n_{1}, n_{2}\right]$ is 1 D convolution of $f\left[n_{1}, n_{2}\right]$ and $h_{1}\left[n_{1}\right]$

$$
y\left[n_{1}, n_{2}\right]=f\left[n_{1}, n_{2}\right] * h_{1}\left[n_{1}\right]
$$

- which means: "convolve the rows of f with h_{1} to obtain rows of y "

Separable systems

- in summary, if we have a separable system

$$
h\left[n_{1}, n_{2}\right]=h_{1}\left[n_{1}\right] \times h_{2}\left[n_{2}\right]
$$

to convolve with $x\left[n_{1}, n_{2}\right]$ we:

- 1) "convolve the columns of x with h_{2} to create f "

$$
f\left[k_{1}, n_{2}\right]=x\left[k_{1}, n_{2}\right] * h_{2}\left[n_{2}\right]
$$

- 2) "convolve the rows of f with h_{1} to obtain y "

$$
y\left[n_{1}, n_{2}\right]=f\left[n_{1}, n_{2}\right] * h_{1}\left[n_{1}\right]
$$

The Discrete-Space Fourier Transform

- as in 1D, an important concept in linear system analysis is that of the Fourier transform
- the Discrete-Space Fourier Transform is the 2D extension of the Discrete-Time Fourier Transform

$$
\begin{aligned}
& X\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} x\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} \\
& X\left[n_{1}, n_{2}\right]=\frac{1}{(2 \pi)^{2}} \iint X\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} d \omega_{1} d \omega_{2}
\end{aligned}
$$

- note that this is a continuous function of frequency
- the nomenclature distinguishes it from the 2D Discrete Fourier transform (we will get back to this)
- what does the DSFT of an image look like?

Image spectrum

- two images, the magnitude, and phase of their FTs

Phase and Magnitude

- curious fact
- all natural images have about the same magnitude transform
- monotonically decaying with frequency

$$
X\left(\omega_{1}, \omega_{2}\right) \propto \frac{1}{\omega_{1}^{2}+\omega_{2}^{2}}
$$

- hence, phase seems to matter, but magnitude largely doesn't
- we can see this through the following experiment
- take two pictures, swap the phase transforms, compute the inverse
- here is what you get

The importance of phase

Reconstruction with zebra phase, cheetah magnitude

Reconstruction with cheetah phase, zebra magnitude

LSI systems

- why do we care so much about Fourier transforms?
- note that when we convolve a sequence with a complex exponential,

$$
x\left[n_{1}, n_{2}\right]=e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}}
$$

we get

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} h\left[k_{1}, k_{2}\right] x\left[n_{1}-k_{1}, n_{2}-k_{2}\right] \\
& =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} h\left[k_{1}, k_{2}\right] \mathrm{e}^{\mathrm{j} \varpi_{1}\left(n_{1}-k_{1}\right)} \mathrm{e}^{\mathrm{j} \varpi_{2}\left(n_{2}-k_{2}\right)} \\
& =\mathrm{e}^{\mathrm{j} \varpi_{1} n_{1}} \mathrm{e}^{\mathrm{j} \omega_{2} n_{2}} H\left(\varpi_{1}, \varpi_{2}\right) \\
& =x\left[n_{1}, n_{2}\right] H\left(\varpi_{1}, \varpi_{2}\right)
\end{aligned}
$$

LSI systems

- but we have seen that, for an LSI system
- the output in response to $x\left[n_{1}, n_{2}\right]$
- is the convolution with the impulse response $h\left[n_{1}, n_{2}\right]$
- hence, the response to

$$
x\left[n_{1}, n_{2}\right]=e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}}
$$

- is

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] H\left(\varpi_{1}, \varpi_{2}\right)
$$

- this means that complex exponentials are the eigenfunctions of LSI systems
- when we input an eigenfunction, we get back the same function
- but scaled by $H\left(\omega_{1}, \omega_{2}\right)$
- this is called the frequency response of the system

LSI systems

- this is remarkable, since
- we know that any signal can be represented as a weighted sum of complex exponentials

$$
\begin{aligned}
& X\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} x\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} \\
& X\left[n_{1}, n_{2}\right]=\frac{1}{(2 \pi)^{2}} \iint X\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} d \omega_{1} d \omega_{2}
\end{aligned}
$$

- when the signal is fed to an LSI system, each exponential is scaled by $H\left(\omega_{1}, \omega_{2}\right)$
- hence, the frequency response completely characterizes the system
- and the DSFT of the output is just the product of the two

$$
Y\left(\omega_{1}, \omega_{2}\right)=H\left(\omega_{1}, \omega_{2}\right) X\left(\omega_{1}, \omega_{2}\right)
$$

Example

- the system with impulse response on the left
- has frequency response

$$
\begin{aligned}
& H\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} h\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} \\
& \quad=\frac{1}{3}+\frac{1}{6} e^{-j \omega_{1}}+\frac{1}{6} e^{-j \omega_{2}}+\frac{1}{6} e^{j \sigma_{1}}+\frac{1}{6} e^{j \omega_{2}} \\
& \quad=\frac{1}{3}+\frac{1}{3} \cos \omega_{1}+\frac{1}{3} \cos \varpi_{2}
\end{aligned}
$$

- note that:
- the response is 1 at DC
- lower for high frequencies
- this system is a low-pass filter

WARNING

- WARNING, WARNING, WARNING!
- the equivalence

$$
e^{-j n \varpi_{1}}+e^{j n \varpi_{1}}
$$

$=\cos n \omega_{1}$

2

- is the oldest trick in the DSP book!
- please do not fall for it
- you can "read" the sequence that has this DSFT

$$
H\left(\omega_{1}, \omega_{2}\right)=\frac{1}{3}+\frac{1}{3} \cos \varpi_{1}+\frac{1}{3} \cos \varpi_{2}
$$

by applying this trick and the definition of DSFT!

WARNING

- Quizz: which on the left is the DSFT of this image?

WARNING

- the way to think about this is the following:

- this image has low frequencies horizontally (ω_{1})
- high frequencies vertically $\left(\omega_{2}\right)$
- the spectrum is a delta function along (ω_{1}) and harmonics along (ω_{2})
- the spectrum is this
- wrong way: "because image is horizontal spectrum must be too"

Properties of the DSFT

- these are extremely important, but straightforward extension of what you have seen in 1D
- only novelty is separability (homework):
- the DSFT of a separable sequence is itself separable
- it is the product of the DTFTs of the 1D sequences that make up the 2D sequence

$$
X\left[n_{1}, n_{2}\right]=X_{1}\left[n_{1}\right] X_{2}\left[n_{2}\right] \leftrightarrow X\left(\omega_{1}, \omega_{2}\right)=X_{1}\left(\omega_{1}\right) X_{2}\left(\omega_{2}\right)
$$

- all other properties carry from 1D to 2D

Properties of the DSFT

$$
\begin{aligned}
& x\left(n_{1}, n_{2}\right) \longleftrightarrow X\left(\omega_{1}, \omega_{2}\right) \\
& y\left(n_{1}, n_{2}\right) \longleftrightarrow Y\left(\omega_{1}, \omega_{2}\right)
\end{aligned}
$$

Property 1. Linearity

$$
a x\left(n_{1}, n_{2}\right)+b y\left(n_{1}, n_{2}\right) \longleftrightarrow a X\left(\omega_{1}, \omega_{2}\right)+b Y\left(\omega_{1}, \omega_{2}\right)
$$

Property 2. $\frac{\text { Convolution }}{x\left(n_{1}, n_{2}\right) * y(}$

$$
\left.n_{1}, n_{2}\right) \longleftrightarrow X\left(\omega_{1}, \omega_{2}\right) Y\left(\omega_{1}, \omega_{2}\right)
$$

Property 3. $\frac{\text { Multiplication }}{x\left(n_{1}, n_{2}\right) y\left(n_{1},\right.}$

$$
\longleftrightarrow X\left(\omega_{1}, \omega_{2}\right) \circledast Y\left(\omega_{1}, \omega_{2}\right)
$$

$$
=\frac{1}{(2 \pi)^{2}} \int_{\theta_{1}=-\pi}^{\pi} \int_{\theta_{2}=-\pi}^{\pi} X\left(\theta_{1}, \theta_{2}\right) Y\left(\omega_{1}-\theta_{1}, \omega_{2}-\theta_{2}\right) d \theta_{1} d \theta_{2}
$$

Property 4. Separable Sequence

$$
x\left(n_{1}, n_{2}\right)=x_{1}\left(n_{1}\right) x_{2}\left(n_{2}\right) \longleftrightarrow X\left(\omega_{1}, \omega_{2}\right)=X_{1}\left(\omega_{1}\right) X_{2}\left(\omega_{2}\right)
$$

Property 5. Shift of a Sequence and a Fourier Transform
(a) $x\left(n_{1}-m_{1}, n_{2}-m_{2}\right) \longleftrightarrow X\left(\omega_{1}, \omega_{2}\right) e^{-j \omega 1 m_{1}} e^{-j \omega_{2} m_{2}}$
(b) $e^{j \nu_{1} n_{1}} e^{j \nu_{2} n_{2}} x\left(n_{1}, n_{2}\right) \longleftrightarrow X\left(\omega_{1}-\nu_{1}, \omega_{2}-\nu_{2}\right)$

Property 6. Differentiation

> (a) $-j n_{1} x\left(n_{1}, n_{2}\right) \longleftrightarrow \frac{\partial X\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{1}}$
> (b) $-j n_{2} x\left(n_{1}, n_{2}\right) \longleftrightarrow \frac{\partial X\left(\omega_{1}, \omega_{2}\right)}{\partial \omega_{2}}$

Properties of the DSFT

Property 7. Initial Value and DC Value Theorem
(a) $x(0,0)=\frac{1}{(2 \pi)^{2}} \int_{\omega_{1}=-\pi}^{\pi} \int_{\omega_{2}=-\pi}^{\pi} X\left(\omega_{1}, \omega_{2}\right) d \omega_{1} d \omega_{2}$
(b) $X(0,0)=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left(n_{1}, n_{2}\right)$

Property 8. Parseval's Theorem
(a) $\sum_{n 1}^{\infty} \sum_{-\infty}^{\infty} x\left(n_{1}, n_{2}\right) y *\left(n_{1}, n_{2}\right)$

$$
=\frac{1}{(2 \pi)^{2}} \int_{\omega_{1}=-\pi}^{\pi} \int_{\omega_{2}=-\pi}^{\pi} X\left(\omega_{1}, \omega_{2}\right) Y^{*}\left(\omega_{1}, \omega_{2}\right) d \omega_{1} d \omega_{2}
$$

(b) $\sum_{n=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty}\left|x\left(n_{1}, n_{2}\right)\right|^{2}=\frac{1}{(2 \pi)^{2}} \int_{\omega_{1}=-\pi}^{\pi} \int_{\omega_{2}=-\pi}^{\pi}\left|X\left(\omega_{1}, \omega_{2}\right)\right|^{2} d \omega_{1} d \omega_{2}$

Properties of the DSFT

Property 9. Symmetry Properties
(a) $x\left(-n_{1}, n_{2}\right) \longleftrightarrow X\left(-\omega_{1}, \omega_{2}\right)$
(b) $x\left(n_{1},-n_{2}\right) \longleftrightarrow X\left(\omega_{1},-\omega_{2}\right)$
(c) $x\left(-n_{1},-n_{2}\right) \longleftrightarrow X\left(-\omega_{1},-\omega_{2}\right)$
(d) $x^{*}\left(n_{1}, n_{2}\right) \longleftrightarrow X^{*}\left(-\omega_{1},-\omega_{2}\right)$
(e) $x\left(n_{1}, n_{2}\right)$: real $\longleftrightarrow X\left(\omega_{1}, \omega_{2}\right)=X^{*}\left(-\omega_{1},-\omega_{2}\right)$
$X_{R}\left(\omega_{1}, \omega_{2}\right),\left|X\left(\omega_{1}, \omega_{2}\right)\right|$: even (symmetric with respect to the origin)
$X_{I}\left(\omega_{1}, \omega_{2}\right), \theta_{x}\left(\omega_{1}, \omega_{2}\right)$: odd (antisymmetric with respect to the origin)
(f) $x\left(n_{1}, n_{2}\right)$: real and even $\longleftrightarrow X\left(\omega_{1}, \omega_{2}\right)$: real and even
(g) $x\left(n_{1}, n_{2}\right)$: real and odd $\longleftrightarrow X\left(\omega_{1}, \omega_{2}\right)$: pure imaginary and odd

Example

- consider the separable impulse response

- frequency response

$$
\begin{aligned}
& H\left(\omega_{1}, \omega_{2}\right)=H_{1}\left(\omega_{1}\right) H_{2}\left(\omega_{2}\right) \\
& \quad=\left(3-2 \cos \varpi_{1}\right)\left(3-2 \cos \varpi_{2}\right)
\end{aligned}
$$

- note that:
- this system is a high-pass filter
- "diagonal" frequencies are enhanced

Examples

- what do filtered images look like?
- here is a noisy image
- a light square against dark background, plus noise

Examples

- what do filtered images look like?
- here is the magnitude of its DSFT (origin at center), it contains:
- a peak at the center,
- some background signal at all frequencies,
- a cross-like pattern that goes from low to high frequencies
- why does it look like this?

Examples

- one way to find out is to filter and reconstruct the image
- we simulate the ideal low-pass filter by
- removing all signal components outside a circle in the frequency domain
- this is what the spectrum looks like
- this gets rid of the background signal that covers all frequencies

Examples

- this is the resulting image
- the component we removed was due to the noise
- "white" noise has energy at all frequencies
- notice that there are some artifacts (i.e. ringing) in the reconstructed image

Examples

- what about the stuff other than noise?
- let's high-pass by removing everything inside the circle

Examples

- this is the resulting image
- we now get mostly noise, as expected
- note that the square has mostly gone away
- this means that the flat part is low-frequency
- but we can still see the edges

Examples

- this is interesting
- the edges are not only low-pass
- maybe they are the reason for the cross-shaped pattern
- to check we band-pass

Examples

- this is the resulting image
- we now get mostly the edges
- we were right, the edges cause the cross-shaped pattern
- note that the edges are very hard to filter out

Examples

- this is one of the fundamental properties of images:
- edges have energy at all frequencies

The z transform

- once again, it is a straightforward extension of 1D
- Definition: the z-transform of the sequence $x\left[n_{1}, n_{2}\right]$ is

$$
X\left(z_{1}, z_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} x\left[n_{1}, n_{2}\right] z_{1}^{-n_{1}} z_{2}^{-n_{2}}
$$

- the region of the $\left(z_{1}, z_{2}\right)$ plane where this sum is finite is called the Region of Convergence (ROC)
- it turns out that:
- in 2D the ROC is much more complicated than in 1D
- while in 1D the ROC is bounded by poles (0D subspace of the 2D complex plane)
- in 2D is bounded by pole surfaces (2D subspaces of the 4D space of two complex variables)

The z-transform

- computation is also much harder:
- as you might remember from 1D
- most useful tool in computing z-transforms is polynomial factorization
- z-transform is a ratio of two polynomials

$$
Y(z)=\frac{N(z)}{D(z)}
$$

- we factor in to a sum of low order terms, e.g.

$$
Y(z)=\sum_{i} \frac{1}{1-a_{i} z^{-1}}
$$

- and then invert each of the terms to get $\mathrm{y}[\mathrm{n}]$

z-transform

- in 2D we only have one of two situations
- 1) the sequence is separable, in which case everything reduces to the 1D case

$$
\begin{aligned}
& x\left[n_{1}, n_{2}\right]=x_{1}\left[n_{1}\right] x_{2}\left[n_{2}\right] \leftrightarrow X\left(z_{1}, z_{2}\right)=X_{1}\left(z_{1}\right) X_{2}\left(z_{2}\right) \\
& R O C:\left|z_{1}\right| \in R O C \text { of } X_{1}\left(z_{1}\right) \text { and } \\
&\left|z_{2}\right| \in R O C \text { of } X_{2}\left(z_{2}\right)
\end{aligned}
$$

the proof is identical to that of the DSFT

- 2) the signal is not separable
- here our polynomials are of the form $z_{1}{ }^{m} z_{2}{ }^{n}$ and, in general, it is not know how to factor them
- we can solve only if sequence is simple enough that we can do it by inspection (from the definition of the z-transform)

Example

- consider the sequence

$$
x\left[n_{1}, n_{2}\right]=a^{n_{1}} b^{n_{2}} u\left[n_{1}, n_{2}\right]
$$

- the z-transform is

$$
\begin{aligned}
X\left(z_{1}, z_{2}\right) & =\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty}\left(a z_{1}^{-1}\right)^{n_{1}}\left(a z_{2}^{-1}\right)^{n_{2}} \\
& =\sum_{n_{1}=0}^{\infty}\left(a z_{1}^{-1}\right)^{n_{1}} \sum_{n_{2}=0}^{\infty}\left(a z_{2}^{-1}\right)^{n_{2}} \\
& =\frac{1}{1-a z_{1}^{-1}} \frac{1}{1-b z_{2}^{-1}},\left|z_{1}\right|>a,\left|z_{2}\right|>b
\end{aligned}
$$

