
2D DSP

Nuno Vasconcelos

UCSD



2

Images

• the incident light is collected by an image sensor

– that transforms it into a 2D signal
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2D-DSP

• in summary:

– image is a N x M array of pixels

– each pixel contains three colors

– overall, the image is a 2D discrete-space

signal

– each entry is a 3D vector

– for simplicity, we consider only single

channel images

– but everything extends to color in a straightforward manner
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Separable sequences

• a trivial concept, 

– but probably the only real novelty in this lecture

– very important in practice, because it reduces 2D problem to 

collection on 1D problems

• Definition: a sequence is separable if and only if

where f[.] and g[.] are 1D functions

• note: there are many examples of separable sequences

• but most sequences are not separable
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Linear Shift Invariant (LSI) systems

• straightforward extension of LTI systems

• Definition: a system T that maps x[n1,n2] into y[n1,n2] is

LSI if and only if

– it is linear

– it is shift invariant
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2D convolution

• the operation

is the 2D convolution of x and h

– we will denote it by

• this is of great practical importance:

– for an LSI system the response to any input can be obtained by 

the convolution with this impulse response

– the IR fully characterizes the system

– it is all that I need to measure
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2D convolution

• has various properties of interest

• but these are the ones that you have already seen in 1D

(check handout)

• some of the more important:

– commutative:

– associative:

– distributive:

– convolution with impulse:

xyyx 

   zyxzyx 

  zxyxzyx 

],[],[],[ 2211221121 mnmnxmnmnnnx 



8

2D convolution

• as in 1D, it is most easily done in graphical form

• e.g. how do we convolve these two sequences?

• we need four steps
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2D convolution

• step 1): express sequences in terms of (k1, k2)
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2D convolution

• step 2): invert  h(k1, k2)

k1

k2
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(3)(4)
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2D convolution

• step 3): shift  g(k1, k2) by (n1, n2) 

k1

k2

(1)(2)

(3)(4)
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2D convolution

• step 4): point-wise multiply the two signals and sum

– e.g. for (n1,n2) = (1,0)
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2D convolution

• step 4): point-wise multiply the two signals and sum

– e.g. for (n1,n2) = (2,0)
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2D convolution

• is this the only way to look at convolution?

– any signal can be written as

– e.g.
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2D convolution

• we combine this 

with the properties of the convolution

– commutative:

– associative:

– distributive:

– convolution with impulse:

• to obtain another interpretation

xyyx 

   zyxzyx 

  zxyxzyx 
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2D convolution

• it is done like this 

• note that this is just our definition of convolution

(no surprises here)

• but we want to think about it like this, not like this
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2D convolution

• we can think of

as the following sequence of operations

1. set y[n1, n2] = 0, for all (n1,n2)

2. for each (k1,k2) such that x[k1,k2] is not zero

• set a = x[k1,k2]

• shift h[n1,n2] by (k1,k2)

• multiply the entire sequence by a

• add the entire sequence to y[n1,n2]
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2D convolution

• example

• (k1,k2) = (0,0)
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2D convolution

• example

• (k1,k2) = (1,0)
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2D convolution

• example

• (k1,k2) = (0,1)

n1

n2

n1

n2

(1) (2)
*

(3) (4)

],[ 21 kkx ],[ 21 nnh

=
n1

n2

(1) (3)

(4) (9)

],[ 21 nny

(2)

(4)

n1

n2

(1) (3)

(3) (7)

],[ 21 nny

(2)

(4)

n1

n2

],[ 2211 knknh 

+ 1x
(1) (2)

(3) (4)(3) (4)



21

2D convolution

• example

• (k1,k2) = (1,1)
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2D convolution

• note the differences with the previous convolution

– before we were computing one y[n1,n2] at a time

– now we update the entire sequence at a time
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• When do I use the serial vs parallel method?

– serial always works

– parallel is useful when one of the sequences is small

– example

Convolution
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• serial

Convolution
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• parallel

Convolution
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• parallel

Convolution
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Separable systems

• Definition: a system is separable if and only if its 

impulse response is a separable sequence

• note that, in this case the convolution simplifies
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Separable systems

• the convolution simplifies to

with

• note that:

– for a fixed k1, f[k1,n2] is 1D convolution of x[k1,n2] and h2[n2]

– for a fixed n2, y[n1,n2] is 1D convolution of f[n1,n2] and h1[n1]
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Separable systems

• the convolution simplifies to a sequence of 1D steps

• step1) for every k1,

– f[k1,n2] is 1D convolution of x[k1,n2] and h2[n2]

– which means: “convolve the columns of x with h2 to obtain 

columns of f”
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Separable systems

• step2) for every n2, 

– y[n1,n2] is 1D convolution of f[n1,n2] and h1[n1]

– which means: “convolve the rows of f with h1 to obtain rows of y”
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Separable systems

• in summary, if we have a separable system

to convolve with x[n1,n2] we:

– 1) “convolve the columns of x with h2 to create f”

– 2) “convolve the rows of f with h1 to obtain y”

][],[],[ 112121 nhnnfnny 
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The Discrete-Space Fourier Transform

• as in 1D, an important concept in linear system analysis 

is that of the Fourier transform

• the Discrete-Space Fourier Transform is the 2D 

extension  of the Discrete-Time Fourier Transform

• note that this is a continuous function of frequency

• the nomenclature distinguishes it from the 2D Discrete 

Fourier transform (we will get back to this)

• what does the DSFT of an image look like?
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Image spectrum

• two images, the magnitude, and phase of their FTs 
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Phase and Magnitude

• curious fact

– all natural images have about the same magnitude transform

– monotonically decaying with frequency

• hence, phase seems to matter, but magnitude largely 

doesn’t

• we can see this through the following experiment

• take two pictures, swap the phase transforms, compute 

the inverse

• here is what you get
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The importance of phase

Reconstruction with zebra 

phase, cheetah magnitude

Reconstruction with cheetah 

phase, zebra magnitude
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LSI systems

• why do we care so much about Fourier transforms?

• note that when we convolve a sequence with a complex 

exponential, 

we get
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LSI systems

• but we have seen that, for an LSI system

– the output in response to x[n1,n2]

– is the convolution with the impulse response h[n1,n2]

– hence, the response to

– is

– this means that complex exponentials are the eigenfunctions of 

LSI systems

– when we input an eigenfunction, we get back the same function

– but scaled by H(1,2)

– this is called the frequency response of the system
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LSI systems

• this is remarkable, since

– we know that any signal can be represented as a weighted sum 

of complex exponentials

– when the signal is fed to an LSI system, each exponential is

scaled by H(1,2)

– hence, the frequency response completely characterizes the 

system

– and the DSFT of the output is just the product of the two
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Example

• the system with impulse response on the left

• has frequency response

• note that: 

– the response is 1 at DC

– lower for high frequencies

– this system is a low-pass filter
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WARNING

• WARNING, WARNING, WARNING!

• the equivalence

• is the oldest trick in the DSP book!

• please do not fall for it

– you can “read” the sequence that has this DSFT

by applying this trick and the definition of DSFT!
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WARNING

• Quizz: which on the left is the DSFT of 

this image?

?
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WARNING

• the way to think about this is the 

following:

– this image has low frequencies

horizontally (1)

– high frequencies vertically (2)

– the spectrum is a delta function along

(1) and harmonics along (2)

– the spectrum is this

– wrong way: “because image is horizontal spectrum must be too”
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Properties of the DSFT

• these are extremely important, but straightforward 

extension of what you have seen in 1D

• only novelty is separability (homework):

– the DSFT of a separable sequence is itself separable

– it is the product of the DTFTs of the 1D sequences that make

up the 2D sequence

• all other properties carry from 1D to 2D

)()(),(][][],[ 221121221121  XXXnxnxnnx 



44

Properties of the DSFT
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Properties of the DSFT
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Properties of the DSFT
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Example

• consider the separable impulse response 

• frequency response

• note that: 

– this system is a high-pass filter

– “diagonal” frequencies are enhanced
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Examples

• what do filtered images look like?

– here is a noisy image

– a light square against dark background, plus noise
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Examples

• what do filtered images look like?

– here is the magnitude of its DSFT (origin at center), it contains:

– a peak at the center,

– some background signal at all frequencies, 

– a cross-like pattern that goes from low to high frequencies

– why does it look like this?
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Examples

• one way to find out is to filter and reconstruct the image

– we simulate the ideal low-pass filter by 

– removing all signal components outside a circle in the frequency 

domain

– this is what the spectrum looks like

– this gets rid of the background signal that covers all frequencies
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Examples
• this is the resulting image

– the component we removed was due to the noise

– “white” noise has energy at all frequencies

– notice that there are some artifacts (i.e. ringing) in the 

reconstructed image
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Examples
• what about the stuff other than noise?

– let’s high-pass by removing everything inside the circle
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Examples
• this is the resulting image

– we now get mostly noise, as expected

– note that the square has mostly gone away

– this means that the flat part is low-frequency

– but we can still see the edges



54

Examples
• this is interesting

– the edges are not only low-pass

– maybe they are the reason for the cross-shaped pattern

– to check we band-pass
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Examples
• this is the resulting image

– we now get mostly the edges

– we were right, the edges cause the cross-shaped pattern

– note that the edges are very hard to filter out
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Examples
• this is one of the fundamental properties of images:

– edges have energy at all frequencies

original low-pass

band-pass high-pass
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The z transform

• once again, it is a straightforward extension of 1D

• Definition: the z-transform of the sequence x[n1,n2] is

• the region of the (z1,z2) plane where this sum is finite is 

called the Region of Convergence (ROC)

• it turns out that:

– in 2D the ROC is much more complicated than in 1D

– while in 1D the ROC is bounded by poles (0D subspace of the 

2D complex plane)

– in 2D is bounded by pole surfaces (2D subspaces of the 4D 

space of two complex variables) 
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The z-transform

• computation is also much harder:

– as you might remember from 1D

– most useful tool in computing z-transforms is polynomial 

factorization

– z-transform is a ratio of two polynomials

– we factor in to a sum of low order terms, e.g.

– and then invert each of the terms to get y[n]
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z-transform

• in 2D we only have one of two situations

• 1) the sequence is separable, in which case everything

reduces to the 1D case

the proof is identical to that of the DSFT

• 2) the signal is not separable

– here our polynomials are of the form z1
mz2

n and, in general, it is 

not know how to factor them

– we can solve only if sequence is simple enough that we can do it 

by inspection (from the definition of the z-transform)
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Example

• consider the sequence

• the z-transform is
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