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Images

 the incident light is collected by an image sensor
— that transforms it into a 2D signal E
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2D-DSP

* Insummary:
— image is a N x M array of pixels
— each pixel contains three colors

— overall, the image is a 2D discrete-space
signal

— each entry is a 3D vector
x[n,n]1=(r,g,b), n {0,....N}
n, €{0,....M}

— for simplicity, we consider only single
channel images

x[n,n,], n {0,....V}
n, €{0,....M}

— but everything extends to color in a straightforward manner




Separable sequences

 atrivial concept,
— but probably the only real novelty in this lecture

— very important in practice, because it reduces 2D problem to
collection on 1D problems

« Definition: a sequence is separable if and only if

x[n,n]1=r7[nlxgln,]

where f[.] and g[.] are 1D functions

* note: there are many examples of separable sequences
« but most sequences are not separable



Linear Shift Invariant (LSI) systems

 straightforward extension of LTI systems

» Definition: a system T that maps x[n,,n,] into y[n,n,] is
LSl if and only if

— 1tis linear

T iax,[n, 1+ bx,[n,n,]}=
= a7 {x,[n,m1}+bT{x,[n, n,1}
=ay,[n,n ]+ by,[n,n]

— it is shift invariant

7i{ix[n,—m,n,—m,\}=yln,—m,n,—m,]




2D convolution

 the operation

y[nl’nz] — §: ?:X[klikz] h[nl —/(1,/72 _kz]

IS the 2D convolution of X and h
— we will denote it by

yln,n,1=x[n,n,] *h[nl’ ,]

 this is of great practical importance:

— for an LSI system the response to any input can be obtained by
the convolution with this impulse response

— the IR fully characterizes the system
— itis all that | need to measure



2D convolution

« has various properties of interest

* but these are the ones that you have already seen in 1D
(check handout)

« some of the more important:
— commutative: [ ) = ) x

— associative: (X*y)*ZZX*(J/*Z)

— distributive: X*(y+z):X*y+X*Z

— convolution with impulse:

X[ﬂl,ﬂz]*5[ﬂ1 — T, T, —/772] — X[nl — T, /T, _mz]




2D convolution

« asin 1D, itis most easily done in graphical form
* e.g. how do we convolve these two sequences?

y[nl’nz] — f: ?:X[kykz] h[nl —/(1,/72 _kz]

B @

o ¥ -

n, @ @ o0

x[n,,m,] h[nl’nz]

« we need four steps



2D convolution

« step 1): express sequences in terms of (k,, k,)

y[nl’nz] — §: ?:X[klikz] h[nl —/(1,/72 _kz]

B @

® o0
I—. > o

i, @ @ ok

X[k, k] hlk,, k]



2D convolution
« step 2): invert h(k, k)

y[nl’nz] — §: ?:X[kykz] h[nl —/(1,/72 _kz]

k, 4 IQ® k, 4
B @
¢ e @ @ @ @
(1)._.(2) k:D :_: k:l :_: k
@) @ @ @ 6
ALk, k,] ALk, —k,1  glk., k,1=Hl—k,—k,]
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2D convolution
» step 3): shift g(k,, k,) by (ny, n,)

y[nl’nz] — §: ?:X[klikz] h[nl —/(1,/72 _kz]

k, 4

k2 4 this sends —
whatever is n
at (0,0) to (ny,ny)
@ @

— o @0

(N
(4) @3

kq ny kg

g[kvkz]:h[_kl’_kz] g[kl_nl’kZ_nZ]:
/7[’71 _k1’ /1, _kz]

11



2D convolution

« step 4): point-wise multiply the two sighals and sum

y[nl’nz] — §: ?:X[kykz] h[nl —/(1,/72 _kz]

— e.g. for (ny,n,) = (1,0)

k, A k, 4 ky 4
I_: 2 [1) m n; _ 2
o ol '
@ @
X[kl’kZ] h[nl_kl’n2_k2] y[nl’nz]
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2D convolution

« step 4): point-wise multiply the two sighals and sum

y[nl’nz] — §: ?:X[kykz] h[nl —/(1,/72 _kz]

— e.g. for (ny,n,) = (2,0)

k, 4 Ky
> X & > =
Ky ® Ky
@le
X[kl’kZ] h[nl —/(1,/72 _kz]
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2D convolution

* Is this the only way to look at convolution?
— any signal can be written as

x[m.ml="> S xlk, k,15[m, —k,.n, — k]

klz—OO k2 —=—00

- e.g.

(@ (b) _ (a)

14



2D convolution

« Wwe combine this

xim,ml="3 3 x[k, k,151m — k,, 1, — &,

klz—OO k2 —=—00

with the properties of the convolution

— commutative: [y = )= x

— associative;: (X*y)*Z:X*(,V*Z)

— distributive: X*(y+z):x*y+x*z

— convolution with impulse:

X[ﬂl,ﬂz]*5[ﬂ1 — T, T, —/772] — X[nl — T, /T, _mz]

 to obtain another interpretation

15



2D convolution

e itis done like this

y[n1’ nz] — X[np nz]*h[n11 nz]

:( Z Zx[kl’ k2]5[n1 o kl’ n, — kz]j*h[nl’ n2]

o0 o0

yin,n,1= > > xlk, kK, 1(s[n, —k;,n, —k,1*h[n;, n,1)

« note that this is just our definition of convolution

x[m.ml="> S xlk, k1500, — k.1, — k]

ky=—00 Ky =—00
(no surprises here) \

* but we want to think about it like this, not like this ”



2D convolution

we can think of

Y[n1’ nz] — i ix[kl’ kz](5[n1 o k1’ n, — kz]*h[nv nz])

kl =—00 k2 ——00

as the following sequence of operations
1. sety[n,, n,] =0, forall (ny,n,)
2. for each (kq,k,) such that x[k;,k,] Is not zero
« set a=x[ky,ks]
« shift h[n,,n,] by (k,,k»)
multiply the entire sequence by «
z[n,,n,] = 0:(5[[11 —k;,n, =K, ]*h[n,, nz])

« add the entire sequence to y[n;,n,]

y[n1’ nz] — y[nl’ nz] + Z[nl’ nz]

17




2D convolution

¢ example

* (kq,k;) =(0,0)

B @
o0

-0
o @

y[n;,n,]

n,

) e *
/
X[ky, K, ]
’l + 1x
yln,,n,]

B @
o0

-0 P
o @ ny

htny, n,]

n, a

B3 @
o0

h[n,

@ P
o @ ny

_kl’ n, —k12<3]



2D convolution

n, & n, 4
¢ example
@ @
[ ] [ I
I—. > * o=0 >
\ Ny 1 @ Ny
X[k, K, ] /7[/71’ n,]
* (ki.ky) =(1,0)
n, & n, a n, a
® 0@ @ @ @ @
‘H XS oo o0
Q-G n o @ o tIX o @

y[nl’ n2] y[nl’ n2]

h[nl — kl’ n, — klé’]



2D convolution

¢ example

* (ky,ky) =(0,1)

o A

OO

-y

@) (9 (@)
L0 0.0

y[n;,n,]

00—
m @ n

@ ™ @
00

00—
m @ n

y[n;,n,]

+ 1X

B @
o0

v

@
o @

htny, n,]

n, a

B @
L

[ 2N
o @

v

h[nl T kl’ n,

o k22]3



2D convolution

¢ example

* (ky,kp) =(1,1)
® 0@
oo e
(4) 1(10) (6)
0. 0._0.

y[n;,n,]

00—
m @ n

X[Ky; K; ]

3

3 @
L

4 O @
o0 o0

y[n;,n,]

00—
o @ n

n, 4
3) @)
o0
> * - >
ny @ @ n,
hlny, n,]
n, 4
@3) @
(X )
o0
@ (@
+ 1X o
h[nl T kl’ nz T kzﬂl



2D convolution

note the differences with the previous convolution

— before we were computing one y[n,,n,] at a time

kA kA kA
° - ) (1),\.,..--""' nf _ 3" ‘nz
o x to— = -+
Ll
X[kl’kz] h[nl_kl’n2_k2] y[nl’nz]
— now we update the entire sequence at a time
nék nf‘ né‘
ORI P )
¢lgoys & oo,
~oo—> — oo Q) @,
L @@ n — W @@ n, +1X n,
y[n1’ nz] y[n1’ nz] h[nl _ kl’ nz _ kz]
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Convolution

 When do | use the serial vs parallel method?
— serial always works
— parallel is useful when one of the sequences is small
— example

SV
oV

23



Convolution

*serial g riq=hin-k XK
| A
n-11 ‘ k 012 3 4 k
/ I“
g,[n]=h[0] ‘ ‘ ‘ ‘ ‘ >
g,[n+1]=h[-1] O 1 2 3 4 Kk
gnln-1]=h(1] ‘ n+1 serial
h[n] A > convolution
n-11 ‘ K
|
-1 *
S ' x[n]*h[n]
1 n 10
>
1 2 3 45 n 2
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Separable systems

« Definition: a system is separable if and only if its
Impulse response is a separable sequence

AL, n,1=mln]x<n[n,]

* note that, in this case the convolution simplifies

yim,n,] § fx[k k1 AL, — ki, ny — K,

—00 ——00

o0

? S XTh K AL~ K1l — k)

i AL, — k@k]h[nb

ih [, kl]f[k//; 1

—00 27




Separable systems

 the convolution simplifies to

y[nl’n2] — ihl[nl _kl]f[kl’nz]

Kk =—o0
with —
f[kl’nz] — Zx[kl’ /(2]/72[/72 _kz]
Kk, =—00
* note that:

— for a fixed ky, f[k;,n,] is 1D convolution of x[k;,n,] and h,[n,]

f[kl’ n2] — X[kl’ n2] >X</72[/72]

— for a fixed n,, y[n;,n,] is 1D convolution of f[n,,n,] and h,[n,]

y[n1’ /72] — f[n1’ /72] *hl[nl]
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Separable systems

 the convolution simplifies to a sequence of 1D steps
« stepl) for every k;,

— flk;,n,] is 1D convolution of x[k,,n,] and h,[n,]
f[kl’ /72] — X[kl’ /72] * /72[/72]

— which means: “convolve the columns of x with h, to obtain
columns of f*

B

] 29

x|, n,] fln,, n,



Separable systems

« step2) for every n,,
— y[n,,n,] is 1D convolution of f[n;,n,] and h,[n,]

y[n1’ /72] — f[n1’ /72] *hl[nl]

— which means: “convolve the rows of f with h; to obtain rows of y”

<X ®
® 0 o T

e 0 o
n hl

30



Separable systems

* In summary, if we have a separable system

AL, n,1=mln]x<n[n,]

to convolve with x[n,,n,] we:

— 1) “convolve the columns of x with h, to create f’

f[kl’n2] — X[kl’ /72]*/72[f72]

— 2) “convolve the rows of f with h, to obtain y”

y[n1’ /72] — f[n1’ /72] *hl[nl]

31



The Discrete-Space Fourier Transform

as in 1D, an important concept in linear system analysis

IS that of the Fourier transform

the Discrete-Space Fourier Transform is the 2D
extension of the Discrete-Time Fourier Transform

X(a)l, 0)2) _ sz[nw nz]e_ja)lnle_ja)znZ

m m

1 [ N
x[n,,n,]= 7Ry [[ X (@, 0,)e”™ 7" deodlo,

note that this is a continuous function of frequency

the nomenclature distinguishes it from the 2D Discrete
Fourier transform (we will get back to this)

what does the DSFT of an image look like?

32



Image spectrum

« two images, the magnitude, and phase of their FTs




Phase and Magnitude

curious fact
— all natural images have about the same magnitude transform
— monotonically decaying with frequency

1
@ + @5
hence, phase seems to matter, but magnitude largely
doesn'’t
we can see this through the following experiment

take two pictures, swap the phase transforms, compute
the inverse

here is what you get

X(w, @,) oc

34



The importance of phase

Reconstruction with zebra Reconstruction with cheetah
phase, cheetah magnitude phase, zebra magnitude




LS| systems

« why do we care so much about Fourier transforms?

exponential,

X[nl n2] — ejwlnlejZUZnZ

we get

y[nl’ nz] — f: 5.01 h[kl’ kz] X[n1 - kl’ n, — kz]

kl —=—00 k2 =—00

_ §‘ f‘ h[kl, kz] pl@i(m—k) qi@z(n;—k;)

k]_:—oo k2:—OO

=x[n,,n,JH (&,,@,)

note that when we convolve a sequence with a complex

36



LS| systems

* but we have seen that, for an LS| system

the output in response to X[n,,Nn,]
IS the convolution with the impulse response h[n,,n,]
hence, the response to

X[nl, n2] — ejwlnlejZUZnZ

yln,,n, ] =x[n;, n,1H (@, ,)

this means that complex exponentials are the eigenfunctions of
LS| systems

when we input an eigenfunction, we get back the same function
but scaled by H(w,,®,)
this is called the frequency response of the system

37



LS| systems

* this is remarkable, since

we know that any signal can be represented as a weighted sum
of complex exponentials

X(a)l, (02) _ sz[nw nz]e_ja)lnle_ja)znZ

m m

1 [ N
x[n,,n,]= 7Ry [[ X (@, 0,)e”™ 7" deodlo,

when the signal is fed to an LSI system, each exponential is
scaled by H(w,, »,)

hence, the frequency response completely characterizes the
system

and the DSFT of the output is just the product of the two
Y(@,,®,) = H(w, ,) X (0, ,)

38



Example

« the system with impulse response on the left "
* has frequency response

H (o, ,) = Z Z h[n,,n, ]e_jwlnle_jwzn2

N Ny
L 1o Loim Lo Lo
=—4 el eglm el 4 Zpl®
3 6
1 1
=—+=-C0S@, +—COS @,
3
 note that:

‘ 0 0 I.
X o‘o‘.‘ “o\ ‘

u\\\\\‘

TR

SRR

KRR
‘:“»

H(ey,6)

KA

"‘.“.‘
.m’o’o‘n‘o
"

the response is 1 at DC
lower for high frequencies
this system is a low-pass filter




WARNING

« WARNING, WARNING, WARNING!
« the equivalence

e_jnwl ejnwl
2

* |s the oldest trick in the DSP book!

« please do not fall for it
— you can “read” the sequence that has this DSFT

1 1 1
H(a)l,a)z):§+§cos w1+§cosw2

=C0S N,

by applying this trick and the definition of DSFT!
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WARNING

* Quizz: which on the left is the DSFT of
this image?

41



WARNING

« the way to think about this is the
following:

— this image has low frequencies
horizontally (w,)

— high frequencies vertically (w,)

— the spectrum is a delta function along
(e,) and harmonics along (®,)

— the spectrum is this
— wrong way: “because image is horizontal spectrum must be too”

42



Properties of the DSFT

these are extremely important, but straightforward
extension of what you have seen in 1D

only novelty is separability (homework):
— the DSFT of a separable sequence is itself separable

— 1t is the product of the DTFTs of the 1D sequences that make
up the 2D sequence

XL, m]=xInlx,[n,] o X, 0,) =X (@)X, (,)

all other properties carry from 1D to 2D

43



Properties of the DSFT

x(ny, np) <« X(w,, w,)
y(ry, np) <= Y(w,, w,)

Property 1. Linearity

ax(ny, ny) + by(ny, n,) «— aX(w,, ©,) + b¥(w,, w,)
Property 2. Convolution |

x(ny, ny) * y(n,, ny) «—— X(w;, w) Y0, ,)
Property 3. Multiplication

x(n,, ”2)}’(”1, ny) «— X(w;, w,;) ® Y(w,, w,)

gl
= Bl da s Soi s X(8,, 6;)Y(w, — 6, w, — 6,) d6, de,

Property 4. Separable Sequence

x(nl, I’LZ) = xl(nl)x2(n2) e X((Dl, UJz,.) = Xl(w1,)X2(.wz)
Property 5. Shift of a Sequence and a_Fourier Transform

(a) x(nl - my, n, — mz) ——> X((,ol, (_L)z)e—fwlmle_jwzmz

(b) eMmerray(n,  n) «— X(w, — vy, w, — v,)
Property 6. Differentiation

(a) —jmx(n,, ny) «— SR\, )

dw,
(b) —jnax(ny, ny) «— 00, o)
dw,




Properties of the DSFT

Property 7. Initial Value and DC Value Theorem

(2) x(0, 0) = (2302 f:__ﬁ Lt__w X(wy, w;) dw, dw,

B 2g. G = T T b, m)

ny=—o< = —x

Property 8. Parseval’s Theorem

(a) i i x(nla n2)y*(n1= n2)

Nnj= —=® )= —=
1

(2m)?

1

®) 2 3 b= [ [ e, e do, do,

Hl= —oc )= —c0

fwlﬂ -1 fwz:—-n X(wl’ wz)Y*((ﬂl’ wz) dw1 d(.l.)2

45



Properties of the DSFT

Property 9. Symmetry Properties

(8) X[ —ny, n,y) «— X(—w;, w,)

(b) x(nl, —nZ) > X(wla —(1)2)

(€) x(—ny, —n,) «— X(—w,, —w,)

(d) x*(ny, n) «— X*(—w,, —w,)

(€) x(ny, ny): real «— X(w;, 0,) = X*(—w,;, —w,)
Xr(wy, 0y), [X(w,, w,)|: even (symmetric with respect to the origin)
X (w1, @;), 6,(w;, w,): 0odd (antisymmetric with respect to the origin)

(f) x(n,y, n,): real and even «— X(w,, w,): real and even

(8) x(ny, ny): real and odd «— X(w,, w,): pure imaginary and odd
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Example

« consider the separable impulse response

h,(n,) ho(ny)

3) 3

y
A 4

(-1) (-1) (-1) (-1)

- frequency response .
H(a)l’a)Z)_ Hl(a)l)Hz(a)z i
=(3—2cos@,)(3—-2co0sw,)

oy
DAY
iyt

[4250
ottt

7
ottt
ote
o titel
el

* note that:
— this system is a high-pass filter
— “diagonal” frequencies are enhanced
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Examples

« what do filtered images look like?
— here is a noisy image
— a light square against dark background, plus noise
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Examples

« what do filtered images look like?
— here is the magnitude of its DSFT (origin at center), it contains:
— a peak at the center,
— some background signal at all frequencies,
— a cross-like pattern that goes from low to high frequencies
— why does it look like this?

49



Examples

* one way to find out is to filter and reconstruct the image
— we simulate the ideal low-pass filter by

— removing all signal components outside a circle in the frequency
domain

— this is what the spectrum looks like
— this gets rid of the background signal that covers all frequencies




Examples

« this is the resulting image
— the component we removed was due to the noise
— “white” noise has energy at all frequencies

— notice that there are some artifacts (i.e. ringing) in the
reconstructed image




Examples

« what about the stuff other than noise?
— let’s high-pass by removing everything inside the circle

"

-

~
-

-
-
-
-
-
-

FRessidaninmnl IMEREER RS ianas

ALEANREE RN

52



Examples

« this is the resulting image
— we now get mostly noise, as expected
— note that the square has mostly gone away
— this means that the flat part is low-frequency
— but we can still see the edges




Examples

 this is interesting
— the edges are not only low-pass
— maybe they are the reason for the cross-shaped pattern
— to check we band-pass
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Examples

« this is the resulting image
— we now get mostly the edges
— we were right, the edges cause the cross-shaped pattern
— note that the edges are very hard to filter out




Examples

« this is one of the fundamental properties of images:
— edges have energy at all frequencies

original low-pass

band-pass high-pass [ i
56




The z transform

e once again, it is a straightforward extension of 1D
» Definition: the z-transform of the sequence x[n,,n,] IS

X(2,,2,) = ZZ x[n,, nz]zl_nlzz_n2

N

 the region of the (z,,z,) plane where this sum is finite is
called the Region of Convergence (ROC)

|t turns out that:
— in 2D the ROC is much more complicated than in 1D

— while in 1D the ROC is bounded by poles (0D subspace of the
2D complex plane)

— In 2D is bounded by pole surfaces (2D subspaces of the 4D
space of two complex variables)

57



The z-transform

e computation is also much harder:

as you might remember from 1D

most useful tool in computing z-transforms is polynomial
factorization

z-transform is a ratio of two polynomials

N (z)

)

we factor in to a sum of low order terms, e.qg.

Y(2)= Z

and then invert each of the terms to get y[n]

58



Z-transform

* In 2D we only have one of two situations

« 1) the sequence is separable, in which case everything
reduces to the 1D case

X[, n, 1= x[n1x[n,] <> X(z,,2,) = X,(2,) X, (2,)
ROC :|z,| e ROC of X,(z,) and
z,|e ROC of X,(z,)

the proof is identical to that of the DSFT

« 2)the signal is not separable

— here our polynomials are of the form z,Mz," and, in general, it is
not know how to factor them

— we can solve only if sequence is simple enough that we can do it

by inspection (from the definition of the z-transform)
59



Example

« consider the sequence

x[n,n,]=a™b™u[n;,n,]

 the z-transform is

X(z,,2,) = ZZ(az )(

n=0n,=0

n,=0

1 1

Tl az,' 1-bz;*

)2

S ) 3

.|z >a|z,|>b

ROC
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