2D-DSP

Nuno Vasconcelos
UCSD

Image formation

- we have been studying the process of image formation
- three questions
- what 3D point projects into pixel (x, y)?
- what is the light incident on the pixel?
- what is the pixel color?
- these determine the image value at the pixel

Geometry

- geometry answers the first question
- pinhole camera:
- point (x, y, z) in 3D scene projected into image pixel of coordinates (x^{\prime}, y^{\prime})
- according to the perspective projection equation:

Light

- the second depends on three main factors:
- lighting of the scene
- the reflectance properties of the material
- various angles with which the light bounces from the objects

Lambertian surfaces

- we have a very simple equation
- when surface is Lambertian and source a PS @ infinity
- "image power = source power x object albedo x cos(light direction, surface normal)"

$$
P\left(P_{i}\right)=\frac{E}{\pi} \rho_{a}\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

Spectral albedos

- with color, everything is replicated at each wavelength
- different objects have different spectral albedo, and that is why we perceive color

Spectral albedo

- how does this change our radiometry equation?
- \boldsymbol{n} (surface normal), \boldsymbol{s} (light direction), do not change with wavelength
- the dependence on wavelength can come from ρ the surface albedo, or E the source power

$$
P\left(P_{i}, \lambda\right)=E \rho_{a}\left(P_{0}, \lambda\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

Color spaces

- color can be represented in different color spaces
- a color space is defined by a set of three primaries
$\left\{P_{0}(\lambda), P_{1}(\lambda), P_{2}(\lambda)\right\}$
- any color is a linear combination of these

$$
L(\lambda)=a P_{0}(\lambda)+b P_{1}(\lambda)+c P_{2}(\lambda)
$$

- the coordinates are found by projection onto the matching functions

$$
\begin{aligned}
& a=\int L\left(\lambda_{0}\right) f_{1}\left(\lambda_{0}\right) d \lambda_{0} ; \quad b=\int L\left(\lambda_{0}\right) f_{2}\left(\lambda_{0}\right) d \lambda_{0} \\
& c=\int L\left(\lambda_{0}\right) f_{3}\left(\lambda_{0}\right) d \lambda_{0}
\end{aligned}
$$

- the matching functions are the solutions of

$$
\delta\left(\lambda-\lambda_{0}\right)=\sum_{i=1}^{3} f_{i}\left(\lambda_{0}\right) P_{i}(\lambda)
$$

Matching functions

- after the projection:
- color is represented by three numbers
- since primaries are known these are all that needs to be stored

$$
\begin{aligned}
& R=\int L\left(\lambda_{0}\right) r\left(\lambda_{0}\right) d \lambda_{0} ; \\
& G=\int L\left(\lambda_{0}\right) g\left(\lambda_{0}\right) d \lambda_{0} \\
& B=\int L\left(\lambda_{0}\right) b\left(\lambda_{0}\right) d \lambda_{0}
\end{aligned}
$$

Images

- this summarizes the process

Images

- the incident light is collected by an image sensor
- that transforms it into a 2 D signal

Imaging

- the sensor is a 2D array of photosensitive cells

- each cell captures the three color components of a picture element, or pixel
- output: 2D pixel array

Full-Frame CCD Architecture

Figure 1

Digital images

- the image we see is this array

- composed of three color channels

2D-DSP

- in summary:
- image is a $N \times M$ array of pixels
- each pixel contains three colors
- overall, the image is a 2D discrete-space signal
- each entry is a 3D vector

$$
\begin{array}{|ll}
x\left[n_{1}, n_{2}\right]=(r, g, b), & n_{1} \in\{0, \ldots, N\} \\
& n_{2} \in\{0, \ldots, M\}
\end{array}
$$

- for simplicity, we consider only single channel images

$$
\begin{aligned}
x\left[n_{1}, n_{2}\right], & n_{1} \in\{0, \ldots, N\} \\
& n_{2} \in\{0, \ldots, M\}
\end{aligned}
$$

- but everything extends to color in a straightforward manner

Important sequences

- impulse

$$
\delta\left[n_{1}, n_{2}\right]= \begin{cases}1 & n_{1}=n_{2}=0 \\ 0 & \text { otherwise }\end{cases}
$$

- line impulses

$$
x\left[n_{1}, n_{2}\right]=\delta_{T}\left(n_{1}\right)=\left\{\begin{array}{cc}
1 & n_{1}=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- note that this is a 1D signal, embedded in the 2D plane
- this is what the T subscript indicates
- makes clear that we are not talking about the 1D delta

$$
\delta\left[n_{1}\right]=\left\{\begin{array}{cc}
1 & n_{1}=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Important sequences

- unlike 1D, there are many 1D impulses
- e.g.

$$
\delta_{T}\left[n_{1}-n_{2}\right]
$$

$$
\delta_{T}\left[n_{2}-n_{1}^{2}\right]
$$

- note: when the amplitude is 1 we omit the (1)

Important sequences

- step sequences

$$
u\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cc}
1 & n_{1}, n_{2} \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
u_{T}\left[n_{1}\right]=\left\{\begin{array}{cc}
1 & n_{1} \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- exponential sequences: sequences of the type

$$
x\left[n_{1}, n_{2}\right]=A \alpha^{n_{1}} \beta^{n_{2}}
$$

Separable sequences

- a trivial concept,
- but probably the only real novelty in this lecture
- very important in practice, because it reduces 2D problem to collection on 1D problems
- Definition: a sequence is separable if and only if

$$
x\left[n_{1}, n_{2}\right]=f\left[n_{1}\right] \times g\left[n_{2}\right]
$$

where $f[$.$] and g[$.$] are 1D functions$

- note: there are many examples of separable sequences
- but most sequences are not separable

Separable sequences

- impulse

$$
\begin{aligned}
\delta\left[n_{1}, n_{2}\right] & = \begin{cases}1 & n_{1}=n_{2}=0 \\
0 & \text { otherwise }\end{cases} \\
& =\left\{\begin{array}{ll}
1 & n_{1}=0 \\
0 & \text { o.w. }
\end{array} \times \begin{cases}1 & n_{2}=0 \\
0 & \text { o.w. }\end{cases} \right. \\
& =\delta\left[n_{1}\right] \times \delta\left[n_{2}\right]
\end{aligned}
$$

- step

$$
\begin{aligned}
u\left[n_{1}, n_{2}\right] & = \begin{cases}1 & n_{1}, n_{2} \geq 0 \\
0 & \text { othenwise }\end{cases} \\
& =\left\{\begin{array}{ll}
1 & n_{1} \geq 0 \\
0 & \text { o.w. }
\end{array} \times\left\{\begin{array}{cc}
1 & n_{2} \geq 0 \\
0 & \text { o.W }
\end{array}\right.\right. \\
& =u\left[n_{1}\right] \times u\left[n_{2}\right]
\end{aligned}
$$

Separability

- in general, how do I know that sequence is separable?
- think of $x\left[n_{1}, n_{2}\right]$ as a matrix

$$
X=\left[\begin{array}{ccc}
& \vdots & \\
\cdots & x_{i, j} & \cdots \\
\vdots &
\end{array}\right] \text {, with } x_{i, j}=x[j, i]
$$

- the condition $x\left[n_{1}, n_{2}\right]=f\left[n_{1}\right] \times g\left[n_{2}\right]$ is equivalent to

$$
X=\left[\begin{array}{ccc}
& \vdots & \\
\ldots & x_{n_{2}, n_{1}} & \ldots \\
\vdots &
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
g_{n_{2}} \\
\vdots
\end{array}\right] \cdot\left[\begin{array}{lll}
\ldots & f_{n_{1}} & \ldots
\end{array}\right]=g f^{\top}
$$

- this matrix has special properties!

Separability

- for a matrix $X=g$. f^{\top}
- all rows are multiples of each other
- the matrix has rank 1
- only one eigenvalue is different than zero
- by testing any of these properties, you can check seprability
- e.g. is this separable?
- the matrix form is

$$
X=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

- the rank is 2 , not separable!

Linear Shift Invariant (LSI) systems

- straightforward extension of LTI systems
- Definition: a system T that maps $x\left[n_{1}, n_{2}\right]$ into $y\left[n_{1}, n_{2}\right]$ is LSI if and only if
- it is linear

$$
\begin{aligned}
T\left\{a x _ { 1 } \left[n_{1},\right.\right. & \left.\left.n_{2}\right]+b x_{2}\left[n_{1}, n_{2}\right]\right\}= \\
& =a T\left\{x_{1}\left[n_{1}, n_{2}\right]\right\}+b T\left\{x_{2}\left[n_{1}, n_{2}\right]\right\} \\
& =a y_{1}\left[n_{1}, n_{2}\right]+b y_{2}\left[n_{1}, n_{2}\right]
\end{aligned}
$$

- it is shift invariant

$$
T\left\{x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]\right\}=y\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
$$

Linear Shift Invariant (LSI) systems

- example: is $T\left\{x\left[n_{1}, n_{2}\right]\right\}=x^{2}\left[n_{1}, n_{2}\right]$ LSI?
- invariance?

$$
\begin{aligned}
T\left\{x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]\right\} & =x^{2}\left[n_{1}-m_{1}, n_{2}-m_{2}\right] \\
& =y\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
\end{aligned}
$$

- linearity?

$$
\begin{aligned}
T & \left\{a x_{1}\left[n_{1}, n_{2}\right]+b x_{2}\left[n_{1}, n_{2}\right]\right\}= \\
& =a^{2} x_{1}^{2}\left[n_{1}, n_{2}\right]+b^{2} x_{2}^{2}\left[n_{1}, n_{2}\right]+2 a b x_{1}\left[n_{1}, n_{2}\right] x_{2}\left[n_{1}, n_{2}\right] \\
& \neq a x_{1}^{2}\left[n_{1}, n_{2}\right]+b x_{2}^{2}\left[n_{1}, n_{2}\right] \\
& =a y_{1}\left[n_{1}, n_{2}\right]+b y_{2}\left[n_{1}, n_{2}\right]
\end{aligned}
$$

- the system is shift invariant but not linear

Linear Shift Invariant (LSI) systems

- example: is $T\left\{x\left[n_{1}, n_{2}\right]\right\}=g\left[n_{1}, n_{2}\right] . x\left[n_{1}, n_{2}\right] \mathrm{LSI}$?
- linearity?

$$
\begin{aligned}
T & \left\{a x_{1}\left[n_{1}, n_{2}\right]+b x_{2}\left[n_{1}, n_{2}\right]\right\}= \\
& =a g\left[n_{1}, n_{2}\right] x_{1}\left[n_{1}, n_{2}\right]+b g\left[n_{1}, n_{2}\right] x_{2}\left[n_{1}, n_{2}\right] \\
& =a y_{1}\left[n_{1}, n_{2}\right]+b y_{2}\left[n_{1}, n_{2}\right]
\end{aligned}
$$

- invariance?

$$
\begin{aligned}
& \hline T\left\{x\left[n_{1}-m_{1}, n_{2}-m_{2}\right]\right\}= \\
& \quad=g\left[n_{1}, n_{2}\right] x\left[n_{1}-m_{1}, n_{2}-m_{2}\right] \\
& \quad \neq y\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
\end{aligned}
$$

- the system is linear but not shift invariant

Linear Shift Invariant (LSI) systems

- why do we care about LSI systems?
- any signal can be written as

$$
x\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

- e.g.

Linear Shift Invariant (LSI) systems

- why do we care?
- for an LSI system, this means that

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\tau\left\{\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right]\right\} \\
& =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] T\left\{\delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right]\right\} \\
& =\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
\end{aligned}
$$

- where

$$
h\left[n_{1}, n_{2}\right]=T\left\{\delta\left[n_{1}, n_{2}\right]\right\}
$$

is the impulse response of the system

2D convolution

- the operation

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

is the 2D convolution of x and h

- we will denote it by

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * h\left[n_{1}, n_{2}\right]
$$

- this is of great practical importance:
- for an LSI system the response to any input can be obtained by the convolution with this impulse response
- the IR fully characterizes the system
- it is all that I need to measure

2D convolution

- note that the impulse response is really just that
- e.g. suppose that I want to recover the blurring function of a bad camera
- all I have to do is shine a spot of light at it
- this is the impulse response of the camera
- what is the camera response to any image?
- well, I just need to convolve the image with this impulse response

2D convolution

- you can try this at home

- the fact that this works for any image is the "miracle" of LSI systems!

