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Image formation
• we have been studying the process of image formation
• three questions

– what 3D point projects into pixel (x,y)?
– what is the light incident on the pixel?
– what is the pixel color?

• these determine the image value at the pixel
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Geometry
• geometry answers the first question
• pinhole camera:

– point (x,y,z) in 3D scene projected into image pixel of 
coordinates (x’, y’)

– according to the perspective projection equation:
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Light
• the second depends on three main factors:

– lighting of the scene
– the reflectance properties of the material
– various angles with which the light bounces from the objects
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Lambertian surfaces
• we have a very simple equation

– when surface is Lambertian and source a PS @ infinity
– “image power = source power x object albedo x 

cos(light direction, surface normal)”
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Spectral albedos
• with color, 
everything is 
replicated at 
each 
wavelength

• different 
objects have 
different 
spectral 
albedo, and 
that is why we 
perceive color
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Spectral albedo
• how does this change our radiometry equation?

– n (surface normal), s (light direction), do not change with 
wavelength 

– the dependence on wavelength can come from ρ the surface 
albedo, or E the source power
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Color spaces
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• color can be represented in different color spaces
– a color space is defined by a set of three primaries

– any color is a linear combination of these

– the coordinates are found  by projection onto the matching 
functions

– the matching functions are the
solutions of
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Matching functions
RGB
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• after the projection:
– color is represented by 

three numbers
– since primaries are known

these are all that needs to
be stored
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Images
• this summarizes the process
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Images
• the incident light is collected by an image sensor

– that transforms it into a 2D signal
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Imaging
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• the sensor is a 2D array of photosensitive cells
- each cell captures the 
three color components
of a picture element, or 
pixel

- output: 2D pixel array



Digital images
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• the image we see is this 
array

• composed of three color 
channels 



2D-DSP
• in summary:

– image is a N x M array of pixels
– each pixel contains three colors
– overall, the image is a 2D discrete-space

signal
– each entry is a 3D vector

– for simplicity, we consider only single
channel images

– but everything extends to color in a straightforward manner
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Important sequences
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• impulse

• line impulses

– note that this is a 1D signal, embedded
in the 2D plane

– this is what the T subscript indicates
– makes clear that we are not talking about 

the 1D delta
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Important sequences
• unlike 1D, there are many 1D impulses

– e.g. 

– note: when the amplitude is 1 we omit the (1)
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Important sequences
• step sequences

• exponential sequences: sequences of the type
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Separable sequences
• a trivial concept, 

– but probably the only real novelty in this lecture
– very important in practice, because it reduces 2D problem to 

collection on 1D problems

• Definition: a sequence is separable if and only if

where f[.] and g[.] are 1D functions

• note: there are many examples of separable sequences
• but most sequences are not separable
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Separable sequences
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• impulse

• step
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Separability
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• in general, how do I know that sequence is separable?
• think of x[n1,n2] as a matrix

• the condition                                            is equivalent to

• this matrix has special properties!
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Separability
• for a matrix X = g . fT

– all rows are multiples of each other
– the matrix has rank 1
– only one eigenvalue is different than zero

• by testing any of these properties, you can check 
seprability
– e.g. is this separable?
– the matrix form is

– the rank is 2, not separable!
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Linear Shift Invariant (LSI) systems
• straightforward extension of LTI systems

• Definition: a system T that maps x[n1,n2] into y[n1,n2] is
LSI if and only if
– it is linear

– it is shift invariant
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Linear Shift Invariant (LSI) systems
• example: is T{x[n1,n2]} = x2[n1,n2] LSI?

– invariance?

– linearity?

– the system is shift invariant but not linear
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Linear Shift Invariant (LSI) systems
• example: is T{x[n1,n2]} = g[n1,n2] . x[n1,n2] LSI?

– linearity?

– invariance?

– the system is linear but not shift invariant
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Linear Shift Invariant (LSI) systems
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• why do we care about LSI systems?
– any signal can be written as

– e.g.
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Linear Shift Invariant (LSI) systems
• why do we care?

– for an LSI system, this means that

– where

is the impulse response of the system
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2D convolution
• the operation

is the 2D convolution of x and h
– we will denote it by

• this is of great practical importance:
– for an LSI system the response to any input can be obtained by 

the convolution with this impulse response
– the IR fully characterizes the system
– it is all that I need to measure
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2D convolution
• note that the impulse response is really just that

– e.g. suppose that I want 
to recover the blurring 
function of a bad camera

– all I have to do is shine a 
spot of light at it

– this is the impulse 
response of the camera

• what is the camera response
to any image?
– well, I just need to convolve

the image with this impulse
response
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2D convolution
• you can try this at home

• the fact that this works for any image is the “miracle” of 
LSI systems! 
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