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Image formation
all image understanding starts with understanding of 
image formation:g
• projection of a scene from 3D world into image on 2D plane
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Image formation
first of all, why do we care about this?
1) allows us to create (“render”) imaginary scenes1) allows us to create ( render ) imaginary scenes
• special effects, games, architecture/visualization, etc.
• build a CAD model of the scene and then render from different 

views
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Image formation
e.g. a “fly-through” camera that allows you to see a sports 
event from new anglesg

we know
• where the camera iswhere the camera is
• knowing the projection equations allows us to recreate the image

from a 3D model of the scene
• computer graphics is mostly about this
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computer graphics is mostly about this



Image formation
2) even better, we could reconstruct the 3D model from 
imagesg
rendering:
• 3D world to 2D image

scene reconstruction:
2D i t 3D d l• 2D images to 3D model

• this turns out to be much harder
because a 2D projection is consistent

ith 3Dwith many 3D scenes
• one image is usually not enough, but can be done from a 

collection of images
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Image formation
when multiple images are available, it is possible to
• register themregister them
• deduce the

mapping from
2D to 3D2D to 3D

• extract a
3D model of the
scenescene

• render from
different
anglesangles
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Image formation
even when we do not care about the 3D scene per se
• knowing the geometry is important for many tasksknowing the geometry is important for many tasks
• note the

appearence 
changes aschanges as 
the cars move

• this is due 
to perspectiveto perspective

• has to be 
accounted for
even thougheven though
the goal is
tracking not
reconstruction
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Image formation
even for rigid scenes that do not change that much
• a change of perspective will createa change of perspective will create

massive pixel changes
• to compensate for this, one has to

understand the projectionunderstand the projection
equations

this turns out to be quite 
li t dcomplicated

• as usual in science, we simplify as
much as we can

• for example, we adopt the pinhole
camera model
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Pinhole camera
we assume that a camera is
• a black boxa black box
• with an infinitesimally small hole on one face
• the hole is so small that only one ray of light passes through it 

and hits the other side

real pinhole 
camera made 
by Kodak 
for schools, ,
circa 1930
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Pinhole camera
by placing photo-sensitive material in the back wall you 
will get an upside-down replica of the sceneg p p
• this is the image plane

to avoid the mathematical• to avoid the mathematical
inconvenience of this
inversion

• we consider a plane 
outside of the camera

• this is called the virtual
image plane
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Pinhole camera
the virtual image plane

• it is an abstraction
• exactly the same as the image plane, with the exception that 

there is no inversion
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Pinhole camera
one important property:
• objects that are far away become smaller in the image planeobjects that are far away become smaller in the image plane

• we suspect that distance to the camera plays an important role
in perspective projection
i ti l ld t i i ti l t 1/d
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• in particular we would expect image size proportional to 1/d



Coordinates
to relate world point P to image point P’
• we need a coordinate systemwe need a coordinate system
• the 1/d dependence suggests using pinhole as origin
• we also make two coordinate axes (i,j) a basis of the image plane

and the third (k) orthogonal to it (measures depth)

pinhole
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Pinhole camera
definitions:
• line perpendicular to image plane, through pinhole, is the optical 

axis
• point where optical axis intersects image plane is the image 

center
• distance f between image plane and pinhole is the focal length

focal length

image center

focal length

pinhole optical axis

14



Projection equations
note that
• P, O, P’ are on the same line
• this implies that there is a λ such that OP’ = λ OP, and
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Perspective projection
this is the basic equation of perspective projection
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note that 
• there is indeed an inverse dependence on the depth Z
• far objects become small
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Perspective projection
this is a very powerful cue for scene understanding
• and fun too!
• note that the visual system infers all sorts of properties from 

perspective cues
• e g size• e.g. size
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Perspective projection
or shape or proximity
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Perspective projection
is conceptually very simple
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• but is highly non-linear and usually hard to work with
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• e.g. assume you have a big plane on the scene, e.g. a wall
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• the image coordinates depend highly non-linearly on the world 
coordinates
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Prospective projection
this is the reason why we see this
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Prospective projection
instead of this
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Projective projection
since the size of the 
wall is constant
far away (large z) 
distances appear to 
h k i th ishrunk in the image

in many cases, this
non-linearity is toonon linearity is too
much to handle
we look for 
approximations
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Affine projection
consider a plane parallel to the image plane
• this plane has equation z = C and the projection equation 

becomesbecomes
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• image coordinates are simply a re-scaling of the 3D coordinates
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Affine projection
scaling:
• if m <1 image points are closer than 3D points, 
• else they are further away 
• this can be seen by noting that, for P=(xp,yp), Q=(xq,yq)
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• this is also captured by the relation through a scaling matrix
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Affine projection
when can we use this approximation?
• we are assuming z constant
• this is acceptable if the variation of depth in the scene is much 

smaller than the average depth
• e.g. an airplane taking aerial photosg p g p

z >> ∆z

∆z

25



Orthographic projection
if the camera is always at (approximately) the same 
distance from the scene:
• m only contributes a change of scale that we do not care much 

about (e.g. measure in centimeters vs meters)
• it is common to normalize to m = 1
• this is orthographic projection
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Orthographic projection
this is, of course, very convenient:
• “image coordinates = world coordinates”image coordinates = world coordinates
• there are not that many scenarios in which it is a good 

approximation
• nevertheless can be a good model for a preliminary solution
• which is then refined with a more complicated model
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Lenses
so far we have assumed the pinhole camera
in practice we cannot really build such a camera andin practice we cannot really build such a camera and 
obtain decent quality
problems:p
• when pinhole is too big
• many directions are averaged, blurring the image
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Lenses
pinhole problems:
• if the pinhole is too smallif the pinhole is too small
• we have diffraction effects which also blur the image

there is a correct pinhole size from an image distortion 
point of view, but that introduces other problems
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Lenses
pinhole problems:
• for the “correct” pinhole size
• we cannot get enough light in the camera to sufficiently excite the 

recording material
• generally pinhole cameras are darkgenerally, pinhole cameras are dark,
• a very small set of rays from a particular point hits the screen
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• this is the reason why we need camera lenses



Lenses
the basic idea is:
• lets make the aperturelets make the aperture 

bigger so that we can 
have many rays of 
light into the camerag

• to avoid blurring we 
need to concentrate all 
the rays that start in 
the same 3D point

• so that they end up on 
the same image plane 
point
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Lenses
the geometry is as follows

light ray

image
plane

R

PP’ PP’

lens

R: radius of curvature of the lens

d2 d1
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d1: distance from 3D point to lens
d2: distance to image plane



Lenses
we assume all angles are small (d2, h are in microns):
• α = sin α = tg α

image
plane

α1
h≈

R
h

R
h≈

1d
h≈

PP’

lenslens
d2 d1

hh

33

1
1 d

h
R
h
+≈α



Lenses
we assume all angles are small (d2, h are in microns):
• α = sin α = tg α

image
plane

d
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Lenses
Snell’s law
• for light propagating between two media of indexes of 

refraction n and nrefraction n1 and n2
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Lenses
⎞⎛which means that

i di t d t di t d f th 3D i t
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• given distance d2, we can compute distance d1 of the 3D point

image
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Lenses
⎞⎛which means that

t th t it d t d d th ti l iti f P
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• note that it does not depend on the vertical position of P
• we can show that it holds for all rays that start in the plane of P

R P

image
plane

R P

P’ lens
d d
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Lenses
note that, in general,
• we can only have in focus objects that are in a certain depth 

rangerange 
• this is why the background is sometimes out of focus on 

photographs 

b controlling the foc s o are effecti el changing the plane
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• by controlling the focus  you are effectively changing the plane
of the rays that converge on the image plane without blur
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