

Nuno Vasconcelos ECE Department, UCSD

- all image understanding starts with understanding of image formation:
 - projection of a scene from 3D world into image on 2D plane

- first of all, why do we care about this?
- ▶ 1) allows us to create ("render") imaginary scenes
 - special effects, games, architecture/visualization, etc.
 - build a CAD model of the scene and then render from different views

e.g. a "fly-through" camera that allows you to see a sports event from new angles

► we know

- where the camera is
- knowing the projection equations allows us to recreate the image from a 3D model of the scene
- computer graphics is mostly about this

- 2) even better, we could reconstruct the 3D model from images
- ▶ rendering:
 - 3D world to 2D image
- scene reconstruction:
 - 2D images to 3D model
 - this turns out to be much harder because a 2D projection is consistent with many 3D scenes
 - one image is usually not enough, but can be done from a collection of images

▶ when multiple images are available, it is possible to

- register them
- deduce the mapping from 2D to 3D
- extract a 3D model of the scene
- render from different angles

even when we do not care about the 3D scene per se

- knowing the geometry is important for many tasks
- note the appearence changes as the cars move
- this is due to perspective
- has to be accounted for even though the goal is tracking not reconstruction

even for rigid scenes that do not change that much

- a change of perspective will create massive pixel changes
- to compensate for this, one has to understand the projection equations
- this turns out to be quite complicated
 - as usual in science, we simplify as much as we can
 - for example, we adopt the pinhole camera model

▶ we assume that a camera is

- a black box
- with an infinitesimally small hole on one face
- the hole is so small that only one ray of light passes through it and hits the other side

real pinhole camera made by Kodak for schools, circa 1930

- by placing photo-sensitive material in the back wall you will get an upside-down replica of the scene
 - this is the image plane
 - to avoid the mathematical inconvenience of this inversion
 - we consider a plane outside of the camera
 - this is called the virtual image plane

► the virtual image plane

- it is an abstraction
- exactly the same as the image plane, with the exception that there is no inversion

- one important property:
 - objects that are far away become smaller in the image plane

- we suspect that distance to the camera plays an important role in perspective projection
- in particular we would expect image size proportional to 1/d

Coordinates

▶ to relate world point *P* to image point *P*'

- we need a coordinate system
- the 1/d dependence suggests using pinhole as origin
- we also make two coordinate axes (*i*, *j*) a basis of the image plane and the third (*k*) orthogonal to it (measures depth)

- definitions:
 - line perpendicular to image plane, through pinhole, is the optical axis
 - point where optical axis intersects image plane is the image center
 - distance f between image plane and pinhole is the focal length

Projection equations

note that

- P, O, P' are on the same line
- this implies that there is a λ such that $OP' = \lambda OP$, and

▶ this is the basic equation of perspective projection

note that

- there is indeed an inverse dependence on the depth Z
- far objects become small

▶ this is a very powerful cue for scene understanding

- and fun too!
- note that the visual system infers all sorts of properties from perspective cues
- e.g. size

▶ or shape

or proximity

▶ is conceptually very simple

$$\begin{pmatrix} \mathbf{X}' \\ \mathbf{y}' \end{pmatrix} = f \begin{pmatrix} \mathbf{X} \\ \mathbf{Z} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix}$$

- but is highly non-linear and usually hard to work with
- e.g. assume you have a big plane on the scene, e.g. a wall

$$z = ax + by$$

• then

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = f \begin{pmatrix} x/(ax+by) \\ y/(ax+by) \end{pmatrix}$$

the image coordinates depend highly non-linearly on the world coordinates

this is the reason why we see this

instead of this

Projective projection

- since the size of the wall is constant
- far away (large z) distances appear to shrunk in the image
- in many cases, this non-linearity is too much to handle
- we look for approximations

Affine projection

- consider a plane parallel to the image plane
 - this plane has equation z = C and the projection equation becomes

$$\begin{pmatrix} \mathbf{X}'\\ \mathbf{y}' \end{pmatrix} = \frac{f}{C} \begin{pmatrix} \mathbf{X}\\ \mathbf{y} \end{pmatrix} = m \begin{pmatrix} \mathbf{X}\\ \mathbf{y} \end{pmatrix}, \quad m = \frac{f}{C}$$

• image coordinates are simply a re-scaling of the 3D coordinates

Affine projection

- ► scaling:
 - if m <1 image points are closer than 3D points,
 - else they are further away
 - this can be seen by noting that, for $P=(x_p, y_p)$, $Q=(x_q, y_q)$

$$d(P',Q') = \sqrt{(x'_{\rho} - x'_{q})^{2} + (y'_{\rho} - y'_{q})^{2}}$$
$$= \sqrt{m^{2}(x_{\rho} - x_{q})^{2} + m^{2}(y_{\rho} - y_{q})^{2}}$$
$$= |m| \quad d(P,Q)$$

• this is also captured by the relation through a scaling matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Affine projection

- when can we use this approximation?
 - we are assuming z constant
 - this is acceptable if the variation of depth in the scene is much smaller than the average depth
 - e.g. an airplane taking aerial photos

Orthographic projection

- if the camera is always at (approximately) the same distance from the scene:
 - m only contributes a change of scale that we do not care much about (e.g. measure in centimeters vs meters)
 - it is common to normalize to m = 1
 - this is orthographic projection

Orthographic projection

▶ this is, of course, very convenient:

- "image coordinates = world coordinates"
- there are not that many scenarios in which it is a good approximation
- nevertheless can be a good model for a preliminary solution
- which is then refined with a more complicated model

- ▶ so far we have assumed the pinhole camera
- in practice we cannot really build such a camera and obtain decent quality
- ▶ problems:
 - when pinhole is too big
 - many directions are averaged, blurring the image

- pinhole problems:
 - if the pinhole is too small
 - we have diffraction effects which also blur the image

there is a correct pinhole size from an image distortion point of view, but that introduces other problems

- pinhole problems:
 - for the "correct" pinhole size
 - we cannot get enough light in the camera to sufficiently excite the recording material
 - generally, pinhole cameras are *dark*,
 - a very small set of rays from a particular point hits the screen

• this is the reason why we need camera lenses

▶ the basic idea is:

- lets make the aperture bigger so that we can have many rays of light into the camera
- to avoid blurring we need to concentrate all the rays that start in the same 3D point
- so that they end up on the same image plane point

the geometry is as follows

• we assume all angles are small $(d_2, h are in microns)$:

• $\alpha = \sin \alpha = tg \alpha$

• we assume all angles are small $(d_2, h are in microns)$:

• $\alpha = \sin \alpha = tg \alpha$

Snell's law

which means that

$$\frac{1}{d_1} \approx \frac{1}{n_1} \left(\frac{n_2 - n_1}{R} - \frac{n_2}{d_2} \right)$$

• given distance d_2 , we can compute distance d_1 of the 3D point

which means that
$$\frac{1}{d_1} \approx \frac{1}{n_1} \left(\frac{n_2 - n_1}{R} - \frac{n_2}{d_2} \right)$$

- note that it does not depend on the vertical position of P
- we can show that it holds for all rays that start in the plane of P

- ▶ note that, in general,
 - we can only have in focus objects that are in a certain depth range
 - this is why the background is sometimes out of focus on photographs

• by controlling the focus you are effectively changing the plane of the rays that converge on the image plane without blur

