

Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Image formation

- we are studying the process of image formation
- two questions
 - what 3D point projects into pixel (x,y)?
 - what is the light incident on the pixel?
- these determine the image intensity at the pixel

Geometry

geometry answers the first question

▶ pinhole camera:

- point (x,y,z) in 3D scene projected into image pixel of coordinates (x', y')
- according to the perspective projection equation:

Lambertian surfaces

radiometry answers the second

- if surface is Lambertian
- if *n* is the surface normal, *s* the light direction, *ρ* the surface albedo, and *E* the source power

$$P(P_i) = E \rho_a(P_0) \vec{n}(P_0) \cdot \vec{s}$$

Color

- how do we perceive color?
- color perception is the result of evolution
- let's look at the human eye
 - light enters through pupil
 - this has the role of a lens
 - projects into the retina
 - this is the "camera plane"
 - retina covered by receptors that transform light into electric pulses
 - sent to the brain through the optic nerve

Color

▶ there are only two types of receptors:

rods:

responsible for vision at low light levels, do not mediate color vision

cones:

- active at higher light levels, capable of color vision
- density:
 - rods dominate in the periphery of the eye,
 - the center is mostly composed of cones
- ▶ three types of cones:
 - denoted by S, M, and L

Rod vs cone density

- very high concentration of cones in the center
- high resolution and color
- density decays very quickly

periphery

Color receptors

- the three types of cones, vary in their sensitivity to light at different wavelengths
- picture shows a cone mosaic, spatial distribution of the different types of cones
- blue: S cones red: L cones green: M cones
- note the different densities

Color receptors

- relative sensitivity as a function of wavelength. S (for short) cone responds most strongly at short wavelengths; the M (for medium) at medium wavelengths and the L (for long) at long wavelengths.
- occasionally called B, G and R cones respectively, but that's misleading - you don't see red because your R cone is activated.

Radiometry for color

- the three types of cones are filters, specialized to certain wavelengths
- why does this happen?
- because:
 - the visible spectrum covers a range of wavelengths
 - radiance is a function of wavelength λ
 - e.g. if you put a color filter in front of your lens, only certain wavelengths go through
 - and all objects reflect light differently at different wavelengths
 - this is what makes them look like they have color

Spectral albedos

important:

 albedo is a function of wavelength

$$\rho(P,\lambda)$$

 example of how it varies with wavelength for different types of leaves (measurements by E.Koivisto).

Spectral albedo

how does this change our radiometry equation?

- *n* (surface normal), *s* (light direction), do not change with wavelength
- the dependence on wavelength can come from ρ the surface albedo, or *E* the source power

Spectral albedo

light

- can play a significant role in certain environments
- this is why your perception of color is unreliable in night clubs
- ▶ for "white light", *E* is constant
- ▶ all dependence is due to the albedo

$$P(P_i,\lambda) = E\rho_a(P_0,\lambda)\vec{n}(P_0).\vec{s}$$

- e.g. different threads have different albedo
- color changes from location to location

The appearance of colors

Principle of trichromacy:

- it is possible to match almost all colors, using only three primary sources.
- this is not surprising given that we have three types of receptors
- and these are filters for some wavelengths
- anything that falls out of the combination of the three primaries can't be seen by us

Color matching experiments

Subject shown a split field:

- one side shows the light whose color one wants to measure,
- other a weighted mixture of primaries (fixed lights).

Subject adjusts dials so as to make mixture equal to test

Color matching experiments (cont'd)

• most colors can be represented as a mixture of P_1, P_2, P_3

 $M(\lambda) = a P_1(\lambda) + b P_2(\lambda) + c P_3(\lambda)$

where the = sign should be read as "matches"

- ▶ this is additive matching.
- important because if two people who agree on P₁, P₂, P₃ need only supply (a, b, c) to describe a color.
- some colors can't be matched like this: instead we need

$$M(\lambda) + a P_1(\lambda) = b P_2(\lambda) + c P_3(\lambda)$$

- this is subtractive matching.
- ▶ we can interpret it as (-a, b, c)

The principle of trichromacy

- Experimental facts:
- three primaries will work for most people if we allow subtractive matching
 - Exceptional people can match with two or only one primary.
 - This could be caused by a variety of deficiencies.
- most people make the same matches.
 - There are some anomalous trichromats, who use three primaries but make different combinations to match.

Grassman's Laws

- important property: color matching is linear
- 1. mixture of coordinates matches the mixture of the lights

$$T_{1} = a_{1}P_{1} + b_{1}P_{2} + c_{1}P_{3}$$

$$T_{2} = a_{2}P_{1} + b_{2}P_{2} + c_{2}P_{3}$$

$$T_{1} + T_{2} = (a_{1} + a_{2})P_{1} + (b_{1} + b_{2})P_{2} + (c_{1} + c_{2})P_{3}$$

2. equal coordinates means equal lights

$$T_{1} = aP_{1} + bP_{2} + cP_{3} T_{2} = aP_{1} + bP_{2} + cP_{3}$$
 $T_{1} = T_{2}$

3. matching is linear

$$T_1 = aP_1 + bP_2 + cP_3 \Leftrightarrow kT_1 = kaP_1 + kbP_2 + kcP_{32}$$

• these are known as Grassman's Laws

Linear color spaces

- because color matching is linear in the primaries it makes sense to think of the primaries as the basis of a linear color space
- note that the space is infinite dimensional
 - 1. think of $L(\lambda)$ as $L(\lambda_1, \lambda_2, ..., \lambda_N)$
 - 2. take *N* to infinity
- ► the space of valid colors is a 3D-subspace
- problem: the basis is not necessarily orthogonal

Basis functions

- you are probably used to vector spaces with a finite number of components
 - $f = (f_1, ..., f_n)$
- when n goes to infinity we have a function
 - f = f(t)
- this is also a vector space, but now a vector space of functions
 - everything that you have learned still holds, we only need to change our operators a little
 - the main difference is that summations become integrations
 - e.g. for the dot product between f and g

$$\langle f,g \rangle = \sum_{i} f_{i}g_{i} \implies \langle f,g \rangle = \int f(t)g(t)dt$$

Basis functions

- a basis for a subspace of dimension d is a set of d functions b₁(t), ..., b_d(t) such that
 - any function in the space is a linear combination of these d functions (the b_i(t) span the space)

$$f(t) = \sum_{i=1}^{d} \alpha_i b_i(t)$$

- the b_i(t) are linearly independent (i.e. there is no linear combination that will add to the zero function other than α_i=0)
- the basis is orthonormal if the b_i(t) are orthogonal functions and have unit norm

$$\langle b_i(t), b_j(t) \rangle = \int b_i(t) b_j(t) dt = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

Fourier series

- note that you have already seen this
- for example, the Fourier series is the result of the projection of a function f(x) on the basis whose functions are cos(nx) and sin(nx)
- note that the basis is orthogonal, since

 $\int \cos(nx)\sin(mx)dx = 0 \qquad \int \cos(nx)\cos(mx)dx = \begin{cases} \pi, & n = m\\ 0, & n \neq m \end{cases}$ $\int \sin(nx)\sin(mx)dx = \begin{cases} \pi, & n = m\\ 0, & n \neq m \end{cases}$

the series coefficients are the coordinate on this basis

$$\alpha_0 = \frac{1}{\pi} \int f(x) dx \quad \alpha_n = \frac{1}{\pi} \int f(x) \cos(nx) dx \quad \beta_n = \frac{1}{\pi} \int f(x) \sin(nx) dx$$

Fourier series

▶ the function is a linear combination of the basis functions

$$f(x) = \frac{1}{2}\alpha_0 + \sum_{n=1}^{\infty} \alpha_n \cos(nx) + \sum_{n=0}^{\infty} \beta_n \sin(nx)$$

▶ note that the basis functions do not have unit norm, and so we need the $1/\pi$ factors

▶ the picture is

Linear color spaces

- back to color
- because color matching is linear in the primaries it makes sense to think of the primaries as the basis of a linear color space
- note that the space is infinite dimensional
- the space of valid colors is a 3D-subspace
- problem: the basis is not necessarily orthogonal

$$P_2$$
 (a,b,c)
 P_2 (a,b,c)

Color matching functions

how do we get the color coordinates?

- pick a source $\delta(\lambda \lambda_0)$ of unit radiance at wavelength λ
- we know that there is a set of weights that matches it
- denote the weight of primary P_i by $f_i(\lambda_0)$

$$\delta(\lambda - \lambda_0) = \sum_{i=1}^3 f_i(\lambda_0) P_i(\lambda)$$

- repeat for all λ_0
- the $f_i(\lambda)$ are called color matching functions because we can write

$$L(\lambda) = \int L(\lambda_0) \delta(\lambda_0 - \lambda) d\lambda_0$$

= $\sum_i \left\{ \int L(\lambda_0) f_i(\lambda_0) d\lambda_0 \right\} P_i(\lambda) = \sum_i \omega_i P_i(\lambda)$

Color matching functions (cont'd)

the color coordinates are the projections of the spectral radiance on the three matching functions

 $a = \int L(\lambda_0) f_1(\lambda_0) d\lambda_0$ $b = \int L(\lambda_0) f_2(\lambda_0) d\lambda_0$ $c = \int L(\lambda_0) f_3(\lambda_0) d\lambda_0$

- note that this means that we can specify the color space by specifying a set of matching functions
- this can sometimes lead to primaries that are not physically feasible (e.g. if we constrain the matching functions to be non-negative)
- OK because we really only care about the coordinates

In summary

color can be represented in different color spaces

• a color space is defined by a set of three primaries

 $\{P_0(\lambda), P_1(\lambda), P_2(\lambda)\}$

• any color is a linear combination of these

$$L(\lambda) = aP_0(\lambda) + bP_1(\lambda) + cP_2(\lambda)$$

$$P_{2}$$

the coordinates are found by projection onto the matching functions

$$a = \int L(\lambda_0) f_1(\lambda_0) d\lambda_0; \quad b = \int L(\lambda_0) f_2(\lambda_0) d\lambda_0$$
$$c = \int L(\lambda_0) f_3(\lambda_0) d\lambda_0$$

• the matching functions are the solutions of

$$\delta(\lambda - \lambda_0) = \sum_{i=1}^3 f_i(\lambda_0) P_i(\lambda)$$

In summary

why do we need different color spaces?

- many reasons
- some applications require a representation that matches human color perception
- others need color primaries that are convenient for certain tasks, such as building and LCD or a CRT
- ▶ in general
 - we are given the color space, and only work with components (a,b,c)
 - color is a three dimensional vector
 - we have three "images" known as the "three color channels"
 - once in a while, we need to convert between color spaces

in summary

- for example, images are commonly represented in the RGB space
- each pixel is vector of three numbers
- these are the amounts of Red, Green, and Blue
- what exactly is the RGB space?
 - we can look at the associated matching functions

Linear color spaces

- RGB: primaries are monochromatic energies at 645.2nm, 526.3nm, 444.4nm.
- color matching functions have negative parts
- some colors can be matched only subtractively

RGB space

- primaries are the phosphors monitors use as primaries
- the color space is a cube
- axes represent the amount of red, green, and blue
- each color has coordinates between 0 and 1 (0 and 255)

Linear color spaces

matching functions

CIE xy

- 2D is easier to visualize than 3D
- usually work with CIE xy, where
 - x=X/(X+Y+Z)
 - y=Y/(X+Y+Z)
- this is the intersection of the color space with the plane X+Y+Z=1

Perceptual color spaces

- human perception of color is best described in terms of three fundamental color properties
- **hue**: this is what you would refer to as the color itself

e.g. red vs yellow

- note that there is a circular structure (we start and finish with red)
- ▶ for this reason color is usually visualized in a color wheel

Color perception

- saturation: this is the adjective: e.g. "vivid" red, "pale" yellow
- it is the radial coordinate on the color wheel
- colors at the center are unsaturated, colors at the boundaries are highly saturated

Color perception

intensity: is the amount of brightness

- "dark" yellow vs "light" yellow
- ▶ the color wheel can be replicated at each intensity level

- Note that:
 - the center is always the intensity level
 - at zero intensity, hue and saturation are irrelevant
 - saturation becomes more important at higher intensities

Perceptual color spaces

- HSV: hue, saturation, value (intensity) is a natural "perceptual" color space
- very non-linear, colors form a cone
- this can be bad for some applications
- e.g. TVs where primaries have nothing to do with perception but with building CRTs
- but very good for others

Perceptual color spaces

- note that, in general, we can extract the three properties from any space
- this picture shows H,S, and V in CIE xy
- the problem is that the transformation is non-linear
- in CIExy two colors that are near do not necessarily "look" similar

MacAdam elipses

ellipses: colors that human observers matched to color on their center; boundary shows just noticeable difference.
left: magnified 10x. The ellipses at the top are larger than those at the bottom, and rotate as they move up.
difference in x,y is poor guide to color difference!

Perceptual color spaces

- Uniform: equal (small!) steps give the same perceived color changes
- this is important, for example for image retrieval based on color similarity

- compute an histogram of color values for each image and measure image similarity by the similarity of the color histograms
- works surprisingly well (more on this later)

Conversions

▶ in practice, we often have to do color-space conversions

- here are some of the formulas (for more details see http://www.easyrgb.com/math.html)
 - RGB to XYZ: see homework
 - CIE XYZ to CIE u'v'

$$(u', v') = \left(\frac{4X}{X + 15Y + 3Z}, \frac{9Y}{X + 15Y + 3Z}\right)$$

• CIE XYZ to L*a*b

$$L^* = 116 \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - 16 \quad a^* = 500 \left[\left(\frac{X}{X_n}\right)^{\frac{1}{3}} - \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} \right] \quad b^* = 200 \left[\left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - \left(\frac{Z}{Z_n}\right)^{\frac{1}{3}} \right]$$

 (X_n, Y_n, Z_n) are (X, Y, Z) coordinates of a reference white patch.

Conversions

• RGB to CMY

$$C = 1-R$$
 $M = 1-G$ $Y=1-B$

CMY to CMYK

K = min(C, M, Y) C = C-K M = M-K Y=Y-K

RGB to YCrCb

Y = 0.29900R + 0.58700G + 0.11400B $C_b = -0.\ 16874R - 0.33126G + 0.50000B$ $C_r = 0.50000R - 0.41869G - 0.08131B$

Conversions

• RGB to HSV

 $\begin{aligned} &Min = min(R,G,B); \ Max = max(R,G,B); \\ &\Delta = Max - Min; \ V = Max; \\ &if (\Delta == 0) \{ H = 0; \ S = 0 \} \\ &else \{ \\ S = \Delta / Max; \\ &\Delta R = [(Max - R) / 6 + (\Delta / 2)] / \Delta; \\ &\Delta G = [(Max - G) / 6 + (\Delta / 2)] / \Delta \\ &\Delta B = [(Max - B) / 6 + (\Delta / 2)] / \Delta \end{aligned}$

if
$$(R == Max) H = \Delta B - \Delta G$$

else if $(G == Max) H = (1/3) + \Delta R - \Delta B$
else if $(B == Max) H = (2/3) + \Delta G - \Delta R$
if $(H < 0)$; $H += 1$; if $(H > 1)$; $H -= 1$
}

