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Discrete Fourier Transform

e |ast classes, we have studied the DFT

e due to its computational efficiency the DFT is very
popular

* however, it has strong disadvantages for some
applications
— It is complex
— It has poor energy compaction
e energy compaction

— 1S the ability to pack the energy of the spatial sequence into as
few frequency coefficients as possible

— this is very important for image compression

— we represent the signal in the frequency domain

— If compaction is high, we only have to transmit a few coefficients
— Instead of the whole set of pixels



Discrete Cosine Transform

e a much better transform,
from this point of view, is the DCT

— In this example we see the
amplitude spectra of the image above

— under the DFT and DCT

— note the much more
concentrated histogram
obtained with the DCT i

- why is energy compacton =~
Important?

— the main reason is

Image compression

— turns out to be beneficial
In other applications
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Image compression

e an image compression system has three main blocks

Forward Entropy Compressed
> peT — Guantizer — Encader | Image

Sounce A F ¥
Image Data
38 Blocks

Table Table
Specification Specification

— atransform (usually DCT on 8x8 blocks)
— a quantizer
— alossless (entropy) coder

e each tries to throw away information which is not
essential to understand the image, but costs bits



Image compression

 the transform throws away correlations

— if you make a plot of the value of a pixel as a function of one of
Its neighbors

/‘\ plxel P1

' r Plxel wolsin cg P1i
— you will see that the pixels are highly correlated (i.e. most of the
time they are very similar)

— this is just a consequence of the fact that surfaces are smooth



Image compression

* the transform eliminates these correlations
— this is best seen by considering the 2-pt transform
— note that the first coefficient is always the DC-value

X[0]= x[0]+ X[1]
— an orthogonal transform can be written in matrix form as

X=Tx, T'T=I

— l.e. T has orthogonal columns
— this means that

X [1]= x[0]— x[1]

— note that if x[0] similar to x[1], then

X [0]= x[0]+ x[1] = 2x[0]
{x [1]= x[0]-x[1] = 0




Image compression

e the transform eliminates these correlations
— note that if x[0] similar to x[1], the

(X [0]= x[01+ x[1] = 2X[0]
| X[1] = x[0] - x1] ~ 0

— In the transform domain we only have to transmit one number
without any significant cost in image quality

— by “decorrelating” the signal we reduced the bit rate to %2!
— note that an orthogonal matrix

T'T =1
applies a rotation to the pixel space
— this aligns the data with the canonical axes




Image compression

e a second advantage of working in the
frequency domain

— Is that our visual system is less sensitive
to distortion around edges

— the transition associated with the edge
masks our ability to perceive the noise

— e.g. if you blow up a compressed picture,
it is likely to look like this

— in general, the
compression
errors are more
annoying in the
smooth image
regions
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Image compression

e three JPEG examples

36KB 5.7KB 1.7KB
— nhote that the blockiness is more visible in the torso



Image compression

Important point: by itself, the transform

does not save any bits
does not introduce any distortion

both of these happen when we throw away information

this is called “lossy compression” and implemented by
the quantizer

what is a quantizer?

think of the round() function, that rounds to the nearest integer
round(1l) = 1; round(0.55543) = 1; round (0.0000005) =0

Instead of an infinite range between 0 and 1 (infinite number of
bits to transmit)

the output is zero or one (1 bit)
we threw away all the stuff in between, but saved a lot of bits
a quantizer does this less drastically
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Quantizer

e it is a function of this type T s
— Inputs In a given range are mapped

to the same output T ‘

e to implement this, we R
— 1) define a quantizer step size Q L

— 2) apply a rounding function g

Xy = round (1\
Q)

— the larger the Q, the less reconstruction levels we have

— more compression at the cost of larger distortion

— e.g. for x in [0,255], we need 8 bits and have 256 color values
— with Q = 64, we only have 4 levels and only need 2 bits
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Quantizer

e note that we can quantize some frequency coefficients
more heavily than others by simply increasing Q

 this leads to the idea of a quantization matrix
e we start with an image block (e.g. 8x8 pixels)

52 55 61 66 70 61 64 T3]
63 59 55 90 109 85 69 72
62 59 68 113 144 104 66 73
63 58 71 122 154 106 70 69
67 61 68 104 126 88 68 7O
79 65 60 70O Y7 68 58 U5
85 71 64 59 55 61 65 83
87 79 69 68 65 T6 T8 94




Quantizer

e next we apply a transform (e.g. 8x8 DCT)
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Quantizer

e and guantize with a varying Q
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Quantizer

* note that higher frequencies are quantized more heavily
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DCT
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Quantizer

 this saves a lot of bits, but we no longer have an exact
replica of original image block
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Quantizer

e note, however, that visually the blocks are not very
different

original decompressed

— we have saved lots of bits without much “perceptual” loss
— this is the reason why JPEG and MPEG work
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Image compression

e three JPEG examples

36KB " 5.7KB 1.7KB

— note that the two images on the left look identical
— JPEG requires 6x less bits
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Discrete Cosine Transform

e note that
— the better the energy compaction

— the larger the number of coefficients
that get wiped out

— the greater the bit savings for the same

loss

e thisis why the DCT is
Important

« we will do mostly L —
the 1D-DCT DCT

— the formulas are simpler
the insights the same

— as always, extension to
2D is trivial

DEFT
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Discrete Cosine Transform

 the first thing to note Iis that there are various versions of

the DCT

— these are usually known as DCT-I to DCT-IV

— they vary in minor details

— the most popular is the DCT-II,
also known as even symmetric
DCT, or as “the DCT”

WWF{}Q’

1 1<k<N

(N-1

n=0

0

1
x[n]=1N

.

ML

0

c.[k]= ZZX[”]COS(% k(2n +1)J, 0<k<N

otherwise

W[k]CX[k]cos(% k(2n +1)j 0<n<N

otherwise
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Discrete Cosine Transform

(N-1

c.[k]=- 2x[n]cos(—N k(2n +1)) 0<k <N

n:O

0 otherwise

e from this equation we can immediately see that the DCT
coefficients are real

e to understand the better energy compaction
— It is interesting to compare the DCT to the DFT
— It turns out that there is a simple relationship

e we consider a sequence x[n] which is zero outside of
{0, ..., N-1}

o to relate DCT to DFT we need three steps
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Discrete Cosine Transform

« step 1): create a sequence
y|n|= x[n]+ X[2N —n—1]
x[n], 0<n<N
:{X[ZN —n-1, N<n<2N

e step 2). compute the 2N-point DFT of y[n]

2N—-1 27

Y[k]=>yinle V", 0<k<2N
n=0

o step 3): rewrite as a function of N terms only

_12_7[ n 2N-1 2_7[ n

Vk]=X yinle "+ 3 yinje "2
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Discrete Cosine Transform

o step 3): rewrite as a function of N terms only

N -1 _j2_7r 2N-1 _J_k
Y[k]=> x[nle "2 +Zx[2N n—1Je 2
n=0
=(m=2N-1-n, n=2N-1-m)
N-1 27 27
_ 2%k ~Jo k(2N -1-m)
=) x[nle +Zx[m]e
n=0
A A K EA'e TN K
=S "x[nKe 2N +e2N g 2N g2N
\ﬁ/—J
n=0 1
N -1 —jz—ﬂkn J27Z' 27
= > X[nJe N +e N e "
n=0

— to write as a cosine we need to make it into two “mirror”

exponents
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Discrete Cosine Transform

o step 3): rewrite as a function of N terms only

n=0

Nt ik | -2k - 2
=Zx[n]e 2N"J@ 2N @ 2N 4 a"2N a"2N
n=0

N-1

Y 2x[n]ej%k cos(ik(Zn +1)
2N

)
)
_ ejmk':z:zx[n]cos(%k(Zn +1))

— from which

Y[k]=e'sv'C [k], 0<k<2N
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Discrete Cosine Transform

e |t follows that

( . T
— =

C.[k]=4€ 2NkY[k], 0<k<N
0, otherwise

e In summary, we have three steps

]y o Y[k]oC K]

 this interpretation is useful in various ways

— It provides insight on why the DCT has better energy compaction

— It provides a fast algorithm for the computation of the DFT
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Energy compaction

——
N — pt

—
2N —pt

DFT

x[n] y[n] \L[flﬂ(—)CJk]

\ﬁr_J
2N —pt N - pt

e to understand the energy compaction property
— we start by considering the sequence y[n] = X[n]+Xx[2N-1-n]
— this just consists of adding a mirrored version of x[n] to itself

‘ x[n]

O N-1

y[n] '_

'l -, |
| : |

) MN-1 2N-1

— next we remember that the DFT is identical to the DFS of the
periodic extension of the sequence
— let’s look at the periodic extensions for the two cases
e when transform is DFT: we work with extension of x[n]
e when transform is DCT: we work with extension of y[n]
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Energy compaction

DFT
x[n]< y[n] o Ylk]eC [K]
NTpt 2Nt TPt ot
e the two extensions are
DFT | DCT
28 % v Coe D

— note that in the DFT case the extension introduces
discontinuities

— this does not happen for the DCT, due to the symmetry of y[n]

— the elimination of this artificial discontinuity, which contains a lot
of high frequencies,

— Is the reason why the DCT is much more efficient
27



Fast algorithms

* the interpretation of the DCT as

(n])e> yln] Y] ¢ [k

N —pt 2N —pt 2N-—pt N —pt

— also gives us a fast algorithm for its computation
— It consists exactly of the three steps
— 1) y[n] = x[n]+Xx[2N-1-n]
— 2) Y[k] = DFT{y[n]}
this can be computed with a 2N-pt FFT
- 3) [ ik

c.k]=4¢ ™ Ylk]} 0<k<N
0, otherwise

— the complexity of the N-pt DCT is that of the 2N-pt DFT
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2D DCT

the extension to 2D is trivial
the procedure is the same

2D DFT
xnun,Je yinn,] o Yk k] o Gk ks |
%/_/ - ~ )
N, xN, —pt 2N;x2N,—pt 2N1><2N2 pt N,xN,—pt
e Wwith

Y[nw nz]: X[nw nz]"’ X[ZNl —1-n, nz]
+x[n,2N, =1—n, |+ x[2N, -1-n,,2N, -1-n, |

* and
( —Jmk JZN ng1< Nl
1 2 Yk, K
Clik=18 e Ykl o
| 0, otherwise
29




2D DCT

e the end result is the 2D DCT pair

1 2

Af/vi_:14x[n n,cos| —— k, (2 +1)\cos ”_k,(2n +1)\ 0 <h,
Clhk )= a2 o, T T )T o, T T ) 0k, <,

0 otherwise
Ny~1N, -1 0<n <N,
- 3> wilkw,[k,]IC, k. k,]cos Lk1(2ﬂ1+1)\cos ~_k,(2n, +1)\ Lo
xlm,n, =y v, 24 2, )7 2w, ) 0<m <N,
0 otherwise
with
wig= {72 0 B ke
1, 1<k <N, 1, 1<k, <N,

e Itis possible to show that the 2DCT can be computed
with the row-column decomposition (homework)
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2D-DCT

e 1) create

n,

1D-DCT

o 06 ©
Intermediate ®oo0
sequence by — ::
computing <E. ° o
1D-DCT of I oo
roOws "

e 2) compute
1D-DCT of
columns

x[ny,n, ]

n{\E

oo o —| 1D-DCT

31






