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Discrete Fourier Transform
• last classes, we have studied the DFT
• due to its computational efficiency the DFT is very 

popular
• however, it has strong disadvantages for some 

applicationsapplications
– it is complex
– it has poor energy compaction

• energy compaction
– is the ability to pack the energy of the spatial sequence into as 

few frequency coefficients as possibleq y p
– this is very important for image compression
– we represent the signal in the frequency domain

if compaction is high we only have to transmit a few coefficients
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– if compaction is high, we only have to transmit a few coefficients
– instead of the whole set of pixels



Discrete Cosine Transform
• a much better transform, 

from this point of view, is the DCT
– in this example we see the

amplitude spectra of the image above
– under the DFT and DCT
– note the much more 

concentrated histogram 
obtained with the DCT

• why is energy compaction
important?
– the main reason is– the main reason is

image compression
– turns out to be beneficial

in other applications

3

in other applications



Image compression
• an image compression system has three main blocks

– a transform (usually DCT on 8x8 blocks)
– a quantizer

( )– a lossless (entropy) coder

• each tries to throw away information which is not 
essential to understand the image, but costs bits
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Image compression
• the transform throws away correlations

– if you make a plot of the value of a pixel as a function of one of 
its neighborsits neighbors

– you will see that the pixels are highly correlated (i.e. most of the 
time they are very similar)

– this is just a consequence of the fact that surfaces are smooth
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Image compression
• the transform eliminates these correlations

– this is best seen by considering the 2-pt transform
– note that the first coefficient is always the DC-value

[ ] ]1[]0[0 xxX +=

– an orthogonal transform can be written in matrix form as

ITTTxX T ==         ,
– i.e. T has orthogonal columns
– this means that

[ ] ]1[]0[1 xxX −=

– note that if x[0] similar to x[1], then

[ ] ]1[]0[1 xxX =

[ ]⎧ ≈+= ]0[2]1[]0[0 xxxX
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Image compression
• the transform eliminates these correlations

– note that if x[0] similar to x[1], the
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– in the transform domain we only have to transmit one number
without any significant cost in image quality
by “decorrelating” the signal we reduced the bit rate to ½!– by decorrelating” the signal we reduced the bit rate to ½!

– note that an orthogonal matrix

ITT T =
applies a rotation to the pixel space

– this aligns the data with the canonical axes
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Image compression
• a second advantage of working in the 

frequency domain
– is that our visual system is less sensitive 

to distortion around edges
– the transition associated with the edge

masks our ability to perceive the noise
– e.g. if you blow up a compressed picture, 

it is likely to look like this
– in general, the

compression 
errors are more
annoying in the
smooth image
regions
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Image compression
• three JPEG examples

36KB 5.7KB 1.7KB
– note that the blockiness is more visible in the torso
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Image compression
• important point: by itself, the transform

– does not save any bits
– does not introduce any distortion

• both of these happen when we throw away information
• this is called “lossy compression” and implemented by• this is called lossy compression  and implemented by 

the quantizer 
• what is a quantizer?

– think of the round() function, that rounds to the nearest integer
– round(1) = 1; round(0.55543) = 1; round (0.0000005) = 0
– instead of an infinite range between 0 and 1 (infinite number ofinstead of an infinite range between 0 and 1 (infinite number of 

bits to transmit) 
– the output is zero or one (1 bit)

we threw away all the stuff in between but saved a lot of bits
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– we threw away all the stuff in between, but saved a lot of bits
– a quantizer does this less drastically



Quantizer
• it is a function of this type

– inputs in a given range are mapped
to the same o tp tto the same output

• to implement this, we 
– 1) define a quantizer step size Q) q p
– 2) apply a rounding function

⎞
⎜⎜
⎛

=
xroundx

– the larger the Q, the less reconstruction levels we have

⎠
⎜⎜
⎝

=
Q

roundxq

g
– more compression at the cost of larger distortion
– e.g. for x in [0,255], we need 8 bits and have 256 color values
– with Q = 64 we only have 4 levels and only need 2 bits
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– with Q = 64, we only have 4 levels and only need 2 bits



Quantizer
• note that we can quantize some frequency coefficients 

more heavily than others by simply increasing Q
• this leads to the idea of a quantization matrix
• we start with an image block (e.g. 8x8 pixels)
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Quantizer
• next we apply a transform (e.g. 8x8 DCT)

DCT
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Quantizer
• and quantize with a varying Q

DCT

Q mtx
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Quantizer
• note that higher frequencies are quantized more heavily

Q mtxQ mtx increasing frequency

– in result many high frequency coefficients are simply wiped out– in result, many high frequency coefficients are simply wiped out
DCT quantized DCT
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Quantizer
• this saves a lot of bits, but we no longer have an exact 

replica of original image block
DCT quantized DCTDCT quantized DCT

inverse DCT original pixels

≠
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Quantizer
• note, however, that visually the blocks are not very 

different
i i l d doriginal decompressed

f “ ”– we have saved lots of bits without much “perceptual” loss
– this is the reason why JPEG and MPEG work
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Image compression
• three JPEG examples

36KB 5.7KB 1.7KB
– note that the two images on the left look identical
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– JPEG requires 6x less bits



Discrete Cosine Transform
• note that 

– the better the energy compaction
– the larger the number of coefficients

that get wiped out
– the greater the bit savings for the same

loss

• this is why the DCT is
importantimportant

• we will do mostly 
the 1D-DCT
– the formulas are simpler

the insights the same
– as always, extension to 
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2D is trivial



Discrete Cosine Transform
• the first thing to note is that there are various versions of 

the DCT
– these are usually known as DCT-I to DCT-IV
– they vary in minor details
– the most popular is the DCT-II, 

01⎪⎧ kalso known as even symmetric 
DCT, or as “the DCT”
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Discrete Cosine Transform
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• from this equation we can immediately see that the DCT 
coefficients are real

• to understand the better energy compactionto understand the better energy compaction 
– it is interesting to compare the DCT to the DFT
– it turns out that there is a simple relationship

• we consider a sequence x[n] which is zero outside of 
{0, …, N-1}

• to relate DCT to DFT we need three steps
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• to relate DCT to DFT we need three steps



Discrete Cosine Transform
• step 1): create a sequence
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• step 2): compute the 2N-point DFT of y[n]
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• step 3): rewrite as a function of N terms only
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Discrete Cosine Transform
• step 3): rewrite as a function of N terms only
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– to write as a cosine we need to make it into two “mirror” 

exponents



Discrete Cosine Transform
• step 3): rewrite as a function of N terms only
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Discrete Cosine Transform
• it follows that

⎪⎧ kj π
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• in summary, we have three steps
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• this interpretation is useful in various ways
– it provides insight on why the DCT has better energy compaction

it provides a fast algorithm for the computation of the DFT
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– it provides a fast algorithm for the computation of the DFT 



Energy compaction

[ ]{ [ ]{ [ ]{ [ ]
31x

DFT
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• to understand the energy compaction property
t t b id i th [ ] [ ] [2N 1 ]

{ { { 321
ptNptNptNptN −−−− 22

– we start by considering the sequence y[n] = x[n]+x[2N-1-n]
– this just consists of adding a mirrored version of x[n] to itself

x[n] y[n]

– next we remember that the DFT is identical to the DFS of the

x[n]

next we remember that the DFT is identical to the DFS of the 
periodic extension of the sequence

– let’s look at the periodic extensions for the two cases
• when transform is DFT: we work with extension of x[n]
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• when transform is DFT: we work with extension of x[n]
• when transform is DCT: we work with extension of y[n]



Energy compaction

[ ]{ [ ]{ [ ]{ [ ]
31x

DFT
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• the two extensions are 

{ { { 321
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DFT DCT

– note that in the DFT case the extension introduces 
discontinuities

– this does not happen for the DCT, due to the symmetry of y[n]
– the elimination of this artificial discontinuity, which contains a lot 

of high frequencies
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of high frequencies, 
– is the reason why the DCT is much more efficient



Fast algorithms
• the interpretation of the DCT as
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– also gives us a fast algorithm for its computation
– it consists exactly of the three steps
– 1) y[n] = x[n]+x[2N-1-n]– 1) y[n] = x[n]+x[2N-1-n]
– 2) Y[k] = DFT{y[n]}

this can be computed with a 2N-pt FFT
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2D DCT
• the extension to 2D is trivial
• the procedure is the same
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2D DCT
• the end result is the 2D DCT pair
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• it is possible to show that the 2DCT can be computed 
with the row-column decomposition (homework)
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2D-DCT
• 1) create 

intermediate 
sequence by

n2n2

sequence by 
computing 
1D-DCT of 

1D-DCT

rows

• 2) compute

k1n1

],[ 21 nkf],[ 21 nnx

2) compute 
1D-DCT of 
columns

n2
k2

1D-DCT

k1
k1

1D DCT
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