
Discrete Fourier Transform

Nuno Vasconcelos
UCSD

Fourier Transforms
• we started by considering the Discrete-Space Fourier

Transform (DSFT)
• the DSFT is the 2D extension of the Discrete-Time

Fourier Transform

• note that this is a continuous function of frequency
– inconvenient to evaluate numerically in DSP hardware
– we need a discrete version
– this is the 2D Discrete Fourier Transform (2D-DFT)

2121221

2121

2211

2211

1 2

),(
)2(

1],[

],[),(

ωωωω
π

ωω

ωω

ωω

ddeeXnnx

eennxX

njnj

njnj

n n

∫∫

∑∑

=

= −−

2

2D-DFT
• the 2D-DFT is obtained by sampling the DSFT at regular

frequency intervals

• this turns out to make the 2D-DFT harder to work with
than the DSFT
– because we are sampling in frequency we have aliasing in space
– this means that, even though the sequence x[n1,n2] is finite, we

are effectively working with a periodic sequence
– the DFT therefore inherits all the properties of the frequency

representations of periodic sequences

• it is better understood by first considering the 2D
Discrete Fourier Series (2D-DFS)

2
2

21
1

1
2,22121),(],[

k
N

k
N

XkkX πωπω
ωω

==
=

3

2D-DFS
• it is the natural representation for a periodic sequence
• a sequence x[n1,n2] is periodic of period N1xN2 if

• note that

• makes no sense for a periodic signal
– the sum will be infinite for any pair r1,r2

– neither the 2D DSFT or the Z-transform will work here

[] []
[] 21221

21121

, ,,
,,

nnNnnx
nNnxnnx

∀+=
+=

∑ ∑
∞

−∞=

∞

−∞=

−−=
1 2

21
212121],[),(

n n

jnjn rrnnxrrX

4

2D-DFS
• the 2D-DFS solves this problem

• note that X[k1,k2] is also periodic outside

• like the DSFT,
– properties of the 2D-DFS are identical to those of the 1D-DFS
– with the straightforward extension of separability

() []

[] [] 22
2

11
1

1

1

2

2

22
2

11
1

1

1

2

2

221

0

1

0
21

21
21

221

0

1

0
2121

,1,

,,

nk
N

jnk
N

jN

k

N

k

nk
N

jnk
N

jN

n

N

n

eekkX
NN

nnx

eennxkkX

ππ

ππ

∑∑

∑∑
−

=

−

=

−−−

=

−

=

=

=

10 ,10 2211 −≤≤−≤≤ NkNk

5

Periodic convolution
• like the Fourier transform,

– the inverse transform of multiplication is convolution

– however, we have to be careful about how we define convolution
– since the sequences have no end, the standard definition

makes no sense
– e.g. if x and h are both positive sequences, this will always be

infinite

[] [] () ()2121

2121 ,,,, kkYkkXnnxnnx
DFS

×↔∗

],[],[],[22112121
1 2

knknhkkxnny
k k

−−= ∑ ∑
∞

−∞=

∞

−∞=

6

Periodic convolution
• to deal with this, we introduce the idea of periodic

convolution
• instead of the regular definition

• which, from now on, we refer to as linear convolution
• periodic convolution only considers one period of our

sequences

• the only difference is in the summation limits

],[],[* 221121
1 2

knknhkkxyx
k k

−−= ∑ ∑
∞

−∞=

∞

−∞=

],[],[2211

1

0

1

0
21

1

1

2

2

knknhkkxhx
N

k

N

k
−−= ∑ ∑

−

=

−

=

o

7

Periodic convolution

8

• note that the sequence which results from the
convolution is also periodic

• it is important to remember the following
– we work with a single period (the

fundamental period) to make things manageable
– but remember that we have periodic sequences
– it is like if we were peeking through a window
– if we shift, or flip the sequence we need to remember that
– the sequence does not simply move out of the window, but the

next period walks in!!!
– note, that this

can make the
fundamental
period change
considerably

k1

k2

k1

k2

shift
by

(1,1)

Discrete Fourier Transform
• the DFT is defined as

(here X(ω1,ω2) is the DSFT) which can be written as

2
2

21
1

1
2,22121),(],[

k
N

k
N

XkkX πωπω
ωω

==
=

[] []

[] []
⎪
⎩

⎪
⎨

⎧

<≤
<≤

=

⎪
⎩

⎪
⎨

⎧

<≤
<≤

=

∑∑

∑∑

−

=

−

=

−−−

=

−

=

otherwise
Nn
Nn

eekkX
NNnnx

otherwise
Nk
Nk

eennxkkX

nk
N

jnk
N

jN

k

N

k

nk
N

jnk
N

jN

n

N

n

0
0
0

,1
,

0
0
0

,,,

22

11
221

0

1

0
21

2121

22

11
221

0

1

0
21

21

22
2

11
1

1

1

2

2

22
2

11
1

1

1

2

2

ππ

ππ

9

Discrete Fourier Transform
• comparing this

with the DFS

[] []

[] []
⎪
⎩

⎪
⎨

⎧

<≤
<≤

=

⎪
⎩

⎪
⎨

⎧

<≤
<≤

=

∑∑

∑∑

−

=

−

=

−−−

=

−

=

otherwise
Nn
Nn

eekkX
NNnnx

otherwise
Nk
Nk

eennxkkX

nk
N

jnk
N

jN

k

N

k

nk
N

jnk
N

jN

n

N

n

0
0
0

,1
,

0
0
0

,,,

22

11
221

0

1

0
21

2121

22

11
221

0

1

0
21

21

22
2

11
1

1

1

2

2

22
2

11
1

1

1

2

2

ππ

ππ

[] []

[] [] 22
2

11
1

1

1

2

2

22
2

11
1

1

1

2

2

221

0

1

0
21

21
21

221

0

1

0
2121

,1,

,,

nk
N

jnk
N

jN

k

N

k

nk
N

jnk
N

jN

n

N

n

eekkX
NN

nnx

eennxkkX

ππ

ππ

∑∑

∑∑
−

=

−

=

−−−

=

−

=

=

=

10

Discrete Fourier Transform
• we see that inside the boxes

the two transforms are exactly the same
• if we define the indicator function of the box

• we can write

22

11

0
0

Nk
Nk

<≤
<≤

22

11

0
0

Nn
Nn

<≤
<≤

[]
⎪⎩

⎪
⎨
⎧

<≤
<≤

=×

otherwise
Nn
Nn

nnR NN

0
0
0

,1,
22

11

2121

[] [] []212121 ,,,
21

nnRnnxnnx NN ×= [] [] []212121 ,,,
21

kkRkkXkkX NN ×=

11

Discrete Fourier Transform
• note from

that working in the DFT domain is equivalent to
– working in the DFS domain
– extracting the fundamental period at the end

• we can summarize this as

• in this way, I can work with the DFT without having to
worry about aliasing

[] [] []212121 ,,,
21

nnRnnxnnx NN ×= [] [] []212121 ,,,
21

kkRkkXkkX NN ×=

[] [] [] []2121

2121 ,

,,

, kkXkkXnnxnnx

truncate

eperiodiciz

DFS

eperiodiciz

truncate
←
→

↔←
→

12

Discrete Fourier Transform

• this trick can be used to derive all the DFT properties
• e.g. what is the inverse transform of a phase shift?

– let’s follow the steps

– 1) periodicize: this causes the same phase shift in the DFS

[] [] [] []2121

2121 ,

,,

, kkXkkXnnxnnx

truncate

eperiodiciz

DFS

eperiodiciz

truncate
←
→

↔←
→

[] [] 22
2

11
1

22

2121 ,,
mk

N
jmk

N
j

eekkXkkY
ππ

−−

=

[] [] 22
2

11
1

22

2121 ,,
mk

N
jmk

N
j

eekkXkkY
ππ

−−

=

13

Discrete Fourier Transform

[] [] [] []2121

2121 ,

,,

, kkXkkXnnxnnx

truncate

eperiodiciz

DFS

eperiodiciz

truncate
←
→

↔←
→

– 2) compute the inverse DFS: it follows from the properties of the
DFS (page 142 on Lim) that we get a shift in space

– 3) truncate: the inverse DFT is equal to one period of the shifted
periodic extension of the sequence

– in summary, the new sequence is obtained by making the
original periodic, shifting, and taking the fundamental period

[] []221121 ,, mnmnxnny −−=

[] [] []21221121 ,,,
21

nnRmnmnxnny NN ×−−=

14

Example

• note that what leaves on one end, enters on the other

n1

n2

shift by (1,1)

n1

n2

periodicize

n1

n2

n1

n2

truncate

15

Example
• for this reason it is called a circular shift

• note that this is way more complicated than in 1D
• to get it right we really have to think in terms of the

periodic extension of the sequence
• it shows up in most properties of the DFT,
• e.g. what is the inverse DFT of the product of two DFTs?

n1

n2

n1

n2

circular shift
by (1,1)

16

Discrete Fourier Transform

• we use our trick again

– 1) periodicize:

– 2) compute the inverse DFS: this is just the periodic convolution

[] [] [] []2121

2121 ,

,,

, kkXkkXnnxnnx

truncate

eperiodiciz

DFS

eperiodiciz

truncate
←
→

↔←
→

[] [] []212121 ,,, kkHkkXkkY =

[] [] []212121 ,,, kkHkkXkkY =

[] [] []212121 ,,, nnynnxnny o=

17

Discrete Fourier Transform

[] [] [] []2121

2121 ,

,,

, kkXkkXnnxnnx

truncate

eperiodiciz

DFS

eperiodiciz

truncate
←
→

↔←
→

– 3) truncate: the inverse DFT is equal to one period of the
periodic convolution of the sequences

– in summary, the new sequence is obtained by making the
original sequences periodic, computing the periodic convolution,
and taking the fundamental period

– this is the circular convolution of x[n1,n2] and h[n1,n2]

[] [] []() []21212121 ,,,,
21

nnRnnhnnxnny NN ×= o

[] [] [] []() []2121212121 ,,,,,
21

nnRnnhnnxnnhnnx NN ×=⊗ o

18

Discrete Fourier Transform
• we therefore have the property that

– the product of two DFTs is the
– DFT of the circular convolution of the two sequences

• note that circular convolution = one period of periodic
convolution

• hence, there is really not much that is new
– periodicize the sequences, and apply what we learned for the

convolution of DFSs
– e.g. n2

n1

n2

(1) (2)

],[21 nnx
(3) (4)

],[21 nnh

n1 ⊗

19

Circular convolution
• step 1): express sequences in terms of (k1, k2),

we next proceed exactly as for periodic convolution

k1

k2

k1

k2

(1) (2)

(3) (4)

],[21 kkx],[21 kkh

[] [] [] []() []2121212121 ,,,,,
21

nnRnnhnnxnnhnnx NN ×=⊗ o

20

Circular convolution
• step 2): invert h(k1, k2)

k1

k2

(1)(2)

(3)(4)

],[],[2121 kkhkkg −−=

k1

k2

(1) (2)

(3) (4)

],[21 kkh

k1

k2

(1) (2)

(3) (4)

],[21 kkh −

1

2

],[],[2211

1

0

1

0
21

1

1

2

2

knknhkkxhx
N

k

N

k

−−= ∑ ∑
−

=

−

=

o

21

Circular convolution
• step 3): shift g(k1, k2) by (n1, n2)

],[],[2211

1

0

1

0
21

1

1

2

2

knknhkkxhx
N

k

N

k

−−= ∑ ∑
−

=

−

=

o

k1

k2

(1)(2)

(3)(4)

k2

(1)(2)

(3)(4)

n

n2

this sends
whatever is
at (0,0) to (n1,n2)

k11

],[
],[

2211

2211

knknh
nknkg
−−

=−−

],[],[2121 kkhkkg −−=

22

Circular convolution
• e.g. for (n1,n2) = (1,0)

but here we
– recall that we are working with periodic sequences
– use periodicity to fill values missing in the flipped sequence

k1

k2

(1)(2)

(3)(4)

n1

n2

k1

k2

],[21 kkx],[2211 knknh −−

],[],[2211

1

0

1

0
21

1

1

2

2

knknhkkxhx
N

k

N

k

−−= ∑ ∑
−

=

−

=

o
23

Circular convolution
• step 4): we can finally point-wise multiply the two signals

and sum

– e.g. for (n1,n2) = (1,0)

k1

k2

],[21 kkx

x =
k1

k2

],[21 nny

k1

k2

(1) (2)

(4)

],[2211 knknh −−

(3)
3x1+1x1=4

],[],[2211

1

0

1

0
21

1

1

2

2

knknhkkxhx
N

k

N

k

−−= ∑ ∑
−

=

−

=

o

24

Circular convolution
• finally, we extract the fundamental period

• note that the sequence never grows beyond our original
window

• this is fundamentally different from linear convolution
– it is the reason why we need to do circular shifts

• note that, because of this, it can be very different to
– 1) convolve two signals
– 2) take the DFTs, multiply, and take inverse DFT

• let’s see what happens on MATLAB

[] [] [] []() []2121212121 ,,,,,
21

nnRnnhnnxnnhnnx NN ×=⊗ o

25

Circular convolution
• >> x = [1 2 3; 3 3 1; 1 5 5]; h = [0 3 4; 5 2 1; 1 3 2]; z = conv2(x,h)
• z =
• 0 3 10 17 12
• 5 21 41 23 7
• 16 29 44 53 27
• 8 39 52 24 7
• 1 8 22 25 10

• >> H = fft2(h); X = fft2(x); Y = X.*H; y = ifft2(Y)
• y =
• 49 61 62
• 54 46 63
• 69 56 44

26

Discrete Fourier Transform
• why do we care about the DFT?

– 1) we need a discrete representation of the frequency spectrum
if we are to implement algorithms on computers

– the DSFT cannot be used for this because it is continuous
– 2) there are very fast algorithms to compute the DFT

• in 1D DSP you may have mentioned the Fast Fourier
Transform (FFT)
– it is a fast algorithm to compute the DFT
– if the sequence has N points, instead of O(N2) complexity, it has

O(N logN)
– this has made a tremendous historical difference
– FFT speedup = one or two generations of DSP hardware

• Q: is there a two dimensional FFT?

27

Fast Fourier Transform
• to answer this we look at the expression of the DFT

• note that this can be computed with

• given n2, f[k1,n2] is the 1D DFT of x[n1,n2]
– i.e. the 1D-DFT of row n2 of the sequence x

• we have seen something like this when we studied
separability

[] [] 22
2

11
1

1

1

2

2

221

0

1

0
2121 ,,

nk
N

jnk
N

jN

n

N

n
eennxkkX

ππ
−−−

=

−

=
∑∑=

[] []∑ ∑
−

=

−−

=

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
1

0

),(

21

0
21

2

21

2

2

21

11
1

1

1

22
2 ,,

N

n

nkf

nk
N

jN

n

nk
N

j
ennxekkX

444 3444 21

ππ

28

Fast Fourier Transform
• the idea is to create an intermediate sequence f[k1,n2]

– whose rows are the DFTs of the rows of x

• next we realize that

k1

n2

n1

n2

],[21 nkf],[21 nnx

1D-DFT

[] []∑
−

=

−

=
1

0
21

2

21

2

2

22
2 ,,

N

n

nk
N

j
nkfekkX

π

29

Fast Fourier Transform
• is just the 1D DFT of column k1 of f[k1,n2]

• this means that the 2D-DFT can be computed with a
sequence of 1D-DFTs

• note that THIS DOES NOT REQUIRE SEPARABILITY
• this property is valid for any sequence
• it has obvious implications on the computational

complexity of the DFT

k1

n2

k1

k2

],[21 nkf],[21 kkX

1D-DFT

30

Fast Fourier Transform
• note that the 2D-DFT requires

– N2 1D-DFTs on size N1

– followed by N1 1D-DFTs of size N2

– when these are implemented with the FFT, total complexity is

– i.e. we have the same type of expression as in 1D

• in summary, the 2D-FFT simply consists of
– 1) applying the 1D-FFT to the rows of the sequence
– 2) applying the 1D-FFT to the columns of this intermediate

sequence

)log(
)log()log(
)log()log(

2121

221121

221112

NNNNO
NNNONNNO
NNONNNON

=+
=+

31

Properties of the DFT

32

Properties of the DFT

33

Properties of the DFT

34

Discrete Cosine Transform
• due to its computational efficiency the DFT is very

popular
• however, it has strong disadvantages for some

applications
– it is complex
– it has poor energy compaction

• energy compaction
– is the ability to pack the energy of the spatial sequence into as

few frequency coefficients as possible
– this is very important for image compression
– we represent the signal in the frequency domain
– if compaction is high, we only have to transmit a few coefficients
– instead of the whole set of pixels

35

Discrete Cosine Transform
• a much better transform, from this point of view, is the

DCT
• it is defined by

with

• we will talk more about it in the next class

[] []

[] []
⎪⎩

⎪
⎨
⎧

<≤
<≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

⎪⎩

⎪
⎨
⎧

<≤
<≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

∑∑

∑∑

−

=

−

=

−

=

−

=

otherwise
Nn
Nn

nk
N

nk
N

kkCkwkw
NNnnx

otherwise
Nk
Nk

nk
N

nk
N

nnxkkC

N

k

N

k
x

N

n

N

nx

0
0
0

)12(
2

cos)12(
2

cos,][][1
,

0
0
0

,)12(
2

cos)12(
2

cos,,

22

11
22

2
11

1

1

0

1

0
212211

2121

22

11
22

2
11

1

1

0

1

0
21

21

1

1

2

2

1

1

2

2

ππ

ππ

[] []
⎪⎩

⎪
⎨
⎧

<≤
=

=
⎪⎩

⎪
⎨
⎧

<≤
=

=
22

2
22

11

1
11 1,1

0,2
1

 ,
1,1

0,2
1

Nk
kkw

Nk
kkw

36

37

