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Fourier Transforms

e we started by considering the Discrete-Space Fourier
Transform (DSFT)

e the DSFT Is the 2D extension of the Discrete-Time
Fourier Transform
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e note that this is a continuous function of frequency

— Inconvenient to evaluate numerically in DSP hardware
— we need a discrete version

— this is the 2D Discrete Fourier Transform (2D-DFT)



2D-DFT

the 2D-DFT is obtained by sampling the DSFT at regular

frequency intervals
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this turns out to make the 2D-DFT harder to work with

than the DSFT

— because we are sampling in frequency we have aliasing in space

— this means that, even though the sequence x|n,,
are effectively working with a periodic sequence

— the DFT therefore inherits all the properties of the frequency
representations of periodic sequences

It Is better understood by first considering the 2D

Discrete Fourier Series (2D-DFS)

n,] is finite, we



2D-DFS

it is the natural representation for a periodic sequence
* asequence x[n,,n,] is periodic of period N;xN, if

X[nl’ nz]zl[nl + Ny, nz]
:X[nv n, + Nz]’ an n,

e note that
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 makes no sense for a periodic signal
— the sum will be infinite for any pair ry,r,
— neither the 2D DSFT or the Z-transform will work here



2D-DFS

e the 2D-DFS solves this problem

n,=0n,=0
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* note that X[k, k,] Is also periodic outside

0<k,<N,-1 0<k,<N,-1

o like the DSFT,
— properties of the 2D-DFS are identical to those of the 1D-DFS
— with the straightforward extension of separability




Periodic convolution

 like the Fourier transform,
— the inverse transform of multiplication is convolution

DFS
X n, Jexin,n, | o Xk ky )<Y (ks k)

— however, we have to be careful about how we define convolution
— since the sequences have no end, the standard definition
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y[nl’n2]: Z Z X[k11k2]h[n1_k11n2 _kz]

makes no sense
— e.g. if xand h are both positive sequences, this will always be

Infinite



Periodic convolution

to deal with this, we introduce the idea of periodic
convolution

Instead of the regular definition

e} 00

X*y = Z Z X[ky, k1 h[n, —k;,n, =k, ]

which, from now on, we refer to as linear convolution

periodic convolution only considers one period of our
sequences

N,—1N,-1
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the only difference is in the summation limits



Periodic convolution

e note that the sequence which results from the
convolution is also periodic

e it is important to remember the following

— we work with a single period (the
fundamental period) to make things manageable

— but remember that we have periodic sequences
— it is like if we were peeking through a window
— 1f we shift, or flip the sequence we need to remember that

— the sequence does not simply move out of the window, but the
next period walks in!!!

— note, that this k21 . kzI o o
can make the ooy ce e I SO :
fundamental o oi oo e . ° e o0 o
period change T i e
considerably R o .9 (f,{) e



Discrete Fourier Transform

e the DFT Is defined as

X[k, k,]= X (C‘)l’a)z)‘
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(here X(w,,»,) Is the DSFT) which can be written as

X[k, k, ]=-

X[nl’ nz]:

(N,-1N,-1

n=0n,=0
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0<k, <N,

0<k, <N,

otherwise
kznz 0L nl < N1

0<n, <N,
otherwise
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Discrete Fourier Transform

e comparing this

(N, -1N,-1 1n1 ik, 0<k, <N
N1 N, 1 1
X[k, . k,]= %;X[”l’”]e " 0<k, <N,
0 otherwise
N;—IN,-1 e kln1 Zn,  0<n <N
X[k, k™ eM b
x[n,,n,|=- Zgékzz ki kb 0<n, <N,
| 0 otherwise
with the DFS N, 1N, -1 1n1 12 Ko,
X[k;, k, | = ZZ[n nk g
n=0n,=0
N;—1N,-1 ke, j—”kzn2
Z[nlin] sz[k k]eNl "
2 k;=0k,=0




Discrete Fourier Transform

e Wwe see that inside the boxes
0<k, <N, 0<n, <N,
0<k, <N, 0<n, <N,

the two transforms are exactly the same
 if we define the indicator function of the box

e

0<n <N,

1,
RleNz[nl’nz]:4 0<n, <N,
|0 otherwise

e We can write

X[np nz] = Z[nl’ n, ]RleN2 [np nz] X [km kz] = L[kv kz ]RleN2 [km kz]
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Discrete Fourier Transform

note from

X[np nz] = Z[nli n, ]RleN2 [nl’ nz] X [kl’ kz ] = L[kl’ kz]RleN2 [kl’ kz]

that working in the DFT domain is equivalent to

— working in the DFS domain

— extracting the fundamental period at the end

we can summarize this as

periodicize
—> DFS
dnen] _ xnn] S Xk

truncate

truncate

%

periodicize

X[k, k, ]

In this way, | can work with the DFT without having to

worry about aliasing
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Discrete Fourier Transform

periodicize truncate
—> DFS —>

dun] o] © Xlok] Xl
truncate periodicize

 this trick can be used to derive all the DFT properties

e e.g. what is the inverse transform of a phase shift?
— let’s follow the steps

27
k1m1 —j—k,m,

vk k]= X[k ke e

— 1) periodicize: this causes the same phase shift in the DFS

—j——km —j—k,m,

X[kl’kZ]:L[kl’kZ]e e M




Discrete Fourier Transform

periodicize truncate
— DFS —>

dond ] S xlk] o Xlkk]
truncate periodicize

— 2) compute the inverse DFS: it follows from the properties of the
DFS (page 142 on Lim) that we get a shift in space

yln,n, J=x[n, —m;,n, —m, |

— 3) truncate: the inverse DFT is equal to one period of the shifted
periodic extension of the sequence

y[nl’ nz]: X[nl —m;,n, —m, ]RleN2 [nm nz]

— in summary, the new sequence is obtained by making the
original periodic, shifting, and taking the fundamental period
14



Example

. - . . . .
periodicize o t
o o o °
I > @ -I p
M1 [ o o ny
. o
| shift by (1,1) /"
® 21 e o
o o o
. truncate P *. o
< ® {) :
' o ) Ny

note that what leaves on one end, enters on the other
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Example
e for this reason it is called a circular shift

n2“ n2“

circular shift
" — : by (1,1) / N — :

e note that this is way more complicated than in 1D

e to get it right we really have to think in terms of the
periodic extension of the sequence

e it shows up in most properties of the DFT,
e e.g. whatis the inverse DFT of the product of two DFTs?

16



Discrete Fourier Transform

periodicize
—> DFS
dond  xdnen] 6 Xlk]

truncate

truncate

%

periodicize

X[k, k, ]

e We use our trick again
Y[kykz]: X[kvkz]H [kl’kZ]

— 1) periodicize:

X[ky K, ] — l[kv K, ]ﬂ[kl’ kz]

— 2) compute the inverse DFS: this is just the periodic convolution

Y[ny nz]: ﬁ[nli nz]o y[n1’ n

|
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Discrete Fourier Transform

periodicize truncate
—> DFS —>

don) . dnn] o Xlkk] o Xlkk]
truncate periodicize

— 3) truncate: the inverse DFT is equal to one period of the
periodic convolution of the sequences

y[n;.n, = (xIn;.n, Jo hlny,n, DRy oy, [0y, |

— In summary, the new sequence is obtained by making the
original sequences periodic, computing the periodic convolution
and taking the fundamental period

— this is the circular convolution of x[n,,n,] and h[n,n,]

X[nw n2]® h[nm nz]: (l[nli nz]o h[nli nz])Rlem2 [n1’ nz]
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Discrete Fourier Transform

« we therefore have the property that
— the product of two DFTs is the
— DFT of the circular convolution of the two sequences

e note that circular convolution = one period of periodic
convolution

* hence, there is really not much that is new

— periodicize the sequences, and apply what we learned for the
convolution of DFSs

- e.g.
x[n,.n,] h[n,,n,]
............................ 3.5
L ®0:
e ® e st
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Circular convolution

« step 1): express sequences in terms of (ky, k),

X[n;,n, ]® hin,.n, [= (x[n,.n, Jo hln,n, DRy Ly, [y, ]

1 W ( 3.).(4)

I

I-' .......... 5 (1)"7%2) 5
X[k, k] hlky k,]

we next proceed exactly as for periodic convolution
20



Circular convolution
e step 2): invert h(ky, k)

1N, -1
ch=Y Z X[k;, K, 1hIn, - k;,n, -k, ]
ky=0k,=

K, 4 m@ K, 4
@ (@ @2 @

(1).-.(2) k{) e k:1 :-: k:1
@) @ @ G

hlk, k,] hlk,,—k,] glk,, k,1=nl-k,,—k,]
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Circular convolution
« step 3): shift g(ky, k,) by (ny, n,)

1N, -1

ky=0k,=

oh = Z Z X[k, kK, ] h[n, —

— K, ]

2 @
— o @0

‘/

L
(4) 3

g[kl7k2] = h[_kl’_kz]

ks

this sends \

whatever is
at (0,0) to (ny,n,)

n,

hi

g[kl_nl’kZ _/72]:
’71_/(1”72 _kz]
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Circular convolution
e e.g. for (ny,n,) = (1,0)

k, 4 k, 4

I o @ [v

()
4) (

X[k, k,] h[n, —k,,n, = k,]
but here we
— recall that we are working with periodic sequences

— use periodicity to fill values missing in the flipped sequence

1N, -1

oh=3 3 xlk, k1 hIn, — K, n, — K,]

k;=0 k=0
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Circular convolution

e step 4): we can finally point-wise multiply the two signals
and sum

1N, -1

h=Y > xfk, ko 1hn, —k;.n; - k]

ky=0k,=

— e.g. for (ny,n,) = (1,0)

“1 2 k, 4
(3) ............ 4 3x}'+1x1:4
k:1 X 8 — 9(._) k:1 — P ,
Xk, k,] hin, — k,,n, —k,] YImn]
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Circular convolution
 finally, we extract the fundamental period
X[nw n, ]® h[n1’ nz]: (ﬁ[nli nz]o n[nli nz])Rlem2 [n1’ nz]

e note that the sequence never grows beyond our original
window

 this is fundamentally different from linear convolution
— It is the reason why we need to do circular shifts

* note that, because of this, it can be very different to

— 1) convolve two signals
— 2) take the DFTs, multiply, and take inverse DFT

* let’'s see what happens on MATLAB
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Circular convolution

>>x=[123;331;155;h=[034;521;132]; z=-conv2(x,h)
Z =

O 3 10 17 12

5 21 41 23 7

16 29 44 53 27

8 39 52 24 7

1 8 22 25 10

>> H = fft2(h); X =ft2(x); Y = X.*H; y = ifft2(Y)
y =

49 61 62

54 46 63

69 56 44
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Discrete Fourier Transform

 why do we care about the DFT?

— 1) we need a discrete representation of the frequency spectrum
if we are to implement algorithms on computers

— the DSFT cannot be used for this because it is continuous
— 2) there are very fast algorithms to compute the DFT

e in 1D DSP you may have mentioned the Fast Fourier

Transform (FFT)

— it is a fast algorithm to compute the DFT

— if the sequence has N points, instead of O(N?) complexity, it has
O(N logN)

— this has made a tremendous historical difference
— FFT speedup = one or two generations of DSP hardware

 Q:Isthere atwo dimensional FFT?

27



Fast Fourier Transform

e to answer this we look at the expression of the DFT

N,~IN,~1 ln1 - 2”kznz
X[ke]= 2 3 Xl n b W
n;=0n,=0

e note that this can be computed with

N,-1 _ ;2% N, -1 j2E
X[k, k,]= e JNzkznz{IZX[nl,n 3 lelnl}
n,=0 n, =0
) f (kyny) ’

e given n,, flk;,n,] is the 1D DFT of x[n,,n,]
— I.e. the 1D-DFT of row n, of the sequence x

e we have seen something like this when we studied
separability



Fast Fourier Transform

* the idea is to create an intermediate sequence f[k,,n,]
— whose rows are the DFTs of the rows of x

¢ oo 0 >—— 1ID-DFT

X[n11n2]
e next we realize that

N,-1 j2”k

X[k ]= 2 ™ flkn,]

n2 :0




Fast Fourier Transform
e IS justthe 1D DFT of column k; of f[k,,n,]

n?/\E

s oo — 1D-DFT

k

flkyon,] >2[k1,k2]
e this means that the 2D-DFT can be computed with a
sequence of 1D-DFTs

* note that THIS DOES NOT REQUIRE SEPARABILITY

 this property is valid for any sequence

it has obvious implications on the computational
complexity of the DFT
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Fast Fourier Transform

e note that the 2D-DFT requires
— N, 1D-DFTs on size N,
— followed by N, 1D-DFTs of size N,
— when these are implemented with the FFT, total complexity is

N,O(N, logN,)+ N,O(N, logN,) =
O(N,;N, logN,)+O(N,N,logN,) =
O(NlNZ Iog N1N2)

— l.e. we have the same type of expression as in 1D

e In summary, the 2D-FFT simply consists of
— 1) applying the 1D-FFT to the rows of the sequence

— 2) applying the 1D-FFT to the columns of this intermediate
seqguence
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Properties of the DFT

x(ny, ny), y(ny, n,) = Ooutside 0 =n, =N, —1,0=n, = N, — 1

x(ny, ny) «— X(ky, ks)

y(nls n'2) o> Y(klp kz) /
N, x N,-point DFT and IDFT are assumed.

Property 1.

Propertjz 2.

Property 3.

Property 4.

Lineari |

ax(ny, ny) + by(ny, n,) «— aX(ky, ky) + bY(k,, k)
Circular Convolution

x(ny, ny) ® y(n,, ny) «—> X(ky, ky)Y(k,, k)

= [®#(ny, ny) ® y(ny, ”2)]RN1><N2(”1= n,)

Relation between Circular and Linear Convolution
f(n,, n,) = 0outside 0 = n;, = N1 - 1,0=n,=N:-1

g(n,, ny) = 0 outside 0 <, < NY — 1,0 =n, < N§ — 1
f(ny,n,) *g(ny, ny) = f(n,, n,) ® g(n,, n,) with periodicity N; = N; + N{—1,
N,=N} + Nt — 1

Multiplication
1
x(ny, n,)y(ny, n,) «<— X(k,, k;) ® Y(k,, k,)
NN,
1 = -
= NN [X(ku kz) ® Y(kls kz)]RleNz(kn kz)
14V¥2
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Properties of the DFT

Property 5.

Property 6.

Property 7.

Property 8.

Separable Sequence

x(ny, ny) = x1(ny)xy(ny) < X(ky, k) = Xi(k)Xa(k;)
X,(k,): Ny-point 1-D DFT
X,(k,): N,-point 1-D DFT

Circular Shift of a Sequence
2, — my, s — M) Ry x no(M15 n,) «— X(k,, kz)e_j(zﬂm)klm’eﬁaﬂmmm

= x((n, — M) (n, — mz)Nz)
Initial Value and DC Value Theorem

> > Xk, ky)

Ni—1 N2—-1
0,0) =
(a) x(0, 0) NN, & &

Ni1i—1 N2—1

(b) X(0,0) = X 2 x(n, ny)

ni=0 m=0

Parseval’s Theorem
Ni—1 N2—-1 Ni1—1 N2—-1

(a) 2 2 x(ny, no)y*(ny, ny) = > > X(ky, ky)Y*(ky, k)
ni=0 m=0 N1N2 k1=0 k2=0
Ni—1 N2—-1 Ni1i—1 N2—-1

® 2 > k)l = > 2 Xk, )P
n1=0 n2=0 14Y¥2 k1=0 k2=0
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Properties of the DFT

Property 9. Symmetry Properties
(a) X*(nl’ n2) = X*( —Kyy — k2)RN1><N2(k19 kZ) = X" (( —kl)le (_ kz)Nz)

(b) real x(n,, n,) «—> X(ki, k) = X*(=ky, —ko)Ryysena(kis k2)
Xe(ky, ky) = Xp(—ki, —k2)Ryyxmilks, ko)

L Xk, k) = —X(—ky, —k)Ryxmilky, k)
(X(ky, k)| = |X(— ki, — k)| Ry xnalkns k2)

: 0.(ky, ky) = —0.(—ki, —k2)Ryyxmalkss k)
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Discrete Cosine Transform

due to its computational efficiency the DFT is very
popular

however, it has strong disadvantages for some
applications

— It Is complex

— it has poor energy compaction

energy compaction

— Is the ability to pack the energy of the spatial sequence into as
few frequency coefficients as possible

— this is very important for image compression

— we represent the signal in the frequency domain

— If compaction is high, we only have to transmit a few coefficients
— Instead of the whole set of pixels
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Discrete Cosine Transform

e a much better transform, from this point of view, is the
DCT

e |tis defined by
e 0<k, <N,
{ZZ x[n,n, CO{ZN k,(2n, +1)]COS[2N2 k2(2n2+1)j, 0<k <N,

n,=0n,=0
0 otherwise

N, 1N, -1 T 0<n <N,
ZZW[k W, [k, 1C, [k, k, ]cos| ——k,(2n, +1) |cos| ——k, (2n, +1)
X[n,n,]=4N N2k ~ 2N, 2N, 0<n, <N,

0 otherwise
with
wl[k1]={%’ =0 wz[kz]{%’ o =0
1, 1<k <N, 1, 1<k, <N,

o we will talk more about it In the next class
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