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Fourier Transforms
• we started by considering the Discrete-Space Fourier 

Transform (DSFT)
• the DSFT is the 2D extension  of the Discrete-Time 

Fourier Transform

• note that this is a continuous function of frequency
– inconvenient to evaluate numerically in DSP hardware
– we need a discrete version
– this is the 2D Discrete Fourier Transform (2D-DFT)
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2D-DFT
• the 2D-DFT is obtained by sampling the DSFT at regular 

frequency intervals

• this turns out to make the 2D-DFT harder to work with 
than the DSFT
– because we are sampling in frequency we have aliasing in space
– this means that, even though the sequence x[n1,n2] is finite, we 

are effectively working with a periodic sequence
– the DFT therefore inherits all the properties of the frequency 

representations of periodic sequences

• it is better understood by first considering the 2D 
Discrete Fourier Series (2D-DFS)
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2D-DFS
• it is the natural representation for a periodic sequence
• a sequence x[n1,n2] is periodic of period  N1xN2 if

• note that

• makes no sense for a periodic signal
– the sum will be infinite for any pair r1,r2

– neither the 2D DSFT or the Z-transform will work here
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2D-DFS
• the 2D-DFS solves this problem 

• note that X[k1,k2] is also periodic outside

• like the DSFT, 
– properties of the 2D-DFS are identical to those of the 1D-DFS
– with the straightforward extension of separability
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Periodic convolution
• like the Fourier transform, 

– the inverse transform of multiplication is convolution

– however, we have to be careful about how we define convolution
– since the sequences have no end, the standard definition

makes no sense
– e.g. if x and h are both positive sequences, this will always be

infinite
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Periodic convolution
• to deal with this, we introduce the idea of periodic 

convolution
• instead of the regular definition

• which, from now on, we refer to as linear convolution
• periodic convolution only considers one period of our 

sequences

• the only difference is in the summation limits
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Periodic convolution

8

• note that the sequence which results from the 
convolution is also periodic

• it is important to remember the following
– we work with a single period (the 

fundamental period) to make things manageable
– but remember that we have periodic sequences
– it is like if we were peeking through a window
– if we shift, or flip the sequence we need to remember  that 
– the sequence does not simply move out of the window, but the 

next period walks in!!!
– note, that this 

can make the
fundamental
period change
considerably
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Discrete Fourier Transform
• the DFT is defined as

(here X(ω1,ω2) is the DSFT) which can be written as
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Discrete Fourier Transform
• comparing this

with the DFS
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Discrete Fourier Transform
• we see that inside the boxes

the two transforms are exactly the same
• if we define the indicator function of the box

• we can write
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Discrete Fourier Transform
• note from

that working in the DFT domain is equivalent to
– working in the DFS domain
– extracting the fundamental period at the end

• we can summarize this as 

• in this way, I can work with the DFT without having to 
worry about aliasing
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Discrete Fourier Transform

• this trick can be used to derive all the DFT properties
• e.g. what is the inverse transform of a phase shift?

– let’s follow the steps

– 1) periodicize: this causes the same phase shift in the DFS
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Discrete Fourier Transform
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– 2) compute the inverse DFS: it follows from the properties of the 
DFS (page 142 on Lim) that we get a shift in space

– 3) truncate: the inverse DFT is equal to one period of the shifted 
periodic extension of the sequence

– in summary, the new sequence is obtained by making the 
original periodic, shifting, and taking the fundamental period

[ ] [ ]221121 ,, mnmnxnny −−=

[ ] [ ] [ ]21221121 ,,,
21

nnRmnmnxnny NN ×−−=

14



Example

• note that what leaves on one end, enters on the other
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Example
• for this reason it is called a circular shift

• note that this is way more complicated than in 1D
• to get it right we really have to think in terms of the 

periodic extension of the sequence
• it shows up in most properties of the DFT, 
• e.g. what is the inverse DFT of the product of two DFTs?
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Discrete Fourier Transform

• we use our trick again

– 1) periodicize:

– 2) compute the inverse DFS: this is just the periodic convolution
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Discrete Fourier Transform
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– 3) truncate: the inverse DFT is equal to one period of the 
periodic convolution of the sequences

– in summary, the new sequence is obtained by making the 
original sequences periodic, computing the periodic convolution,
and taking the fundamental period

– this is the circular convolution of x[n1,n2]  and h[n1,n2]
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Discrete Fourier Transform
• we therefore have the property that 

– the product of two  DFTs is the
– DFT of the circular convolution of the two sequences

• note that circular convolution = one period of periodic 
convolution

• hence, there is really not much that is new
– periodicize the sequences, and apply what we learned for the 

convolution of DFSs
– e.g. n2

n1

n2

(1) (2)

],[ 21 nnx
(3) (4)

],[ 21 nnh

n1 ⊗

19



Circular convolution
• step 1): express sequences in terms of (k1, k2), 

we next proceed exactly as for periodic convolution
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Circular convolution
• step 2): invert  h(k1, k2)
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Circular convolution
• step 3): shift  g(k1, k2) by (n1, n2) 
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Circular convolution
• e.g. for (n1,n2) = (1,0)

but here we 
– recall that we are working with periodic sequences
– use periodicity to fill values missing in the flipped sequence
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Circular convolution
• step 4): we can finally point-wise multiply the two signals

and sum

– e.g. for (n1,n2) = (1,0)
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Circular convolution
• finally, we extract the fundamental period

• note that the sequence never grows beyond our original 
window

• this is fundamentally different from linear convolution
– it is the reason why we need to do circular shifts

• note that, because of this, it can be very different to
– 1) convolve two signals
– 2) take the DFTs, multiply, and take inverse DFT

• let’s  see what happens on MATLAB
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Circular convolution
• >> x = [1 2 3; 3 3 1; 1 5 5]; h = [0 3 4; 5 2 1; 1 3 2]; z = conv2(x,h)
• z =
• 0     3    10    17    12
• 5    21    41    23     7
• 16    29    44    53    27
• 8    39    52    24     7
• 1     8    22    25    10

• >> H = fft2(h);  X = fft2(x);  Y = X.*H; y = ifft2(Y)
• y =
• 49    61    62
• 54    46    63
• 69    56    44
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Discrete Fourier Transform
• why do we care about the DFT?

– 1) we need a discrete representation of the frequency spectrum
if we are to implement algorithms on computers

– the DSFT cannot be used for this because it is continuous
– 2) there are very fast algorithms to compute the DFT

• in 1D DSP you may have mentioned the Fast Fourier 
Transform (FFT)
– it is a fast algorithm to compute the DFT
– if the sequence has N points, instead of O(N2) complexity, it has 

O(N logN)
– this has made a tremendous historical difference
– FFT speedup = one or two generations of DSP hardware

• Q: is there a two dimensional FFT?  
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Fast Fourier Transform
• to answer this we look at the expression of the DFT

• note that this can be computed with

• given n2, f[k1,n2] is the 1D DFT of x[n1,n2]
– i.e. the 1D-DFT of row n2 of the sequence x

• we have seen something like this when we studied 
separability
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Fast Fourier Transform
• the idea is to create an intermediate sequence f[k1,n2]

– whose rows are the DFTs of the rows of x

• next we realize that
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Fast Fourier Transform
• is just the 1D DFT of column k1 of f[k1,n2]

• this means that the 2D-DFT can be computed with a 
sequence of 1D-DFTs

• note that THIS DOES NOT REQUIRE SEPARABILITY
• this property is valid for any sequence
• it has obvious implications on the computational 

complexity of the DFT
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Fast Fourier Transform
• note that the 2D-DFT requires

– N2 1D-DFTs on size N1

– followed by N1 1D-DFTs of size N2

– when these are implemented with the FFT, total complexity is

– i.e. we have the same type of expression as in 1D

• in summary, the 2D-FFT simply consists of
– 1) applying the 1D-FFT to the rows of the sequence
– 2) applying the 1D-FFT to the columns of this intermediate 

sequence
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Properties of the DFT

32



Properties of the DFT
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Properties of the DFT
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Discrete Cosine Transform
• due to its computational efficiency the DFT is very 

popular
• however, it has strong disadvantages for some 

applications
– it is complex
– it has poor energy compaction

• energy compaction
– is the ability to pack the energy of the spatial sequence into as 

few frequency coefficients as possible
– this is very important for image compression
– we represent the signal in the frequency domain
– if compaction is high, we only have to transmit a few coefficients
– instead of the whole set of pixels
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Discrete Cosine Transform
• a much better transform, from this point of view, is the 

DCT
• it is defined by

with

• we will talk more about it in the next class
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