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The Discrete-Space Fourier Transform
• as in 1D, an important concept in linear system analysis 

is that of the Fourier transform
• the Discrete-Space Fourier Transform is the 2D 

extension  of the Discrete-Time Fourier Transform
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• note that this is a continuous function of frequency
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– inconvenient to evaluate numerically in DSP hardware
– we need a discrete version

this is the 2D Discrete Fourier Transform (2D DFT)
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– this is the 2D Discrete Fourier Transform (2D-DFT)

• before that we consider the sampling problem



Sampling in 2D

• consider an analog signal xc(t1,t2) and let its analog 
Fourier transform be X (Ω1 Ω2)Fourier transform be Xc(Ω1,Ω2)
– we use capital Ω to emphasize that this is analog frequency

• sample with period (T1,T2) to obtain a discrete-space 
signal
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Sampling in 2D

• relationship between the Discrete-Space FT of x[n1,n2]
and the FT of x (t1 t2) is simple extension of 1D resultand the FT of xc(t1,t2) is simple extension of 1D result
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“discrete spectrum”                     “analog spectrum”

• Discrete Space spectrum is sum of replicas of analog• Discrete Space spectrum is sum of replicas of analog 
spectrum
– in the “base replica” the analog frequency Ω1 (Ω2) is mapped 

i t th di it l f T ( T )
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into the digital frequency Ω1T1 (Ω2T2)
– discrete spectrum has periodicity (2π,2π)
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Aliasing
• the frequency (Ω’/π,Ω’’/π)

is the critical sampling 
frequency

• below it we have
aliasing

ω2

aliasing

ω1

• this is just like 
the 1D case, but 
now there are morenow there are more 
possibilities for overlap
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Reconstruction
• if there is no aliasing we can recover the signal in a way 

similar to the 1D case
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• note: in 2D there are many more possibilities than in 1D
– e.g. the sampling grid does not have to be rectangular, e.g. 

hexagonal sampling when T2 = T1/sqrt(3) and  
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• a sequence of images 
obtained by down-
sampling without any 
filteringg

• aliasing: the low-
frequency parts are 

li t d th h t th
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replicated throughout the 
low-res image 



The role of smoothing

none

some

l ta lot
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• too little leads to aliasing
• too much leads to loss of information



Aliasing in video
• video frames are the result of temporal sampling

– fast moving objects are above the critical frequency
– above a certain speed they are aliased and appear to move 

backwards
– this was common in old western movies and become known as

the “wagon wheel” effect
– here is an example: super-resolution increases the frame rate  

and eliminates aliasing

from 
“Space-Time
Resolution 
in Video” by y
E. Shechtman, 
Y. Caspi and 
M. Irani 

(PAMI 2005).
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2D-DFT
• the 2D-DFT is obtained by sampling the DSFT at regular 

frequency intervals
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• this turns out to make the 2D-DFT somewhat harder to 
work with than the DSFT

it i th i 1D– it is the same as in 1D
– you might remember that the inverse transform of the product of 

two DFTs is not the convolution of the associated signals
– but, instead, the “circular convolution”
– where does this come from?

• it is better understood by first considering the 2D

11

it is better understood by first considering the 2D 
Discrete Fourier Series (2D-DFS)



2D-DFS
• it is the natural representation for a periodic sequence
• a sequence x[n1,n2] is periodic of period  N1xN2 if
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• makes no sense for a periodic signal
– the sum will be infinite for any pair r1,r2

ith th 2D DSFT th Z t f ill k h
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– neither the 2D DSFT or the Z-transform will work here



2D-DFS
• the 2D-DFS solves this problem
• it is based on the observation that

– any periodic sequence can be represented as a weighted sum of 
complex exponentials of the form
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– is an orthonormal basis of the space of periodic sequences



2D-DFS
• the 2D-DFS relates x[n1,n2] and X[k1,k2]
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• note that X[k1,k2] is also periodic outside

1010 ≤≤≤≤ NkNk
• like the DSFT, 

properties of the 2D DFS are identical to those of the 1D DFS
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– properties of the 2D-DFS are identical to those of the 1D-DFS
– with the straightforward extension of separability



Periodic convolution
• like the Fourier transform, 

– the inverse transform of multiplication is convolution
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– however, we have to be careful about how we define convolution
– since the sequences have no end, the standard definition
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makes no sense
– e.g. if x and h are both positive sequences, this will allways be 

infinite
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infinite



Periodic convolution
• to deal with this, we introduce the idea of periodic 

convolution
• instead of the regular definition
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• which, from now on, we refer to as linear convolution
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• periodic convolution only considers one period of our 
sequences
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• the only difference is in the summation limits



Periodic convolution
• this is simple, but produces a convolution which is 

substantially different
• let’s go back to our example, now assuming that the 

sequences have period (N1=3,N2=2)
n2 n2

(1) (2)*
(3) (4)

(1) (2)

(3) (4)

n1 n1

(1) (2)*
(1) (2)

(3) (4)

(1) (2)

(1) (2)

(3) (4)

• as before we need four steps
],[ 21 nnx ],[ 21 nnh
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• as before, we need four steps



Periodic convolution
• step 1): express sequences in terms of (k1, k2), and 

consider one period only
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we next proceed exactly as before
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we next proceed exactly as before



Periodic convolution
• step 2): invert  h(k1, k2)
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Periodic convolution
• step 3): shift  g(k1, k2) by (n1, n2) 
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Periodic convolution
• e.g. for (n1,n2) = (1,0)
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the next step would be to point-wise multiply the two 
signals and sum
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Periodic convolution
• this is where we depart from linear convolution
• remember that the sequences are periodic, and we really 

only care about what happens in the fundamental periodonly care about what happens in the fundamental period
• we use the periodicity to fill the values missing in the 

flipped sequence
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Periodic convolution
• step 4): we can finally point-wise multiply the two signals

and sum
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– e.g. for (n1,n2) = (1,0)
k2 k2k2

3x1+1x1=4
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Periodic convolution
• note: the sequence that results from the convolution is 

also periodic
• it is important to keep in mind what we have done• it is important to keep in mind what we have done

– we work with a single period (the 
fundamental period) to make things manageable
b t b th t h i di– but remember that we have periodic sequences

– it is like if we were peeking through a window
– if we shift, or flip the sequence we need to remember  that 
– the sequence does not simply move out of the window, but the 

next period walks in!!!
– note, that this 

k2 k2

,
can make the
fundamental
period change k1 k1shift
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considerably by
(1,1)



Discrete Fourier Transform
• all of this is interesting,

– but why do I care about periodic sequences?
– all images are finite, I could never have such a sequence

• while this is true
– the DFS is the easiest route to learn about the discrete Fourierthe DFS is the easiest route to learn  about the discrete Fourier 

transform (DFT)

• recall that the DFT is obtained by sampling the DSFT
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– we know that when we sample in space we have aliasing in 
frequency 

– well, the same happens when we sample in frequency: we get 
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Discrete Fourier Transform
• this means that

– even if we have a finite sequence
– when we compute the DFT we are effectively working with a 

periodic sequence

• you may recall from 1D signal processing thaty y g p g
– when you multiply two DFTs, you do not get convolution in time
– but instead something called circular convolution

this is strange: when I flip a signal (e g convolution) it wraps– this is strange: when I flip a signal (e.g. convolution) it wraps 
around the sequence borders

– well, in 2D it gets  much stranger

th l I k h t d t d thi i t• the only way I know how to understand this is to
– think about the underlying periodic sequence
– establish a connection between the DFT and the DFS of that 
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sequence
– use what we have seen for the DFS to help me out with the DFT



Discrete Fourier Transform
• let’s start by the relation between DFT and DFS
• the DFT is defined as
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(here X(ω1,ω2) is the DSFT) which can be written as
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Discrete Fourier Transform
• comparing this
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Discrete Fourier Transform
• we see that inside the boxes
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the two transforms are exactly the same
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Discrete Fourier Transform
• note from
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that working in the DFT domain is equivalent to
– working in the DFS domain
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– extracting the fundamental period at the end

• we can summarize this as 
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• in this way, I can work with the DFT without having to 
worry about aliasing

eperiodiciztruncate
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worry about aliasing



Discrete Fourier Transform
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• this trick can be used to derive all the DFT properties
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• e.g. what is the inverse transform of a phase shift?
– let’s follow the steps
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– 1) periodicize: this causes the same phase shift in the DFS
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Discrete Fourier Transform
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– 2) compute the inverse DFS: it follows from the properties of the 
DFS (page 142 on Lim) that we get a shift in space
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DFS (page 142 on Lim) that we get a shift in space
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– 3) truncate: the inverse DFT is equal to one period of the shifted 
periodic extension of the sequence
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Example
k2 k2

periodicize

k1 k1

shift by (1,1)

k2
k2

2

k

truncate

k1
k1
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• note that what leaves on one end, enters on the other



Example
• for this reason it is called a circular shift

k2

i l hift

k2

k1

circular shift 
by (1,1)

k1

• note that this is way more complicated than in 1D
• to get it right we really have to think in terms of the 

i di t i f thperiodic extension of the sequence
• we will see that this shows up in the properties of the 

DFT, 
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• namely that convolution becomes circular convolution
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