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The Discrete-Space Fourier Transform

as in 1D, an important concept in linear system analysis
IS that of the Fourier transform

the Discrete-Space Fourier Transform is the 2D
extension of the Discrete-Time Fourier Transform
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note that this is a continuous function of frequency
— Inconvenient to evaluate numerically in DSP hardware

— we need a discrete version

— this is the 2D Discrete Fourier Transform (2D-DFT)

before that we consider the sampling problem



Sampling in 2D

e consider an analog signal x.(t;,t,) and let its analog
Fourier transform be X.(£2,,€2,)
— we use capital £2to emphasize that this is analog frequency
e sample with period (T, T,) to obtain a discrete-space
signal

x[n,n]=x.(t.t,)

L=mTt,=n,T,
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Sampling in 2D

* relationship between the Discrete-Space FT of x[n,,n,]
and the FT of x(t;,t,) Is simple extension of 1D result

X (w0, @,) -1 i i Xc(a)l—anl’a)z _Zmﬂ

T 1T2 Il =—00 I, =—00 Tl 4 T2 )
v v
DSFT of x[n,n,] FT of X.(0,®,)
“discrete spectrum” *analog spectrum”

* Discrete Space spectrum is sum of replicas of analog
spectrum

— In the “base replica” the analog frequency (2, (£2,) is mapped
into the digital frequency 2, T, (£2,T,)
— discrete spectrum has periodicity (27,2 7)
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Allasing

e the frequency (/7,42 n)
IS the critical sampling
frequency

 below It we have

aliasing }}

e thisis just like
the 1D case, but
now there are more
possibilities for overlap




Reconstruction

 If there is no aliasing we can recover the signal in a way
similar to the 1D case

o0

/71 =—00

o0

/72 =—00

yc(tl’tZ): z Z X[nl’nz]

sinZ-(t, - n,T,) sin = (¢, —n,T,)
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e note: in 2D there are many more possibilities than in 1D

— e.g. the sampling grid does not have to be rectangular, e.g.
hexagonal sampling when T, = T,/sqrt(3) and

X[nl’n2] :{

Xc(tl’tz)‘

L=mT;t,=n,T,

0

n,, n,nothevenor odd
otherwise

— In practice, however, one usually adopts the rectangular grid .
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e a sequence of images
obtained by down-
sampling without any
filtering

« aliasing: the low-
frequency parts are
replicated throughout the
low-res image




The role of smoothing
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 too little leads to aliasing
 too much leads to loss of information



Aliasing in video

« video frames are the result of temporal sampling
— fast moving objects are above the critical frequency

— above a certain speed they are aliased and appear to move
backwards

— this was common in old western movies and become known as
the “wagon wheel” effect

— here is an example: super-resolution increases the frame rate
and eliminates aliasing

Slow-motion interpolation | (preserves motion aliasing) Temporal super-resolution [overcomes motion allasing)

from
“Space-Time
Resolution

in Video” by
E. Shechtman,
Y. Caspi and
M. Irani

(PAMI 2005).
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2D-DFT

e the 2D-DFT is obtained by sampling the DSFT at regular

frequency intervals

X[k, Kk, 1= X(a)l’wZ)‘a,l__k 0,22,
1 N2

e this turns out to make the 2D-DFT somewhat harder to
work with than the DSFT

— itis the same as in 1D

— you might remember that the inverse transform of the product of

two DFTs is not the convolution of the associated signals
— but, instead, the “circular convolution”
— where does this come from?

* it is better understood by first considering the 2D
Discrete Fourier Series (2D-DFS)
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2D-DFS

it is the natural representation for a periodic sequence
e asequence x[n.,n,] is periodic of period N;xN, if

X[nl’ nz]ZX[nl + Ny, nz]
:Z[nli n, + Nz]’ v, n,

e note that

o0 o0

l(rlirz): Z Z‘,X[nl’nz]rl_jnlrz_jn2

 makes no sense for a periodic signal
— the sum will be infinite for any pair ry,r,
— neither the 2D DSFT or the Z-transform will work here
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2D-DFS

e the 2D-DFS solves this problem

e |tiIs based on the observation that

— any periodic sequence can be represented as a weighted sum of
complex exponentials of the form

J'zN—ﬂkﬂ‘l jil—ﬁkznz
X(k,k,)xe ™ xe ™ 0<k <N, -1,
0<k,<N,-1
— this is a simple consequence of the fact that
Jz—ﬂklnl j—ﬂkznz

e™ xe'™ , 0<k<N,-1,0<k,<N,-1

— Is an orthonormal basis of the space of periodic sequences
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2D-DFS

* the 2D-DFS relates x[n,,n,] and X[kl,kz]

N,—1N, -1 "k, _'2—”k2n2
X (ky,k, )= ZZx[nl,nz]e g
n=0n,=0
N,—1N,-1
ZI:nl’nz]_—lzZZ)(I:kl,k k N1k11 ] 2k2n2
1 2 k;=0k,=0

* note that X[k, k,] Is also periodic outside

0<k,<N,-1 0<k,<N,-1

o like the DSFT,
— properties of the 2D-DFS are identical to those of the 1D-DFS
— with the straightforward extension of separability




Periodic convolution

o like the Fourier transform,
— the inverse transform of multiplication is convolution

DFS

Xnon,Jexinn, | o Xk k, )<Y (K, k)

— however, we have to be careful about how we define convolution
— since the sequences have no end, the standard definition

o0 o0

y[nl’n2]: Z Z X[kl’kZ]h[nl_kl’n2 _kz]

makes no sense
— e.g. If xand h are both positive sequences, this will allways be

Infinite
15



Periodic convolution

to deal with this, we introduce the idea of periodic
convolution

Instead of the regular definition

o0 e}

X*y = Z Z x[ki, k1 h[n, —k;,n, =k, ]

which, from now on, we refer to as linear convolution

periodic convolution only considers one period of our
sequences

1N, -1

X o h_ZZx[kl,k]h[n n, —k,]

ky=0Kk,=

the only difference Is in the summation limits
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Periodic convolution

 this is simple, but produces a convolution which is
substantially different

» let’s go back to our example, now assuming that the
sequences have period (N,=3,N,=2)
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x[n;,n,] h[n;,n,]

e as before, we need four steps
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Periodic convolution

e step 1): express sequences in terms of (k,, k), and
consider one period only

-1N,-1
xh_ZZx[k k,1h[n, - —k,]
=0k, =
r. ] .
jo oo
X[k, k] hlk, k,]

we next proceed exactly as before
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Periodic convolution
e step 2): invert h(ky, k)

“1N,-1
X o h—ZZX[k k]h[n 2]
—0 k,=
k, & IQ@ k, 4
® @
¢ e D 1 (@ ‘ @ @ .
o @  n :_: Ky :_: Ky
@) @) @ @ @
/7[/(1,/(2] /7[/(1,—/(2] g[kl,kz] = /7[—/(1,—/(2]
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Periodic convolution
» step 3): shift g(k,, k,) by (ny, n,)

—1N, -1
X o h_ZZx[kl,k]h[n n, —k,]
=0k, =
ko 4 this sends kz 4
whatever is\n
at (0,0) to (ny,n,) i oo
@ O . R
o0 Kk, n, k;
@ 3
g[kl’kZ]:h[_kl’_kZ] g[kl_nl’kZ_nz]:

h[nl_kl’n2 _kz]
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Periodic convolution
e e.g.for (ny,n,) = (1,0)

k, 4 k, 4
I—: @ [v m "2
@ @
X[kl’kz] g[kl_nl’kZ_HZ]:

_/7[/71 B k1’n2 B kz]
the next step would be to point-wise multiply the two

sighals and sum
-1N,-1

xh_ZZx[k k,1h[n, - —k,]

=0 k,=




Periodic convolution

 this is where we depart from linear convolution

 remember that the sequences are periodic, and we really
only care about what happens in the fundamental period

e we use the periodicity to fill the values missing in the
flipped sequence

k, 4
n, el B (4)
@ [ . ~
._I C‘ y = .(:) k:
o o 1
@ q s o
h[nl_k11n2 k2] h[nl_kl’n2 k2]
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Periodic convolution

« step 4): we can finally point-wise multiply the two signals
and sum

1N, -1

X o h—ZZx[kl,k]h[n n, —k,]

=0 k,=

— e.g. for (ny,n,) = (1,0)
k, 4

3x1+1x1=4

> X A B—) :1 - @

X[k, k,] h[n, —k;,n, —k,] y[n,.n,]
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Periodic convolution

* note: the sequence that results from the convolution is
also periodic

 itis important to keep in mind what we have done

we work with a single period (the
fundamental period) to make things manageable

but remember that we have periodic sequences
it is like if we were peeking through a window
If we shift, or flip the sequence we need to remember that

the sequence does not simply move out of the window, but the
next period walks in!!!

k, Ky
note, that this 1 o I oo
can make the o o) ce e S S o
fundamental e e ¢ o0 e Y. DI I T
period change ) S ss B e W
oo o by |

]
considerably I
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Discrete Fourier Transform

 all of this Is interesting,

— but why do | care about periodic sequences?

— all images are finite, | could never have such a sequence
« while this is true

— the DFS is the easiest route to learn about the discrete Fourier
transform (DFT)

o recall that the DFT is obtained by sampling the DSFT
X[k, k1= X (@, @,)| 2z, _ox

1 NZ

— we know that when we sample in space we have aliasing in
frequency

— well, the same happens when we sample in frequency: we get
aliasing in time



Discrete Fourier Transform

e this means that
— even If we have a finite sequence
— when we compute the DFT we are effectively working with a
periodic sequence
e you may recall from 1D signal processing that
— when you multiply two DFTs, you do not get convolution in time
— but instead something called circular convolution

— this is strange: when | flip a signal (e.g. convolution) it wraps
around the sequence borders

— well, in 2D it gets much stranger

e the only way | know how to understand this is to
— think about the underlying periodic sequence

— establish a connection between the DFT and the DFS of that
sequence

— use what we have seen for the DFS to help me out with the DFP6



Discrete Fourier Transform
o let’s start by the relation between DFT and DFS

e the DFT is defined as

X[k, Kk, ]=X (0)1’0)2)‘

21
a’l_—k a’z—N—kz

1 2

(here X(w,,m,) IS the DSFT) which can be written as

(Ny-IN, -1 1n1 o, 0<k, <N
|\|1 N, 1 1
X [k, k,]= nlzogx[”l’”]e " 0<k, <N,
0 otherwise
N,~1N,—1 klnl s 0<n, < N

X [k, k, g, L

X[n,,n, | = NlNzklZ;)kzZ k ]e 0<n, <N,

| 0 otherwise

27



Discrete Fourier Transform

e comparing this

Nl_lNZ_l k1n1 - k2n2 O S k < N
|\|1 N, 1 1
X[k, k,|= r;)r;x[n " }e 0<k, <N,
0 otherwise
N;—IN,-1 kymy J2 kan; O <n < N
X[k k W oo
X[n,,n, | = NlNzklz;)kzz k™ e 0<n, <N,
0 otherwise

with the DFS

x|n,,n, |

n=0n,=0
lelNZZX k k kJN—1 kymy 2k2n2
2 k;=0k,=0
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Discrete Fourier Transform

e Wwe see that inside the boxes
0<k, <N, 0<n <N,
0<k, <N, 0<n, <N,

the two transforms are exactly the same
 if we define the indicator function of the box

0<n <N,

0<n, <N,
0 otherwise

RleN2 [n1’ nz]: )

e \We can write

|;[n1’ nz]: X[nli nz]Rlem2 [n1’ nz]‘ X [kw kz]: L[kl’ kz]Rlem2 [kl’ kz]-‘
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Discrete Fourier Transform

e note from
|;[n1’ nz]: 5[”1’ nz]RleN2 [nw nz]‘ X [k1’ kz] = l[kl’ K, ]Rl\llxl\l2 [kw kz]-‘

that working in the DFT domain is equivalent to
— working in the DFS domain
— extracting the fundamental period at the end

e We can summarize this as

periodicize truncate
— DFS —>

dnan]  xnn] S Xlok] X[k
truncate periodicize

 Inthis way, | can work with the DFT without having to
worry about aliasing
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Discrete Fourier Transform

periodicize truncate
— DFS —>

dnan] . xnn] S Xlok] X[k
truncate periodicize

 this trick can be used to derive all the DFT properties

e e.g. what is the inverse transform of a phase shift?
— let’s follow the steps

Y[k, k,]= X[k, ke ™ e M

— 1) periodicize: this causes the same phase shift in the DFS

2T 2T
—j—km —j—k,m,

X[klikz]:l[kpkz]e e




Discrete Fourier Transform

periodicize truncate
— DFS —>

dnan] . xnn] S Xlok] X[k
truncate periodicize

— 2) compute the inverse DFS: it follows from the properties of the
DFS (page 142 on Lim) that we get a shift in space

X[nl’ nz]zl[nl —m;,n, _mzj‘

— 3) truncate: the inverse DFT is equal to one period of the shifted
periodic extension of the sequence

y[np n, ] = X[nl — My, N, — mz]RleN2 [nv nz]-‘

— In summary, the new sequence is obtained by making the
original periodic, shifting, and taking the fundamental period
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periodicize

o

o
°
y
X H X X
X
- -9 0 —>
°
y

| shiftby 1,1 /

k, 4 K
o I o o
e e
R truncate o ¢0 o
< e e
- — - o Lo o
' o | o ky

 note that what leaves on one end, enters on the other
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Example

for this reason it is called a circular shift

K, 4 k, &

circular shift
) — by (1,1) / ) I—

note that this is way more complicated than in 1D

to get it right we really have to think in terms of the
periodic extension of the sequence

we will see that this shows up in the properties of the
DFT,

namely that convolution becomes circular convolution s






