Discrete Fourier Transform

Nuno Vasconcelos
UCSD

The Discrete-Space Fourier Transform

- as in 1D, an important concept in linear system analysis is that of the Fourier transform
- the Discrete-Space Fourier Transform is the 2D extension of the Discrete-Time Fourier Transform

$$
\begin{aligned}
& X\left(\omega_{1}, \omega_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} x\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} \\
& X\left[n_{1}, n_{2}\right]=\frac{1}{(2 \pi)^{2}} \iint X\left(\omega_{1}, \omega_{2}\right) e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} d \omega_{1} d \omega_{2}
\end{aligned}
$$

- note that this is a continuous function of frequency
- inconvenient to evaluate numerically in DSP hardware
- we need a discrete version
- this is the 2D Discrete Fourier Transform (2D-DFT)
- before that we consider the sampling problem

Sampling in 2D

- consider an analog signal $x_{c}\left(t_{1}, t_{2}\right)$ and let its analog Fourier transform be $X_{c}\left(\Omega_{1}, \Omega_{2}\right)$
- we use capital Ω to emphasize that this is analog frequency
- sample with period $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ to obtain a discrete-space signal

$$
x\left[n_{1}, n_{2}\right]=\left.x_{c}\left(t_{1}, t_{2}\right)\right|_{t_{1}=n_{1} T_{1} ; t_{2}=n_{2} T_{2}}
$$

Sampling in 2D

- relationship between the Discrete-Space FT of $x\left[n_{1}, n_{2}\right]$ and the FT of $x_{c}\left(t_{1}, t_{2}\right)$ is simple extension of 1D result

$$
X\left(\omega_{1}, \omega_{2}\right)=\frac{1}{T_{1} T_{2}} \sum_{r_{1}=-\infty}^{\infty} \sum_{r_{2}=-\infty}^{\infty} X_{c}\left(\frac{\omega_{1}-2 \pi r_{1}}{T_{1}}, \frac{\omega_{2}-2 \pi r_{2}}{T_{2}}\right)
$$

DSFT of $x\left[n_{1}, n_{2}\right]$
"discrete spectrum"

FT of $x_{c}\left(\omega_{1}, \omega_{2}\right)$
"analog spectrum"

- Discrete Space spectrum is sum of replicas of analog spectrum
- in the "base replica" the analog frequency $\Omega_{1}\left(\Omega_{2}\right)$ is mapped into the digital frequency $\Omega_{1} T_{1}\left(\Omega_{2} T_{2}\right)$
- discrete spectrum has periodicity $(2 \pi, 2 \pi)$

For example

$\Omega^{\prime} \rightarrow \alpha=\Omega^{\prime} T_{1}$
$\Omega^{\prime \prime} \rightarrow \beta=\Omega^{\prime \prime} T_{2}$

- no aliasing if

$$
\left\{\begin{array}{c}
\Omega^{\prime} T_{1} \leq 2 \pi-\Omega^{\prime} T_{1} \\
\Omega^{\prime} T_{2} \leq 2 \pi-\Omega^{\prime} T_{2}
\end{array} \Leftrightarrow\right.
$$

$$
\Leftrightarrow\left\{\begin{array}{c}
T_{1} \leq \pi / \Omega^{\prime} \\
T_{2} \leq \pi / \Omega^{\prime \prime}
\end{array}\right.
$$

Aliasing

- the frequency $\left(\Omega^{\prime} / \pi, \Omega^{\prime \prime} / \pi\right)$ is the critical sampling frequency
- below it we have aliasing
- this is just like the 1D case, but now there are more possibilities for overlap

Reconstruction

- if there is no aliasing we can recover the signal in a way similar to the 1D case

$$
y_{c}\left(t_{1}, t_{2}\right)=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[n_{1}, n_{2}\right] \frac{\sin \frac{\pi}{T_{1}}\left(t_{1}-n_{1} T_{1}\right)}{\frac{\pi}{T_{1}}\left(t_{1}-n_{1} T_{1}\right)} \frac{\sin \frac{\pi}{T_{2}}\left(t_{2}-n_{2} T_{2}\right)}{\frac{\pi}{T_{2}}\left(t_{2}-n_{2} T_{2}\right)}
$$

- note: in 2D there are many more possibilities than in 1D
- e.g. the sampling grid does not have to be rectangular, e.g. hexagonal sampling when $T_{2}=T_{1} / \operatorname{sqrt}(3)$ and

$$
x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cc}
\left.x_{c}\left(t_{1}, t_{2}\right)\right|_{t_{1}=n_{1} T_{1} ; t_{2}=n_{2} T_{2}} & n_{1}, n_{2} \text { bothevenor odd } \\
0 & \text { otherwise }
\end{array}\right.
$$

- in practice, however, one usually adopts the rectangular grid

- a sequence of images obtained by downsampling without any filtering
- aliasing: the lowfrequency parts are replicated throughout the low-res image

The role of smoothing

- too little leads to aliasing
- too much leads to loss of information

Aliasing in video

- video frames are the result of temporal sampling
- fast moving objects are above the critical frequency
- above a certain speed they are aliased and appear to move backwards
- this was common in old western movies and become known as the "wagon wheel" effect
- here is an example: super-resolution increases the frame rate and eliminates aliasing

2D-DFT

- the 2D-DFT is obtained by sampling the DSFT at regular frequency intervals

$$
X\left[k_{1}, k_{2}\right]=\left.X\left(\omega_{1}, \omega_{2}\right)\right|_{\omega_{1}=\frac{2 \pi}{N_{1}} k_{1}, \omega_{2}=\frac{2 \pi}{N_{2}} k_{2}}
$$

- this turns out to make the 2D-DFT somewhat harder to work with than the DSFT
- it is the same as in 1D
- you might remember that the inverse transform of the product of two DFTs is not the convolution of the associated signals
- but, instead, the "circular convolution"
- where does this come from?
- it is better understood by first considering the 2D Discrete Fourier Series (2D-DFS)

2D-DFS

- it is the natural representation for a periodic sequence
- a sequence $\underline{x}\left[n_{1}, n_{2}\right]$ is periodic of period $N_{1} x N_{2}$ if

$$
\begin{aligned}
\underline{x}\left[n_{1}, n_{2}\right] & =\underline{x}\left[n_{1}+N_{1}, n_{2}\right] \\
& =\underline{x}\left[n_{1}, n_{2}+N_{2}\right], \quad \forall n_{1}, n_{2}
\end{aligned}
$$

- note that

$$
\underline{X}\left(r_{1}, r_{2}\right)=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[n_{1}, n_{2}\right] r_{1}^{-j n_{1}} r_{2}^{-j n_{2}}
$$

- makes no sense for a periodic signal
- the sum will be infinite for any pair r_{1}, r_{2}
- neither the 2D DSFT or the Z-transform will work here

2D-DFS

- the 2D-DFS solves this problem
- it is based on the observation that
- any periodic sequence can be represented as a weighted sum of complex exponentials of the form

$$
\underline{X}\left(k_{1}, k_{2}\right) \times e^{j \frac{2 \pi}{N_{1}} k_{1} n_{1}} \times e^{j \frac{2 \pi}{N_{2}} k_{2} n_{2}}, \quad \begin{aligned}
& 0 \leq k_{1} \leq N_{1}-1 \\
& \\
& 0 \leq k_{2} \leq N_{2}-1
\end{aligned}
$$

- this is a simple consequence of the fact that

$$
e^{j \frac{2 \pi}{N_{1}} k_{1} n_{1}} \times e^{j \frac{2 \pi}{N_{2}} k_{2} n_{2}}, 0 \leq k_{1} \leq N_{1}-1,0 \leq k_{2} \leq N_{2}-1
$$

- is an orthonormal basis of the space of periodic sequences

2D-DFS

- the 2D-DFS relates $\underline{x}\left[n_{1}, n_{2}\right]$ and $\underline{X}\left[\mathrm{k}_{1}, \mathrm{k}_{2}\right]$

$$
\begin{aligned}
& \underline{X}\left(k_{1}, k_{2}\right)=\sum_{n_{1}=0}^{N_{1}-1 N_{2}-1} \sum_{n_{2}=0}^{X}\left[n_{1}, n_{2}\right] e^{-j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{-j \frac{2 \pi}{N_{2}} k_{2} n_{2}} \\
& \underline{X}\left[n_{1}, n_{2}\right]=\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} \underline{X}\left[k_{1}, k_{2}\right] e^{j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{j \frac{2 \pi}{N_{2}} k_{2} n_{2}}
\end{aligned}
$$

- note that $\underline{X}\left[\mathrm{k}_{1}, \mathrm{k}_{2}\right]$ is also periodic outside

$$
0 \leq k_{1} \leq N_{1}-1, \quad 0 \leq k_{2} \leq N_{2}-1
$$

- like the DSFT,
- properties of the 2D-DFS are identical to those of the 1D-DFS
- with the straightforward extension of separability

Periodic convolution

- like the Fourier transform,
- the inverse transform of multiplication is convolution

$$
\underline{x}\left[n_{1}, n_{2}\right] * \underline{x}\left[n_{1}, n_{2}\right] \quad \stackrel{\text { DFS }}{\stackrel{ }{\leftrightarrow}} \quad \underline{X}\left(k_{1}, k_{2}\right) \times \underline{Y}\left(k_{1}, k_{2}\right)
$$

- however, we have to be careful about how we define convolution
- since the sequences have no end, the standard definition

$$
y\left[n_{1}, n_{2}\right]=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

makes no sense

- e.g. if x and h are both positive sequences, this will allways be infinite

Periodic convolution

- to deal with this, we introduce the idea of periodic convolution
- instead of the regular definition

$$
x * y=\sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

- which, from now on, we refer to as linear convolution
- periodic convolution only considers one period of our sequences

$$
x \circ h=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

- the only difference is in the summation limits

Periodic convolution

- this is simple, but produces a convolution which is substantially different
- let's go back to our example, now assuming that the sequences have period $\left(N_{1}=3, N_{2}=2\right)$

$\underline{h}\left[n_{1}, n_{2}\right]$
- as before, we need four steps

Periodic convolution

- step 1): express sequences in terms of $\left(k_{1}, k_{2}\right)$, and consider one period only

$$
x \circ h=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

$x\left[k_{1}, k_{2}\right]$

$h\left[k_{1}, k_{2}\right]$
we next proceed exactly as before

Periodic convolution

- step 2): invert $h\left(k_{1}, k_{2}\right)$
$x \circ h=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]$

$h\left[k_{1}, k_{2}\right]$

$$
h\left[k_{1},-k_{2}\right] \quad g\left[k_{1}, k_{2}\right]=h\left[-k_{1},-k_{2}\right]
$$

Periodic convolution

- step 3): shift $g\left(k_{1}, k_{2}\right)$ by $\left(n_{1}, n_{2}\right)$

$$
x \circ h=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

$$
\begin{array}{ll}
g\left[k_{1}, k_{2}\right]=h\left[-k_{1},-k_{2}\right] \quad & g\left[k_{1}-n_{1}, k_{2}-n_{2}\right]= \\
& h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
\end{array}
$$

Periodic convolution

- e.g. for $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)=(1,0)$

$$
\begin{array}{ll}
x\left[k_{1}, k_{2}\right] \quad & g\left[k_{1}-n_{1}, k_{2}-n_{2}\right]= \\
& h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
\end{array}
$$

the next step would be to point-wise multiply the two signals and sum

$$
x \circ h=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

Periodic convolution

- this is where we depart from linear convolution
- remember that the sequences are periodic, and we really only care about what happens in the fundamental period
- we use the periodicity to fill the values missing in the flipped sequence

Periodic convolution

- step 4): we can finally point-wise multiply the two signals and sum

$$
x \circ h=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

- e.g. for $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)=(1,0)$

Periodic convolution

- note: the sequence that results from the convolution is also periodic
- it is important to keep in mind what we have done
- we work with a single period (the fundamental period) to make things manageable
- but remember that we have periodic sequences
- it is like if we were peeking through a window
- if we shift, or flip the sequence we need to remember that
- the sequence does not simply move out of the window, but the next period walks in!!!
- note, that this can make the fundamental period change considerably

Discrete Fourier Transform

- all of this is interesting,
- but why do I care about periodic sequences?
- all images are finite, I could never have such a sequence
- while this is true
- the DFS is the easiest route to learn about the discrete Fourier transform (DFT)
- recall that the DFT is obtained by sampling the DSFT

$$
X\left[k_{1}, k_{2}\right]=\left.X\left(\omega_{1}, \omega_{2}\right)\right|_{\omega_{1}=\frac{2 \pi}{N_{1}} k_{1}, \omega_{2}=\frac{2 \pi}{N_{2}} k_{2}}
$$

- we know that when we sample in space we have aliasing in frequency
- well, the same happens when we sample in frequency: we get aliasing in time

Discrete Fourier Transform

- this means that
- even if we have a finite sequence
- when we compute the DFT we are effectively working with a periodic sequence
- you may recall from 1D signal processing that
- when you multiply two DFTs, you do not get convolution in time
- but instead something called circular convolution
- this is strange: when I flip a signal (e.g. convolution) it wraps around the sequence borders
- well, in 2D it gets much stranger
- the only way I know how to understand this is to
- think about the underlying periodic sequence
- establish a connection between the DFT and the DFS of that sequence
- use what we have seen for the DFS to help me out with the DFR6

Discrete Fourier Transform

- let's start by the relation between DFT and DFS
- the DFT is defined as

$$
X\left[k_{1}, k_{2}\right]=\left.X\left(\omega_{1}, \omega_{2}\right)\right|_{\omega_{1}=\frac{2 \pi}{N_{1}} k_{1}, \omega_{2}=\frac{2 \pi}{N_{2}} k_{2}}
$$

(here $X\left(\omega_{1}, \omega_{2}\right)$ is the DSFT) which can be written as

$$
\begin{aligned}
& X\left[k_{1}, k_{2}\right]=\left\{\begin{array}{cc}
\sum_{n_{1}=0}^{N_{1}-1 N_{2}-1} \sum_{n_{2}=0} x\left[n_{1}, n_{2}\right]^{-j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{-j \frac{2 \pi}{N_{2}} k_{2} n_{2}}, & \begin{array}{l}
0 \leq k_{1}<N_{1} \\
0 \\
0
\end{array} \\
x\left[k_{2}<N_{2}\right. \\
\text { otherwise }
\end{array}\right. \\
& x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cc}
\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1 N_{k_{2}-1}=0} X\left[k_{1}, k_{2}\right] e^{j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{j \frac{2 \pi}{N_{2}} k_{2} n_{2}} & 0 \leq n_{1}<N_{1} \\
0 & 0 \leq n_{2}<N_{2} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Discrete Fourier Transform

- comparing this

$$
\begin{aligned}
& X\left[k_{1}, k_{2}\right]=\left\{\begin{array}{cc}
\sum_{n_{1}=0}^{N_{1}-1 N_{2}-1} \sum_{n_{2}=0} x\left[n_{1}, n_{2}\right]^{-j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{-j \frac{2 \pi}{N_{2}} k_{2} n_{2}}, & \begin{array}{l}
0 \leq k_{1}<N_{1} \\
0 \\
0 \leq k_{2}<N_{2} \\
\text { otherwise }
\end{array}
\end{array}\right. \\
& x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cc}
\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1 N_{2}-1} X\left[k_{1}, k_{2}\right] e^{j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{j \frac{2 \pi}{N_{2}} k_{2} n_{2}} & 0 \leq n_{1}<N_{1} \\
0 & 0 \leq n_{2}<N_{2} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

with the DFS

$$
\begin{aligned}
& \underline{X}\left[k_{1}, k_{2}\right]=\sum_{n_{1}=0}^{N_{1}-1 N_{2}-1} \sum_{n_{2}=0} \underline{X}\left[n_{1}, n_{2} e^{-j \frac{2 \pi}{N_{1}} k_{1} n_{1}} e^{-j \frac{2 \pi}{N_{2}} k_{2} n_{2}}\right. \\
& \underline{X}\left[n_{1}, n_{2}\right]=\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1 N_{k_{2}}-1} \sum_{k_{0}}^{X}\left[k_{1}, k_{2} e^{j \frac{2 \pi}{N_{1} k_{1} n_{1}} e^{j \frac{2 \pi}{N_{2}} k_{2} n_{2}}}\right.
\end{aligned}
$$

Discrete Fourier Transform

- we see that inside the boxes

$$
\begin{aligned}
& 0 \leq k_{1}<N_{1} \\
& 0 \leq k_{2}<N_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq n_{1}<N_{1} \\
& 0 \leq n_{2}<N_{2}
\end{aligned}
$$

the two transforms are exactly the same

- if we define the indicator function of the box

$$
R_{N_{1} \times N_{2}}\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cc}
1, & 0 \leq n_{1}<N_{1} \\
0 & 0 \leq n_{2}<N_{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

- we can write

$$
X\left[n_{1}, n_{2}\right]=\underline{x}\left[n_{1}, n_{2}\right] R_{N_{1} \times N_{2}}\left[n_{1}, n_{2}\right] \quad X\left[k_{1}, k_{2}\right]=\underline{X}\left[k_{1}, k_{2}\right] R_{N_{1} \times N_{2}}\left[k_{1}, k_{2}\right]
$$

Discrete Fourier Transform

- note from

$$
x\left[n_{1}, n_{2}\right]=\underline{x}\left[n_{1}, n_{2}\right] R_{N_{1} \times N_{2}}\left[n_{1}, n_{2}\right] \quad X\left[k_{1}, k_{2}\right]=\underline{X}\left[k_{1}, k_{2}\right] R_{N_{1} \times N_{2}}\left[k_{1}, k_{2}\right]
$$

that working in the DFT domain is equivalent to

- working in the DFS domain
- extracting the fundamental period at the end
- we can summarize this as

- in this way, I can work with the DFT without having to worry about aliasing

Discrete Fourier Transform

$$
x\left[n_{1}, n_{2}\right] \underset{\text { periodicize }}{\rightarrow} \underset{\text { truncate }}{\leftarrow} \underline{x}\left[n_{1}, n_{2}\right] \stackrel{\text { DFS }}{\leftrightarrow} \quad \underline{X}\left[k_{1}, k_{2}\right] \stackrel{\text { periodicize }}{\leftarrow} X\left[k_{1}, k_{2}\right]
$$

- this trick can be used to derive all the DFT properties
- e.g. what is the inverse transform of a phase shift?
- let's follow the steps

$$
Y\left[k_{1}, k_{2}\right]=X\left[k_{1}, k_{2}\right] e^{-j \frac{2 \pi}{N_{1}} k_{1} m_{1}} e^{-j \frac{2 \pi}{N_{2}} k_{2} m_{2}}
$$

- 1) periodicize: this causes the same phase shift in the DFS

$$
\underline{Y}\left[k_{1}, k_{2}\right]=\underline{X}\left[k_{1}, k_{2}\right] e^{-j \frac{2 \pi}{N_{1}} k_{1} m_{1}} e^{-j \frac{2 \pi}{N_{2}} k_{2} m_{2}}
$$

Discrete Fourier Transform

$$
\left. n_{1}, n_{2}\right] \stackrel{\text { DFS }}{\leftrightarrow} \quad \underline{X}\left[k_{1}, k_{2}\right] \stackrel{\text { truncate }}{\rightarrow} X\left[k_{1}, k_{2}\right]
$$

- 2) compute the inverse DFS: it follows from the properties of the DFS (page 142 on Lim) that we get a shift in space

$$
\underline{y}\left[n_{1}, n_{2}\right]=\underline{x}\left[n_{1}-m_{1}, n_{2}-m_{2}\right]
$$

- 3) truncate: the inverse DFT is equal to one period of the shifted periodic extension of the sequence

$$
y\left[n_{1}, n_{2}\right]=\underline{x}\left[n_{1}-m_{1}, n_{2}-m_{2}\right] R_{N_{1} \times N_{2}}\left[n_{1}, n_{2}\right]
$$

- in summary, the new sequence is obtained by making the original periodic, shifting, and taking the fundamental period

Example

- note that what leaves on one end, enters on the other

Example

- for this reason it is called a circular shift

- note that this is way more complicated than in 1D
- to get it right we really have to think in terms of the periodic extension of the sequence
- we will see that this shows up in the properties of the DFT,
- namely that convolution becomes circular convolution

