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Gradients and edges
for image understanding, one of the problems is that there 
is too much information in an image 
just smoothing is not good enough
how to detect important (most informative) image points?
note that derivatives are large at points of great change
• changes in reflectance (e.g. checkerboard pattern)
• change in object (an object boundary is different from background)
• change in illumination (the boundary of a shadow)

these are usually called edge points
detecting them could be useful for various problems
• segmentation: we want to know what are object boundaries
• recognition: cartoons are easy to recognize and terribly efficient to 

transmit
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The importance of edges
light

boundary

reflectance
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Gradients
for a 2D function, f(x,y) the 
gradient at a point (x0,y0)

is the direction of greatest 
increase at that point
the gradient magnitude

measures the rate of change
it is large at edges!
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– small gradient magnitude
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Gradients
here is an example

image grad. magnitude

gradient

gradient magnitude
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Derivatives and convolution
recall that a derivative is defined as

linear and shift invariant, so must be the result of a 
convolution.
we could approximate as

where the derivative kernel is
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Finite difference kernels
in two dimensions we have various possible kernels
e.g. , N1=2, N2=3, derivative along n1, (line n2=k)
(horizontal)

derivative along n2, (line n1=k) (vertical)

derivative along line n1=n2 (diagonal)
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note that, when 

h(n1,n2)=

we have

derivative is a high-pass filter
hw: check that this holds for all others
intuitive, because a derivative is a measure of the rate of 
change of a function
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Finite differences
Q: which one do we have here? (gray=0,white=+,dark=-)
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Finite differences and noise
because they perform high-pass filtering, finite difference 
filters respond strongly to noise
generally, the larger the noise the stronger the response
for noisy images it is usually best to apply some 
smoothing before computing derivatives
what do mean by noise? 
we only consider the simplest model
• independent stationary additive Gaussian noise
• the noise value at each pixel is given by an independent draw 

from the same normal probability distribution
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sigma=1
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sigma=16
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Finite differences responding to noise

increasing noise variance 

note that as the noise variance increases the estimates of 
the image derivative are also very noisy
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Effects of noise
this can be seen even in 1D
• consider a single row or column of the image
• plotting intensity as a function of position gives a signal

where is the edge?
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Where is the edge?  

Solution:  smooth first

Look for peaks in 
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noise has a lot of high-frequencies
strategy:
1. start by low-pass filtering, to suppress 

noise
2. compute derivative on smoothed image

i.e. for a smoothing filter g(n1,n2)
compute

note that, by associativity of 
convolution, this is equal to

i.e. filter the image with the filter h*g

Smoothing reduces noise

( )xgh **

( ) xgh **

g(n1,n2)

h(n1,n2)

smoothed 
derivatives
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Derivative theorem of convolution

This saves us one operation:
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The derivative of a Gaussian
let’s consider, for example,

in which case

is a difference of two Gaussians
this is the derivative of a Gaussian (DoG) 
filter
for other definitions of h we have a similar 
result
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DoG along n1

DoG along n2
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Smoothed derivatives
no smoothing

with smoothing
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the scale of the smoothing filter affects 
• derivative estimates, 
• the semantics of the derivative image

trade-off between noise and ability to detect detail

1 pixel 3 pixels 7 pixels

Choosing the right scale
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Gradients and edges
in general the optimal amount of 
smoothing depends on
• how noisy image is
• how much detail we want to preserve 

remember that edges are points of 
large gradient magnitude
edge detection strategy
1. determine magnitude of image gradient

2. mark points where gradient magnitude 
is particularly large wrt neighbours
(ideally, curves of such points)

– large gradient magnitude

– small gradient magnitude
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Detecting edge points
know how to compute gradient, still three major issues:
• 1) gradient magnitude at different scales is different (see below); 

which should we choose?
• 2) gradient magnitude is large along thick trail; what are the 

significant points?
• 3) how do we link the relevant points up into curves?
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Maxima of gradient magnitude
let’s leave scale open for now
maxima of gradient magnitude:
• the point to remember is that the gradient 

is perpendicular to the edge
• we look for the maximum in the direction of 

the gradient
• this is called non-maximum suppression

two algorithmic issues: 
• at which point is the maximum?
• where is the next one?

we next see how the Canny edge 
detector solves these
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Non-maximum suppression
is there a maximum at q?
yes, if value at q is larger 
than those at both p and r
p and r are the pixels in the 
direction of the gradient that 
are 1 pixel apart from q
typically they do not fall in 
the pixel grid
we need to interpolate, e.g.

will come back to this later
abr  )1( αα −+=
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Predicting the next edge point
assume the marked point 
is an edge point
we construct the tangent to 
the edge curve (which is 
normal to the gradient at 
that point) 

use this to predict the next 
points (here either r or s).
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The Canny edge detector

original image (Lena)
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The Canny edge detector

norm of the gradient
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The Canny edge detector

thinning
(non-maximum suppression)
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Cleaning up
even when gradient is ~ 
zero, there are maxima 
due to noise
check that maximum value 
of gradient value is large 
enough (threshold)
once we are following an 
edge we must avoid gaps 
due to similarity with 
background 
use hysteresis
• use a high threshold to start 

edge curves and a low 
threshold to continue them.
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Hysteresis
suppose this is a curve that we are following
• thickness represents the magnitude of the gradient

• we require a large magnitude to start, i.e. above a threshold T1

• once we start we keep going even if the magnitude falls below 
the threshold

• we only declare the contour as done if it falls below a second 
threshold T2, where T2, <T1

• once again, the optimal values of these thresholds are image 
dependent
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Parameter tuning
in summary, the combination of 
• smoothed derivatives, 
• detection of maxima of gradient magnitude, 
• edge following

is the essence of most modern edge detectors
the classical is the “Canny edge detector” which 
implements all this steps
as we have seen there are a number of parameters
• smoothing scale
• two hysteresis thresholds

in practice these can have significant effect on the quality 
of the resulting edge maps
unfortunately there are no universally good values
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fine scale
high 
threshold

too many
false 
edges
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coarse 
scale,
high 
threshold

we loose
edge 
points
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coarse
scale
low
threshold

we still
have gaps
but once
again 
false
edges
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The Canny edge detector
there are many implementations available
• matlab has one
• there is freely available C code on the web
• there are various applets that allow you to play with the 

parameters
• an example is
• http://www.cs.washington.edu/research/imagedatabase/demo/ed

ge/
• make sure you experiment and get a feel for how the parameters 

influence the edge detection results
• the Canny edge detectors is the closest that you will find to a 

standard solution to a vision problem

http://www.cs.washington.edu/research/imagedatabase/demo/edge/
http://www.cs.washington.edu/research/imagedatabase/demo/edge/
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