

Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Gradients and edges

- for image understanding, one of the problems is that there is too much information in an image
- just smoothing is not good enough
- how to detect important (most informative) image points?
- note that derivatives are large at points of great change
 - changes in reflectance (e.g. checkerboard pattern)
 - change in object (an object boundary is different from background)
 - change in illumination (the boundary of a shadow)
- these are usually called edge points
- detecting them could be useful for various problems
 - segmentation: we want to know what are object boundaries
 - recognition: cartoons are easy to recognize and terribly efficient to transmit

The importance of edges

Gradients

► for a 2D function, f(x,y) the gradient at a point (x_0,y_0)

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)^T$$
$$= \left(f_x(x_0, y_0), f_y(x_0, y_0)\right)^T$$

is the direction of greatest increase at that point

the gradient magnitude

$$\left\|\nabla f(\boldsymbol{x}_{0},\boldsymbol{y}_{0})\right\|^{2} = \left(\frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{x}_{0},\boldsymbol{y}_{0})\right)^{2} + \left(\frac{\partial f}{\partial \boldsymbol{y}}(\boldsymbol{x}_{0},\boldsymbol{y}_{0})\right)^{2}$$

measures the rate of change

▶ it is large at edges!

– large gradient magnitude

small gradient magnitude

▶ here is an example

Derivatives and convolution

recall that a derivative is defined as

$$\frac{\partial f(x)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- linear and shift invariant, so must be the result of a convolution.
- ▶ we could approximate as

$$\frac{\partial f(n)}{\partial n} = \frac{f(n+1) - f(n)}{1} = f(n+1) - f(n) = f * h(n)$$

where the derivative kernel is

$$h(n) = \delta(n+1) - \delta(n)$$

Finite difference kernels

in two dimensions we have various possible kernels

• e.g., $N_1=2$, $N_2=3$, derivative along n_1 , (line $n_2=k$) (horizontal)

• derivative along $n_{2,}$ (line $n_1 = k$) (vertical) $\begin{array}{c}
 0 & -1 & 0 & -1 & -1 & -1 \\
 0 & 1 & 0 & 1 & 1 & 1
\end{array}$ • derivative along line $n_1 = n_2$ (diagonal) $\begin{array}{c}
 0 & 0 & -1 & 1 & -1 & 0 \\
 0 & 0 & 0 & 1 & -1 & 1 \\
 1 & 0 & 0 & 0 & 0 & 1
\end{array}$

Finite difference kernels

- derivative is a high-pass filter
- hw: check that this holds for all others
- Intuitive, because a derivative is a measure of the rate of change of a function

Finite differences

Q: which one do we have here? (gray=0,white=+,dark=-)

Finite differences and noise

- because they perform high-pass filtering, finite difference filters respond strongly to noise
- generally, the larger the noise the stronger the response
- for noisy images it is usually best to apply some smoothing before computing derivatives
- what do mean by noise?
- we only consider the simplest model
 - independent stationary additive Gaussian noise
 - the noise value at each pixel is given by an independent draw from the same normal probability distribution

$$Y(\boldsymbol{n}_1,\boldsymbol{n}_2) = X(\boldsymbol{n}_1,\boldsymbol{n}_2) + \varepsilon(\boldsymbol{n}_1,\boldsymbol{n}_2), \qquad \varepsilon \sim \mathcal{N}(0,\sigma^2)$$

sigma=1

Finite differences responding to noise

increasing noise variance

note that as the noise variance increases the estimates of the image derivative are also very noisy

Effects of noise

this can be seen even in 1D

- consider a single row or column of the image
- plotting intensity as a function of position gives a signal

where is the edge?

Solution: smooth first

Sigma = 50

Smoothing reduces noise

- noise has a lot of high-frequencies
- strategy:
 - 1. start by low-pass filtering, to suppress noise
 - 2. compute derivative on smoothed image
- i.e. for a smoothing filter $g(n_1, n_2)$ compute

$$h*(g*x)$$

note that, by associativity of convolution, this is equal to

$$(h*g)*x$$

• i.e. filter the image with the filter h^*g

Derivative theorem of convolution $\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$

The derivative of a Gaussian

▶ let's consider, for example,

$$h(n_1, n_2) = \delta(n_1 + 1, n_2) - \delta(n_1, n_2)$$

in which case

$$h * g(n_1, n_2) = g(n_1 + 1, n_2) - g(n_1, n_2)$$

is a difference of two Gaussians

- this is the derivative of a Gaussian (DoG) filter
- for other definitions of h we have a similar result

DoG along n_1

Smoothed derivatives

no smoothing

with smoothing

Choosing the right scale

▶ the scale of the smoothing filter affects

- derivative estimates,
- the semantics of the derivative image
- trade-off between noise and ability to detect detail

Gradients and edges

- in general the optimal amount of smoothing depends on
 - how noisy image is
 - how much detail we want to preserve
- remember that edges are points of large gradient magnitude
- edge detection strategy
 - 1. determine magnitude of image gradient

$$\left\|\nabla f(x_0, y_0)\right\|^2 = \left(\frac{\partial f}{\partial x}(x_0, y_0)\right)^2 + \left(\frac{\partial f}{\partial y}(x_0, y_0)\right)^2$$

2. mark points where gradient magnitude is particularly large wrt neighbours (ideally, curves of such points)

- large gradient magnitude
- small gradient magnitude

Detecting edge points

know how to compute gradient, still three major issues:

- 1) gradient magnitude at different scales is different (see below); which should we choose?
- 2) gradient magnitude is large along thick trail; what are the significant points?
- 3) how do we link the relevant points up into curves?

Maxima of gradient magnitude

- let's leave scale open for now
- maxima of gradient magnitude:
 - the point to remember is that the gradient is perpendicular to the edge
 - we look for the maximum in the direction of the gradient
 - this is called non-maximum suppression
- ► two algorithmic issues:
 - at which point is the maximum?
 - where is the next one?
- we next see how the Canny edge detector solves these

Non-maximum suppression

- ▶ is there a maximum at q?
- yes, if value at q is larger than those at both p and r
- p and r are the pixels in the direction of the gradient that are 1 pixel apart from q
- typically they do not fall in the pixel grid
- we need to interpolate, e.g. $r = \alpha b + (1 - \alpha) a$
- will come back to this later

Predicting the next edge point

- assume the marked point is an edge point
- we construct the tangent to the edge curve (which is normal to the gradient at that point)

$$t(x, y) = \left(-f_y(x, y), f_x(x, y)\right)^T$$

use this to predict the next points (here either r or s).

original image (Lena)

norm of the gradient

thinning

(non-maximum suppression)

Cleaning up

- even when gradient is ~ zero, there are maxima due to noise
- check that maximum value of gradient value is large enough (threshold)
- once we are following an edge we must avoid gaps due to similarity with background

use hysteresis

 use a high threshold to start edge curves and a low threshold to continue them.

Hysteresis

suppose this is a curve that we are following

thickness represents the magnitude of the gradient

- we require a large magnitude to start, i.e. above a threshold T₁
- once we start we keep going even if the magnitude falls below the threshold
- we only declare the contour as done if it falls below a second threshold T_{2} , where T_{2} , $< T_{1}$
- once again, the optimal values of these thresholds are image dependent

Parameter tuning

- ▶ in summary, the combination of
 - smoothed derivatives,
 - detection of maxima of gradient magnitude,
 - edge following
- ▶ is the essence of most modern edge detectors
- the classical is the "Canny edge detector" which implements all this steps
- ▶ as we have seen there are a number of parameters
 - smoothing scale
 - two hysteresis thresholds
- in practice these can have significant effect on the quality of the resulting edge maps

unfortunately there are no universally good values

- there are many implementations available
 - matlab has one
 - there is freely available C code on the web
 - there are various applets that allow you to play with the parameters
 - an example is
 - <u>http://www.cs.washington.edu/research/imagedatabase/demo/ed</u> <u>ge/</u>
 - make sure you experiment and get a feel for how the parameters influence the edge detection results
 - the Canny edge detectors is the closest that you will find to a standard solution to a vision problem

