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Edge detection
edge detection has many applications
in image processingg p g
an edge detector implements the
following steps:
• compute gradient magnitude
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• thin and follow edge points
• find locations of maximum gradient 
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• follow these maxima to form contours
• discard points that are not maxima
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p
• declare maxima as edges



Derivatives
to compute the derivatives
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we rely on a sequence of 
• smoothing with a Gaussian (to eliminate noise)
• convolution with difference filter
• fx: 0 0

1 -1
0 0

1 -1
1 -1
1 -1 n

n2

• fy: 
0 0 1 1 n1

0 -1 0
0 1 0

-1 -1 -1
1 1 1

n2
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Derivatives
accomplished in a single step
• by convolving image with two derivative of a

DoG along n1

by convolving image with two derivative of a 
Gaussian (DoG) filters
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The Canny edge detector
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original image (Lena)



The Canny edge detector
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norm of the gradient



Non-maximum suppression
is there a maximum at q?
yes if value at q is largeryes, if value at q is larger 
than those at both p and r
p and r are the pixels in the p p
direction of the gradient that 
are 1 pixel apart from q
t i ll th d t f ll itypically they do not fall in 
the pixel grid
we need to interpolate e gwe need to interpolate, e.g.

abr  )1( αα −+=
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Predicting the next edge point
assume the marked point 
is an edge pointg p
we construct the tangent to 
the edge curve (which is 

l t th di t tnormal to the gradient at 
that point) 

( )Tfft )()()(

use this to predict the next 
points (here either r or s)
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points (here either r or s).
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Cleaning up
even when gradient is ~ 
zero, there are maxima 
d t idue to noise
check that maximum value 
of gradient value is large g g
enough (threshold)
once we are following an 
edge we must avoid gapsedge we must avoid gaps 
due to similarity with 
background 

h t iuse hysteresis
• use a high threshold to start 

edge curves and a low 
th h ld t ti th
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threshold to continue them.



The Canny edge detector

i i l i (L )

10

original image (Lena)



The Canny edge detector
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norm of the gradient



The Canny edge detector
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thinning
(non-maximum suppression)



Hysteresis
suppose this is a curve that we are following
• thickness represents the magnitude of the gradient

• we require a large magnitude to start, i.e. above a threshold T1

• once we start we keep going even if the magnitude falls below 
the thresholdthe threshold

• we only declare the contour as done if it falls below a second 
threshold T2, where T2, <T1
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• once again, the optimal values of these thresholds are image 
dependent



Parameter tuning
in summary, the combination of 
• smoothed derivatives, 

d t ti f i f di t it d• detection of maxima of gradient magnitude, 
• edge following

is the essence of most modern edge detectorsg
the classical is the “Canny edge detector” which 
implements all this steps

h h b fas we have seen there are a number of parameters
• smoothing scale
• two hysteresis thresholdstwo hysteresis thresholds

in practice these can have significant effect on the quality 
of the resulting edge maps
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unfortunately there are no universally good values
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fine scale
high 
threshold

too many
false 
dedges
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coarse 
scale,
high 
thresholdthreshold

we loose
edgeedge 
points
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coarse
scalescale
low
threshold

we still
have gaps
but once
again 
falsefalse
edges
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The Canny edge detector
there are many implementations available
• matlab has onematlab has one
• there is freely available C code on the web
• there are various applets that allow you to play with the 

parameters
• an example is
• http://www cs washington edu/research/imagedatabase/demo/edhttp://www.cs.washington.edu/research/imagedatabase/demo/ed

ge/
• make sure you experiment and get a feel for how the parameters 

influence the edge detection resultsinfluence the edge detection results
• the Canny edge detectors is the closest that you will find to a 

standard solution to a vision problem
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problem: various parameters, for all values we tried result was not perfect
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Effects of noise
Is there an alternative?
• recall we followed this path to overcome the noise problem
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are there other alternatives?



Solution:  smooth first
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this is what we get with 1st order derivatives



Derivative theorem of convolution

23

can we extend this idea?



Laplacian of Gaussian
Consider  

Laplacian of Gaussian
operatoroperator

24
where is the edge?  zero-crossings of bottom graph



The Laplacian of Gaussian
another way to detect max of 
first derivative is to look for a 
zero second derivative
2D analogy is the Laplacian

with second-order derivatives
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with second order derivatives, 
noise is even greater concern
smoothing
• smooth with Gaussian, apply 

Laplacian
• this is the same as filtering with a

),(2 yxGσ∇
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• this is the same as filtering with a 
Laplacian of Gaussian filter



2D edge detection filters

L l i f G iLaplacian of Gaussian

Gaussian derivative of Gaussian

is the Laplacian operator:is the Laplacian operator:
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The Laplacian of Gaussian
this is very close to what the early stages of the brain 
seem to be doing
recordings
of retinal
ganglion cellsganglion cells
called
“center-
surround”
cells
two types:two types:
• on-center
• off-center
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Edge detection strategy
filter with Laplacian of Gaussian
detect zero crossingsdetect zero crossings
mark the zero points where:
• there is a sufficiently large derivative

LoG

• there is a sufficiently large derivative,
• and enough contrast

once again we have parameters
ZD

g p
• scale of Gaussian smoothing
• thresholds

once again no set of universal parameters
does not seem to be better than the strategy of looking 
for ma ima of gradient magnit de

28

for maxima of gradient magnitude.



sigma=4

contrast=1 contrast=4LOG zero crossings

sigma=2
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Non-maximum suppression
we have seen that to find if 
q is a maximumq
we need to know what is 
the image value at r
but this does not fall on the 
pixel grid
thi i ll d i t l tithis is called interpolation
it is a very frequent 
operation in imageoperation in image 
processing α 1−α

a b
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Interpolation
the most obvious application is to improve the resolution

image super-resolved

t th i d d t il th d d tif t th
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note the increased detail, e.g. the reduced artifacts on the 
lines



Interpolation
but there are many others
e g the restoration of degraded moviese.g. the restoration of degraded movies
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Interpolation
image synthesis
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Interpolation
texture mapping
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Interpolation
how does one do this?
the simplest method is nearest neighbor interpolationthe simplest method is nearest-neighbor interpolation
we simply replicate the image intensity
(or color) of the closest pixel( ) p
e.g. in this case, because the desired 
location p is closest to (x,y+1)

(x,y+1) (x+1,y+1)

p

we make (x,y) (x+1,y)

)1,()( += yxIpI
this is not very good because it generates artifacts
• one location replicated from one pixel 

),()( yp
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o e ocat o ep cated o o e p e
• an infinitesimally close neighbor replicated from another



Interpolation
much better is bilinear interpolation
assume image varies linearly weight each pixelassume image varies linearly, weight each pixel 
according to their distance to p
let a = px – x, b = py – y and makepx , py y
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works much better than nearest neighbor



Interpolation
note that these can be implemented with filtering
for nearest neighborsfor nearest neighbors
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Interpolation
for bilinear interpolation
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Interpolation
and there are obviously many other filters
the best method is frequently bi cubic interpolationthe best method is frequently bi-cubic interpolation
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Interpolation
how do 
the three 
methods 
compare?
iimage
interpolated
with 
nearest 
neighbor
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Interpolation
how do 
the three 
methods 
compare?
iimage
interpolated
with 
bilinear
method
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Interpolation
how do 
the three 
methods 
compare?
iimage
interpolated
with 
bi-cubic
method
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Interpolation
so, what method should I use?
• the higher order the filter, the more computation requiredg , p q
• the gains are diminishing after some point
• bilinear usually justified over nearest neighbor

bi bi ti th it b t j d b b i• bi-cubic sometimes worth it, but judge on a case by case basis
• higher order than cubic is usually not worth it

to play with this:p y
• the matlab interp2 function implements all the methods
• plus a spline-based method that we will not get into

d l t t• very good applet at

http://www.s2.chalmers.se/research/image/Java/NewApplets/Inte
rpolation/index.htm
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Filters as templates
applying a filter at some point can be seen as taking a dot-
product between the image and some vectorp g
filtering the image is a set of dot products
insight g
• filters look like the effects they are intended to find
• filters find effects they look like
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Positive responses
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The z transform
once again, it is a straightforward extension of 1D
Definition: the z transform of the sequence x[n n ] isDefinition: the z-transform of the sequence x[n1,n2] is

21
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the region of the (z1,z2) plane where this sum is finite is 
called the Region of Convergence (ROC)

1 2

called the Region of Convergence (ROC)
it turns out that:
• in 2D the ROC is much more complicated than in 1Dp
• while in 1D the ROC is bounded by poles (0D subspace of the 2D 

complex plane)
in 2D is bounded by pole surfaces (2D subspaces of the 4D
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• in 2D is bounded by pole surfaces (2D subspaces of the 4D 
space of two complex variables) 



The z-transform
computation is also much harder:
• as you might remember from 1D
• most useful tool in computing z-transforms is polynomial

factorization
• z-transform is a ratio of two polynomialsp y

)(
)()(

zD
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• we factor in to a sum of low order terms, e.g.

1
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• and then invert each of the terms to get y[n]



z-transform
in 2D we only have one of two situations
1) the sequence is separable, in which case everything

reduces to the 1D case
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the proof is identical to that of the DSFT
2) the signal is not separable
• here our polynomials are of the form z1

mz2
n and, in general, it is not 

know how to factor them
• we can solve only if sequence is simple enough that we can do it

49

we can solve only if sequence is simple enough that we can do it 
by inspection (from the definition of the z-transform)



Example
consider the sequence

][][ 2121
21 nnubannx nn=

the z-transform is
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Sampling in 2D
consider an analog signal xc(t1,t2) and let its analog 
Fourier transform be Xc(Ω1,Ω2)c( 1, 2)
• we use capital Ω to emphasize that this is analog frequency

sample with period (T1,T2) to obtain a discrete-space 
signal
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Sampling in 2D
relationship between the Discrete-Space FT of x[n1,n2]
and the FT of xc(t1,t2) is simple extension of 1D resultc( 1, 2) p
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DSFT of x[n1,n2] FT of xc(ω1,ω2) 
“discrete spectrum” “analog spectrum”

−∞= −∞= ⎠⎝1 2 1121 r r TTTT

discrete spectrum                      analog spectrum

Discrete Space spectrum is sum of replicas of analog p p p g
spectrum
• in the “base replica” the analog frequency Ω1 (Ω2) is mapped into 

the digital frequency Ω1T1 (Ω2T2)
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the digital frequency Ω1T1 (Ω2T2)
• discrete spectrum has periodicity (2π,2π)



For example
Ω2
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Aliasing
the frequency (Ω’/π,Ω’’/π)
is the critical sampling 
freq encfrequency
below it we have
aliasing

ω2

aliasing

ω1

this is just like 
the 1D case, but 
now there are more 
possibilities for overlap
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Reconstruction
if there is no aliasing we can recover the signal in a way 
similar to the 1D case
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note: in 2D there are many more possibilities than in 1D
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note: in 2D there are many more possibilities than in 1D
• e.g. the sampling grid does not have to be rectangular, e.g. 

hexagonal sampling when T2 = T1/sqrt(3) and  
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• in practice, however, one usually adopts the rectangular grid



a sequence of images 
obtained by downobtained by down-
sampling without any 
filtering
aliasing: the low-
frequency parts are 
replicated throughout the
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replicated throughout the 
low-res image



The role of smoothing

none

some

l ta lot
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too little leads to aliasing
too much leads to loss of information



Aliasing in video
video frames are the result of temporal sampling
• fast moving objects are above the critical frequency
• above a certain speed they are aliased and appear to move 

backwards
• this was common in old western movies and become known as

the “wagon wheel” effect
• here is an example: super-resolution increases the frame rate  

and eliminates aliasingg
from 
“Space-Time
Resolution 
in Video” by y
E. Shechtman, 
Y. Caspi and 
M. Irani 

(PAMI 2005).
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