Edges, interpolation, templates

Nuno Vasconcelos

ECE Department, UCSD
(with thanks to David Forsyth)

Edge detection

- edge detection has many applications in image processing
- an edge detector implements the following steps:
- compute gradient magnitude

$$
\left\|\nabla f\left(x_{0}, y_{0}\right)\right\|^{2}=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right)^{2}+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)^{2}
$$

- thin and follow edge points
- find locations of maximum gradient magnitude
- follow these maxima to form contours
- discard points that are not maxima
- declare maxima as edges

Derivatives

- to compute the derivatives

$$
\left(f_{x}(x, y), f_{y}(x, y)\right)=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)
$$

we rely on a sequence of

- smoothing with a Gaussian (to eliminate noise)
- convolution with difference filter
- f_{x} :

0	0	1	-1
1	-1	1	-1
0	0	1	-1

- f_{y} :

$$
\begin{array}{cccccc}
0 & -1 & 0 & & -1 & -1 \\
\hline & -1 \\
0 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

Derivatives

- accomplished in a single step

DoG along n_{1}

- by convolving image with two derivative of a Gaussian (DoG) filters

$$
\begin{aligned}
& h_{x}\left(n_{1}, n_{2}\right)=g\left(n_{1}+1, n_{2}\right)-g\left(n_{1}, n_{2}\right) \\
& h_{y}\left(n_{1}, n_{2}\right)=g\left(n_{1}, n_{2}+1\right)-g\left(n_{1}, n_{2}\right)
\end{aligned}
$$

- where

$$
g\left(n_{1}, n_{2}\right)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{n_{1}^{2}+n_{2}^{2}}{2 \sigma^{2}}\right)
$$

DoG along n_{2}

The Canny edge detector

- original image (Lena)

The Canny edge detector

- norm of the gradient

Non-maximum suppression

- is there a maximum at q ?
- yes, if value at q is larger than those at both p and r
- p and r are the pixels in the direction of the gradient that are 1 pixel apart from q
- typically they do not fall in the pixel grid
- we need to interpolate, e.g.

$$
r=\alpha b+(1-\alpha) a
$$

Predicting the next edge point

- assume the marked point is an edge point
- we construct the tangent to the edge curve (which is normal to the gradient at that point)
$t(x, y)=\left(-f_{y}(x, y), f_{x}(x, y)\right)^{T}$
- use this to predict the next points (here either r or s).

Cleaning up

- even when gradient is ~ zero, there are maxima due to noise
- check that maximum value of gradient value is large enough (threshold)
- once we are following an edge we must avoid gaps due to similarity with background
- use hysteresis
- use a high threshold to start edge curves and a low threshold to continue them.

The Canny edge detector

- original image (Lena)

The Canny edge detector

- norm of the gradient

The Canny edge detector

- thinning
- (non-maximum suppression)

Hysteresis

- suppose this is a curve that we are following
- thickness represents the magnitude of the gradient

- we require a large magnitude to start, i.e. above a threshold T_{1}
- once we start we keep going even if the magnitude falls below the threshold
- we only declare the contour as done if it falls below a second threshold T_{2}, where $\mathrm{T}_{2,}<\mathrm{T}_{1}$
- once again, the optimal values of these thresholds are image dependent

Parameter tuning

- in summary, the combination of
- smoothed derivatives,
- detection of maxima of gradient magnitude,
- edge following
- is the essence of most modern edge detectors
- the classical is the "Canny edge detector" which implements all this steps
- as we have seen there are a number of parameters
- smoothing scale
- two hysteresis thresholds
- in practice these can have significant effect on the quality of the resulting edge maps
- unfortunately there are no universally good values

The Canny edge detector

- there are many implementations available
- matlab has one
- there is freely available C code on the web
- there are various applets that allow you to play with the parameters
- an example is
- http://www.cs.washington.edu/research/imagedatabase/demo/ed gel
- make sure you experiment and get a feel for how the parameters influence the edge detection results
- the Canny edge detectors is the closest that you will find to a standard solution to a vision problem

problem: various parameters, for all values we tried result was not perfect

Effects of noise

- Is there an alternative?
- recall we followed this path to overcome the noise problem

- are there other alternatives?

Solution: smooth first

- this is what we get with $1^{\text {st }}$ order derivatives

Derivative theorem of convolution

$$
\frac{\partial}{\partial x}(h \star f)=\left(\frac{\partial}{\partial x} h\right) \star f
$$

$\frac{\partial}{\partial x} h$

$\left(\frac{\partial}{\partial x} h\right) \star f$

- can we extend this idea?

Laplacian of Gaussian

- Consider $\frac{\partial^{2}}{\partial x^{2}}(h \star f)$

Sigma $=50$

$\frac{\partial^{2}}{\partial x^{2}} h$

$\left(\frac{\partial^{2}}{\partial x^{2}} h\right) \star f$

- where is the edge?
- zero-crossings of bottom graph

The Laplacian of Gaussian

- another way to detect max of first derivative is to look for a zero second derivative
- 2D analogy is the Laplacian

$$
\nabla^{2} f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}(x, y)+\frac{\partial^{2} f}{\partial y^{2}}(x, y)
$$

- with second-order derivatives, noise is even greater concern
- smoothing
- smooth with Gaussian, apply Laplacian

- this is the same as filtering with a Laplacian of Gaussian filter

2D edge detection filters

Gaussian

$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$
$-\nabla^{2}$ is the Laplacian operator:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

The Laplacian of Gaussian

- this is very close to what the early stages of the brain seem to be doing
- recordings of retinal ganglion cells
- called
"center-
surround" cells
- two types:
- on-center
- off-center

Edge detection strategy

- filter with Laplacian of Gaussian
- detect zero crossings
- mark the zero points where:
- there is a sufficiently large derivative,
- and enough contrast
- once again we have parameters

- once again no set of universal parameters
- does not seem to be better than the strategy of looking for maxima of gradient magnitude.

contrast=1
LOG zero crossings contrast=4

Non-maximum suppression

- we have seen that to find if q is a maximum
- we need to know what is the image value at r
- but this does not fall on the pixel grid
- this is called interpolation
- it is a very frequent operation in image processing

Interpolation

- the most obvious application is to improve the resolution image super-resolved

- note the increased detail, e.g. the reduced artifacts on the lines

Interpolation

- but there are many others
- e.g. the restoration of degraded movies

Interpolation

- image synthesis

Interpolation

- texture mapping

Interpolation

- how does one do this?
- the simplest method is nearest-neighbor interpolation
- we simply replicate the image intensity (or color) of the closest pixel
- e.g. in this case, because the desired location p is closest to $(x, y+1)$
- we make

$$
I(p)=I(x, y+1)
$$

- this is not very good because it generates artifacts
- one location replicated from one pixel
- an infinitesimally close neighbor replicated from another

Interpolation

- much better is bilinear interpolation
- assume image varies linearly, weight each pixel according to their distance to p
- let $a=p_{x}-x, b=p_{y}-y$ and make

$$
\begin{aligned}
I(p) & =(1-a) \times b \times I(x, y+1) \\
& +(1-a) \times(1-b) \times I(x, y) \\
& +a \times(1-b) \times I(x+1, y) \\
& +a \times b \times I(x+1, y+1)
\end{aligned}
$$

- works much better than nearest neighbor

Interpolation

- note that these can be implemented with filtering
- for nearest neighbors

$h_{1}^{1}(t)=\left\{\begin{array}{ll}1, & \text { if } t \in[-0.5,0.5] \\ 0, & \text { otherwise }\end{array} \quad \begin{array}{l} \\ \hline\end{array}\right.$

Interpolation

- for bilinear interpolation

$$
h_{2}^{1}(t)=h_{1}^{1} * h_{\mathbf{1}}^{\mathbf{1}}(t)= \begin{cases}1-t, & \text { if } t \in[0,1] \\ t+1, & \text { if } t \in[-1,0] \\ h_{2}(x, y)=h_{2}^{1}(x) h_{2}^{1}(y) & \text { otherwise }\end{cases}
$$

Interpolation

- and there are obviously many other filters
- the best method is frequently bi-cubic interpolation

$$
\begin{aligned}
& h_{3}^{1}(t)= \begin{cases}1-2|t|^{2}+|t|^{3}, & \text { if }|t|<1 \\
4-8|t|+5|t|^{2}-|t|^{3}, & \text { if } 1 \leq|t|<2 \\
0, & \end{cases} \\
& h_{3}(x, y)=h_{3}^{1}(x) h_{3}^{1}(y) .
\end{aligned}
$$

Interpolation

- how do the three methods compare?
- image interpolated with nearest neighbor

Interpolation

- how do the three methods compare?
- image interpolated with bilinear method

Interpolation

- how do the three methods compare?
- image interpolated with bi-cubic method

Interpolation

- so, what method should I use?
- the higher order the filter, the more computation required
- the gains are diminishing after some point
- bilinear usually justified over nearest neighbor
- bi-cubic sometimes worth it, but judge on a case by case basis
- higher order than cubic is usually not worth it
- to play with this:
- the matlab interp2 function implements all the methods
- plus a spline-based method that we will not get into
- very good applet at
http://www.s2.chalmers.se/research/image/Java/NewApplets/Inte rpolation/index.htm

Filters as templates

- applying a filter at some point can be seen as taking a dotproduct between the image and some vector
- filtering the image is a set of dot products
- insight
- filters look like the effects they are intended to find
- filters find effects they look like

Positive responses

The z transform

- once again, it is a straightforward extension of 1D
- Definition: the z-transform of the sequence $x\left[n_{1}, n_{2}\right]$ is

$$
X\left(z_{1}, z_{2}\right)=\sum_{n_{1}} \sum_{n_{2}} x\left[n_{1}, n_{2}\right] z_{1}^{-n_{1}} z_{2}^{-n_{2}}
$$

- the region of the $\left(z_{1}, z_{2}\right)$ plane where this sum is finite is called the Region of Convergence (ROC)
- it turns out that:
- in 2D the ROC is much more complicated than in 1D
- while in 1D the ROC is bounded by poles (OD subspace of the 2D complex plane)
- in 2D is bounded by pole surfaces (2D subspaces of the 4D space of two complex variables)

The z-transform

- computation is also much harder:
- as you might remember from 1D
- most useful tool in computing z-transforms is polynomial factorization
- z-transform is a ratio of two polynomials

$$
Y(z)=\frac{N(z)}{D(z)}
$$

- we factor in to a sum of low order terms, e.g.

$$
Y(z)=\sum_{i} \frac{1}{1-a_{i} z^{-1}}
$$

- and then invert each of the terms to get $\mathrm{y}[\mathrm{n}]$

z-transform

- in 2D we only have one of two situations
-1) the sequence is separable, in which case everything reduces to the 1D case

$$
\begin{aligned}
& x\left[n_{1}, n_{2}\right]=x_{1}\left[n_{1}\right] x_{2}\left[n_{2}\right] \leftrightarrow X\left(z_{1}, z_{2}\right)=X_{1}\left(z_{1}\right) X_{2}\left(z_{2}\right) \\
& R O C:\left|z_{1}\right| \in R O C \text { of } X_{1}\left(z_{1}\right) \text { and } \\
&\left|z_{2}\right| \in R O C \text { of } X_{2}\left(z_{2}\right)
\end{aligned}
$$

the proof is identical to that of the DSFT
-2) the signal is not separable

- here our polynomials are of the form $\mathrm{z}_{1}{ }^{m} z_{2}{ }^{\mathrm{n}}$ and, in general, it is not know how to factor them
- we can solve only if sequence is simple enough that we can do it by inspection (from the definition of the z-transform)

Example

- consider the sequence

$$
x\left[n_{1}, n_{2}\right]=a^{n_{1}} b^{n_{2}} u\left[n_{1}, n_{2}\right]
$$

- the z-transform is

$$
\begin{aligned}
X\left(z_{1}, z_{2}\right) & =\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty}\left(a z_{1}^{-1}\right)^{n_{1}}\left(a z_{2}^{-1}\right)^{n_{2}} \\
& =\sum_{n_{1}=0}^{\infty}\left(a z_{1}^{-1}\right)^{n_{1}} \sum_{n_{2}=0}^{\infty}\left(a z_{2}^{-1}\right)^{n_{2}} \\
& =\frac{1}{1-a z_{1}^{-1}} \frac{1}{1-b z_{2}^{-1}},\left|z_{1}\right|>a,\left|z_{2}\right|>b
\end{aligned}
$$

Sampling in 2D

- consider an analog signal $x_{c}\left(t_{1}, t_{2}\right)$ and let its analog Fourier transform be $X_{c}\left(\Omega_{1}, \Omega_{2}\right)$
- we use capital Ω to emphasize that this is analog frequency
- sample with period $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ to obtain a discrete-space signal

$$
x\left[n_{1}, n_{2}\right]=\left.x_{c}\left(t_{1}, t_{2}\right)\right|_{t_{1}=n_{1} T_{1} ; t_{2}=n_{2} T_{2}}
$$

Sampling in 2D

- relationship between the Discrete-Space FT of $x\left[n_{1}, n_{2}\right]$ and the FT of $x_{c}\left(t_{1}, t_{2}\right)$ is simple extension of 1D result

$$
\begin{aligned}
& \begin{array}{l}
X\left(\omega_{1}, \omega_{2}\right)=\frac{1}{T_{1} T_{2}} \sum_{r_{1}=-\infty}^{\infty} \sum_{r_{2}=-\infty}^{\infty} X_{c}\left(\frac{\omega_{1}-2 \pi r_{1}}{T_{1}}, \frac{\omega_{1}-2 \pi r_{1}}{T_{1}}\right) \\
\text { "dSFT of } X\left[n_{1}, n_{2}\right] \\
\text { FT of } x_{c}\left(\omega_{1}, \omega_{2}\right)
\end{array} \\
& \text { "analog spectrum" }
\end{aligned}
$$

- Discrete Space spectrum is sum of replicas of analog spectrum
- in the "base replica" the analog frequency $\Omega_{1}\left(\Omega_{2}\right)$ is mapped into the digital frequency $\Omega_{1} T_{1}\left(\Omega_{2} T_{2}\right)$
- discrete spectrum has periodicity $(2 \pi, 2 \pi)$

For example

$$
\begin{aligned}
& \Omega^{\prime} \rightarrow \alpha=\Omega^{\prime} T_{1} \\
& \Omega^{\prime \prime} \rightarrow \beta=\Omega^{\prime} T_{2}
\end{aligned}
$$

- no aliasing if

$$
\left\{\begin{array}{c}
\Omega^{\prime} T_{1} \leq 2 \pi-\Omega^{\prime} T_{1} \\
\Omega^{\prime} T_{2} \leq 2 \pi-\Omega^{\prime} T_{2}
\end{array} \Leftrightarrow\right.
$$

$$
\Leftrightarrow\left\{\begin{array}{l}
T_{1} \leq \pi / \Omega^{\prime} \\
T_{2} \leq \pi / \Omega^{\prime \prime}
\end{array}\right.
$$

Aliasing

- the frequency $\left(\Omega^{\prime} / \pi, \Omega^{\prime \prime} / \pi\right)$ is the critical sampling frequency
- below it we have aliasing
- this is just like the 1D case, but now there are more possibilities for overlap

Reconstruction

- if there is no aliasing we can recover the signal in a way similar to the 1D case

$$
y_{c}\left(t_{1}, t_{2}\right)=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[n_{1}, n_{2}\right] \frac{\sin \frac{\pi}{T_{1}}\left(t_{1}-n_{1} T_{1}\right)}{\frac{\pi}{T_{1}}\left(t_{1}-n_{1} T_{1}\right)} \frac{\sin \frac{\pi}{T_{2}}\left(t_{2}-n_{2} T_{2}\right)}{\frac{\pi}{T_{2}}\left(t_{2}-n_{2} T_{2}\right)}
$$

- note: in 2D there are many more possibilities than in 1D
- e.g. the sampling grid does not have to be rectangular, e.g. hexagonal sampling when $T_{2}=T_{1} /$ sqrt(3) and

$$
x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cc}
\left.x_{c}\left(t_{1}, t_{2}\right)\right|_{t_{1}=n_{1} T_{i}: t_{2}=n_{2} T_{2}} & n_{1}, n_{2} \text { bothevenor odd } \\
0 & \text { otherwise }
\end{array}\right.
$$

- in practice, however, one usually adopts the rectangular grid

- a sequence of images obtained by downsampling without any filtering
- aliasing: the lowfrequency parts are replicated throughout the low-res image

The role of smoothing

- too little leads to aliasing
- too much leads to loss of information

Aliasing in video

- video frames are the result of temporal sampling
- fast moving objects are above the critical frequency
- above a certain speed they are aliased and appear to move backwards
- this was common in old western movies and become known as the "wagon wheel" effect
- here is an example: super-resolution increases the frame rate and eliminates aliasing

