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Edge detection

» edge detection has many applications
In Image processing

» an edge detector implements the
following steps:

e compute gradient magnitude

IV (%, Yo)|| = (2—1(%, yo)j + (%(Xw yo)j

 thin and follow edge points

 find locations of maximum gradient
magnitude

 follow these maxima to form contours
 discard points that are not maxima
» declare maxima as edges




Derivatives
» to compute the derivatives

of of
(fx(x,y),fyu,y)):(a—x(xo,yo),@(xo,yo)j

we rely on a sequence of

* smoothing with a Gaussian (to eliminate noise)
» convolution with difference filter
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Derivatives

» accomplished in a single step l_DOG along n,

* by convolving image with two derivative of a
Gaussian (DoG) filters

h.(n,n,)=gn+1n,)-g(n,n,)

hy(nl,nz):g(nl,/?2+1)—g(/71,/72) -
e where DoG along n,

F 1

g(nl’nz):




The Canny edge detector

» original image (Lena)



The Canny edge detector

» norm of the gradient



Non-maximum suppression

» IS there a maximum at g?

» yes, if value at g is larger
than those at both p and r

» p and r are the pixels in the s °
direction of the gradient that
are 1 pixel apart from q
» typically they do not fall in P ® P
the pixel grid _ 4
. (radient
» Wwe need to interpolate, e.qg. 1
® e ®
rIOCb-I-(l—O!)a A T b
® @ ® ®




Predicting the next edge point

» assume the marked point
IS an edge point

» we construct the tangent to
the edge curve (which is

normal to the gradient at o ®
that point)
I
oY) =L LN | o e .
» use this to predict the next Gradieni/\
points (here either r or s). S
@ @ @ 0




Cleaning up

» even when gradient is ~
zero, there are maxima
due to noise

» check that maximum value
of gradient value is large
enough (threshold)

» once we are following an
edge we must avoid gaps
due to similarity with
background

» use hysteresis

e use a high threshold to start
edge curves and a low
threshold to continue them.




The Canny edge detector

» original image (Lena)
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The Canny edge detector

» norm of the gradient



The Canny edge detector

» thinning

» (Nnon-maximum suppression)
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Hysteresis

» suppose this is a curve that we are following

 thickness represents the magnitude of the gradient

e Wwe require a large magnitude to start, i.e. above a threshold T,

e once we start we keep going even if the magnitude falls below
the threshold

« we only declare the contour as done if it falls below a second
threshold T, where T, <T,

e once again, the optimal values of these thresholds are image
dependent
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Parameter tuning

» INn summary, the combination of

e smoothed derivatives,
o detection of maxima of gradient magnitude,
» edge following

» IS the essence of most modern edge detectors

» the classical is the “Canny edge detector” which
Implements all this steps

» as we have seen there are a number of parameters

e smoothing scale
* two hysteresis thresholds

» In practice these can have significant effect on the guality
of the resulting edge maps

» unfortunately there are no universally good values
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The Canny edge detector

» there are many implementations available

matlab has one
there is freely available C code on the web

there are various applets that allow you to play with the
parameters

an example is

http://www.cs.washington.edu/research/imagedatabase/demo/ed
ge/

make sure you experiment and get a feel for how the parameters
Influence the edge detection results

the Canny edge detectors is the closest that you will find to a
standard solution to a vision problem
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Effects of noise

» IS there an alternative?

 recall we followed this path to overcome the noise problem

f(x)
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L f(z)e

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

» are there other alternatives?

21



Solution: smooth first

Sigma = 50

..................................................................................................
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» this is what we get with 15t order derivatives
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Derivative theorem of convolution
ge(hx ) = (55h)  f

~~
Signal

0 g
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» can we extend this idea?
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Laplacian of Gaussian
» Consider 53—;(11 *x f)

f
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» where is the edge? » zero-crossings of bottom graph



The Laplacian of Gaussian

» another way to detect max of
first derivative is to look for a
zero second derivative 2T

» 2D analogy Is the Laplacian

o f 0 f
OX* (x.y)+ oy’ xy)

» with second-order derivatives, ,| -
noise is even greater concern .,

ViE(xy)=

e L
4 2

» smoothing

« smooth with Gaussian, apply
Laplacian

 this is the same as filtering with a
Laplacian of Gaussian filter
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2D edge detection filters
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The Laplacian of Gaussian

» this is very close to what the early stages of the brain
seem to be doing

» recordings } : :
- (A) Lightspot :
Cnalion o L ||
ganglion cells . :
» called (B) Dark spot ' :
“center- in center ‘ : Ilm | ‘

surround” ; |
cells (C) Lightspot |
in surround J: ‘ m ‘ l

» two types: :
e On-center (D) Diffuse light )
covering both ‘ ‘ H H :| | ‘ ‘
* off-center center and ]( )|
surround Stimulus

on
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Edge detection strategy

» filter with Laplacian of Gaussian

» detect zero crossings

: LoG
» mark the zero points where:

* there is a sufficiently large derivative,

e and enough contrast 7D

» once again we have parameters l

« scale of Gaussian smoothing
 thresholds

» once again no set of universal parameters

» does not seem to be better than the strategy of looking
for maxima of gradient magnitude.
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Non-maximum suppression

» we have seen that to find if
g IS a maximum

» we need to know what is
the image value at r

» but this does not fall on the ¢ ¢
pixel grid
» this is called interpolation e 8 o
» it Is a very frequent Gradient !
operation in image
processing ® o, ®




Interpolation

» the most obvious application is to improve the resolution
Image super-resolved

» note the increased detail, e.g. the reduced artifacts on the
lines
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Interpolation

» but there are many others
» e.g. the restoration of degraded movies
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Interpolation
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Interpolation

» texture mapping
% TR
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Interpolation

» how does one do this?
» the simplest method is nearest-neighbor interpolation
» we simply replicate the image intensity

(or color) of the closest pixel ST
in thi N €727 ] I (et A
» €.g. In this case, because the desired o S
location p is closest to (x,y+1) :’ /‘:{
» we make (X}W (Xjrly)
1(p)=1(x,y+1)

» this is not very good because it generates artifacts

« one location replicated from one pixel
« an infinitesimally close neighbor replicated from another
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Interpolation

» much better is bilinear interpolation

» assume image varies linearly, weight each pixel

according to their distance to p
»leta=p,—x b=p,—~yand make

qqqqqq

1(p)=@=a)xbx 106y +D) | ey
+(@1-a)x(L-h)x1(x,y) bl

______

+axbxl(x+1y+1)

» works much better than nearest neighbor

_|_a><(1—b)><|(X-|-1, y) (;Tﬁ?y}'
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Interpolation

» note that these can be implemented with filtering

» for nearest neighbors

ﬂﬂﬂﬂﬂ
—_— e
——

e N
X S |
SN
-0.5
_
. 1, if t € —0.5,0.5]
hi(t) = «
0, otherwise
\

0.5 &

hi(z,y) = hi(z)hi(y).
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Interpolation

» for bilinear interpolation

_____

/\
r -
11—t if t € 0, 1]
hy(t) = hi * hi(t) = Q ¢ +1, if t € [~1,0]
0, otherwise
ha (z,y) = hy(z)ha(y)
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Interpolation

» and there are obviously many other filters

» the best method is frequently bi-cubic interpolation
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Interpolation

» how do
the three
methods
compare?

» image
Interpolated
with
nearest
neighbor




Interpolation

» how do
the three
methods
compare?

» image
Interpolated
with
bilinear
method




Interpolation

» how do
the three
methods
compare?

» image
Interpolated
with
bi-cubic
method




Interpolation

» SO, what method should | use?

» the higher order the filter, the more computation required

the gains are diminishing after some point

bilinear usually justified over nearest neighbor

bi-cubic sometimes worth it, but judge on a case by case basis
higher order than cubic is usually not worth it

» to play with this:
« the matlab interp2 function implements all the methods

* plus a spline-based method that we will not get into
e very good applet at

http://www.s2.chalmers.se/research/image/Java/NewApplets/Inte
rpolation/index.htm
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Filters as templates

» applying a filter at some point can be seen as taking a dot-
product between the image and some vector

» filtering the image is a set of dot products

» Insight
o filters look like the effects they are intended to find
o filters find effects they look like










The z transform

» once again, it is a straightforward extension of 1D
» Definition: the z-transform of the sequence x[n,,n,] is

X(2,,2,) =) > xIn,n,Jz, "z, ™

N

» the region of the (z,,z,) plane where this sum is finite is
called the Region of Convergence (ROC)

» It turns out that:

e in 2D the ROC is much more complicated than in 1D

* while in 1D the ROC is bounded by poles (0D subspace of the 2D
complex plane)

* In 2D is bounded by pole surfaces (2D subspaces of the 4D
space of two complex variables)
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The z-transform

» computation is also much harder:

as you might remember from 1D

most useful tool in computing z-transforms is polynomial
factorization

z-transform is a ratio of two polynomials

we factor in to a sum of low order terms, e.qg.

Y(2) = Z

and then invert each of the terms to get y[n]
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Z-transform

» In 2D we only have one of two situations

» 1) the sequence is separable, in which case everything
reduces to the 1D case

X[, n, 1= x[n 1% [n, ] > X(z,,2,) = X,(2,) X,(2,)
ROC :|z,| e ROC of X,(z,) and
z,| e ROC of X,(z,)

the proof is identical to that of the DSFT
» 2) the signal is not separable

* here our polynomials are of the form z;™z," and, in general, it is not
know how to factor them

« we can solve only if sequence is simple enough that we can do it
by inspection (from the definition of the z-transform)
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Example

» consider the sequence

x[n,n,]=a“b"™u[n,,n,]

» the z-transform is

X(z,,2,) = ZZ(

n=0n,=0

nl—

1

) ez

- Y(az' ] Y (e

n2 :0

1

T1- az," 1-bz,’

)
)nz

| \zl\ > a,\zz\ >Db




Sampling in 2D

» consider an analog signal x.(t;,t,) and let its analog
Fourier transform be X.(£2,,42,)

e Wwe use capital £2to emphasize that this is analog frequency

» sample with period (T,,T,) to obtain a discrete-space
signal

x[n,n,]=x.(t.1,)

L=mT;t,=n,T,
F 3
F 3
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Sampling in 2D

» relationship between the Discrete-Space FT of x[n,,n,]
and the FT of x(t,t,) is simple extension of 1D result

1l & @, — 27, , — 27
X(a)l,a)z):_ Z Z Xc[ 1 - 1’ 1 = 1\
1 4 1 }

v v
DSFT of x[ny,n,] FT of X.(w,,0,)
“discrete spectrum” *analog spectrum”

T 17-2 l’lz—oo /’2=—oo

» Discrete Space spectrum is sum of replicas of analog
spectrum

 in the “base replica” the analog frequency (2, (£2,) is mapped into
the digital frequency 2,T, (£2,T,)

 discrete spectrum has periodicity (27,2 7x)
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Allasing

» the frequency (2/7,2'I )
IS the critical sampling
frequency

» below It we have

aliasing %

» this is just like
the 1D case, but
now there are more
possibilities for overlap
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Reconstruction

» if there iIs no aliasing we can recover the signal in a way

similar to the 1D case

o0 o0

yc(tl’t2): z Z X[nl’nz]

sinZ-(t, - n,T,) sin = (¢, —n,T,)
1 TZ

%(fr”ﬁ) %(1‘2—/727'2)

1 2

» note: in 2D there are many more possibilities than in 1D

* e.g. the sampling grid does not have to be rectangular, e.g.
hexagonal sampling when T, = T,/sqrt(3) and

X[/71,/72] — {Xc (tl’tz)‘

L=mT;t,=n,T,

0

n,, n,nothevenor odd
otherwise

* In practice, however, one usually adopts the rectangular grid
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» a sequence of images
obtained by down-
sampling without any
filtering

» aliasing: the low-
frequency parts are
replicated throughout the
low-res image
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The role of smoothing
256x256  128x128 64x64 32x32
L. “.'.'.'.'.'. W R

I B aninn
R -

B R RRRRN RN
Illlll __ R
(] W

BIMLE BRAMINE =

» too little leads to aliasing
» t00 much leads to loss of information

16x16
i B
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All

asing in video

» video frames are the result of temporal sampling

fast moving objects are above the critical frequency

above a certain speed they are aliased and appear to move
backwards

this was common in old western movies and become known as
the “wagon wheel” effect

here is an example: super-resolution increases the frame rate
and eliminates aliasing

i Slow-motion interpolation (preserves motion aliasing)  Temporal super-resolution | (overcomes motion aliasing) from
s 4 e y “Space-Time
i il ! F" f ) ! Resolution
' ’ - ' J : in Video” by
=) : = o E. Shechtman,
TR, o : '_r'f{;r+ Y. Caspi and

—1,}:'"' e

M. Irani

(PAMI 2005).
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