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Images

» the incident light is collected by an |mage sensor
« that transforms it into a 2D signal ‘
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2D-DSP

» INn summary:
* image is a N x M array of pixels
» each pixel contains three colors

« overall, the image is a 2D discrete-space
signal

e each entry is a 3D vector
x[n,n,l=(r,g,6), n, €{0,., N}
n,{0,., M}

« for simplicity, we consider only single
channel images

x[n;,n,], n,€{0,., N}
n,{0,., M}
* but everything extends to color in a straightforward manner




2D convolution

» the operation

o0 o0

J/[nl’nz]: Z Z X[kl’kZ]h[nl_kl’n2 _kz]

ki=—00 K,=-0
is the 2D convolution of x and h

« we will denote it by

yln,n,]=x[n,n,]*hln, n,]

» this is of great practical importance:

« for an LSI system the response to any input can be obtained by the
convolution with this impulse response

» the IR fully characterizes the system
« itis all that | need to measure



Separable systems

» Definition: a system is separable if and only if its impulse
response is a separable sequence

hin, n,l=hlnl1xh,ln,]

» in this case the convolution simplifies
» stepl) for every ky,
 f[ky,n,] is 1D convolution of x[k,,n,] and h,[n,]

Flke ) = xTko, n,1= hing]]

* which means: “convolve the : e
columns of x with h, | \f’
to obtain columns of f” |

[ o—0—0—>
n; h2

[/71,/72]




Separable systems

» step2) for every n,,

- y[n,,n,] is 1D convolution of f[n;,n,] and h,[n,]

J/[nl’nz] — f[nl’nz]*hl[nl]

« which means: “convolve the rows of f with h, to obtain rows of y”

A
\
—(

S
>
=




The Discrete-Space Fourier Transform

» IS, once again, a straightforward extension of the 1D
Discrete-Time Fourier Transform

X(a)l, 602) — sz[nl’ nz]e_ja)lnle_jG)ZHZ

m

1 oy 4 fo,N
x[m,n,] ZW”X(Q)PCUZ)EM ‘e’ duw,dw,

» properties:
« basically the same as in 1D (see table in Lim, page 25)
* only novelty is separability (homework)

x[n, ] =x[m]x,[n,] o X(o,0,) =X (0)X,(w,)




Properties of the DSFT

Property 1.
Property 2.

Property 3.

Property 4.

Property 5.

Property 6.

x(ny, ny) «<—> X(w,, w,)
y(ny, ny) < Y(w,, w,)

Linearig

ax(ny, ny) + by(n,, ny) «— aX(w;, ) + bY(w,, w,)

Convolution
x(n,, ”2) * y(ny, n,) «—> X(wi, U-)z) Y(w;, w,)

Multiplication

x(Ry, ny)y(ny, ny) «— X(w;, w,) ® Y(w,, w,)

- (21)2 fﬂ [ X(6,, 8)Y(w; — 6, w; — 8;) dan, de,
™ f1=—-7 JB1=~—7x

Separable Sequence | -
x(n,, ny) = x1(f11)x2(f’12) «— X(w;, wp) = KXi(0,) X, (w,)

Shift of a Sequence and a Fourier Transform

‘ (a) X(Fll - m,, n, — mz) ey X(mh wz)g—jwlmle—jwzmz

(b) ejl-rlnlej'vln?.x(nl, nz) iy X(wl — V1: wz — 1;2)
Differentiation

(a) —jnx(a,, n,) «—

aX(wlz UJZ)
dw,
0X(w,, w,)

dw,

(b) —Jjnox(n,, n,) <




Properties of the DSFT

Property 7. Initial Value and DC Value Theorem

1 [ x
(27)? fmg_w L:_W X(w;, w,) dw, do,

(a) x(0,0) =

B 2O = T T 2l n

n]:n—cn n2= —_—

Property 8. Parseval’s Theorem

(a) i i x(nq, ny)y*(n,, n,)

Nni= —o pl= —>
1

(2m)?

1

Hl= —0 Nl= —

J:ul= —ar jmg-: S X(wl’ U')Z)Y*(wi: (Uz) dUJI d(:)z

(b) 2 i lX(f’ll, n2)'2 = (217)2 j::‘_ﬂ j:._:-_.,-,- |X(m11 w2)'2 dwl d(’-’z




Properties of the DSFT

Property 9. Symmetry Properties

(a) x(*nls nz) Co> X(_O-}l, 032)

(b) x(n,, —ny) < X(w;, —w,)

(C) x(_nla _?'12) B X(_mla _w2)

(d) x*(ny, n) «—— X*(—w,, —w,)

(e) x(ny, ny): real «— X(w,, w,) = X*(— o, —w,)
Xr(wy, 0y), |X(0,, w,)|: even (symmetric with respect to the origin)
X (@, w;), 8,(w,, w,): odd (antisymmetric with respect to the origin)

(f) x(ny, n,): real and even «— X(w,, w,): real and even

(8) x(ny, ny): real and odd <— X(w,, w,): pure imaginary and odd
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Example

» consider the separable impulse response

h,(ny)

n,

h,(ny)
3)

M RS 1
| m (-2) (-2) (-2) (-2)

(-3)

o —
A 4

» frequency response
H (o, w,) = H,(o)H, (@)
=(3—-2cosa@,)(3—-2cosa,

o \‘
LRI,
LR
SN

& N
RN
RO

)

Hioy o)

» note that:
 this system is a high-pass filter
« “diagonal” frequencies are enhanced




Examples

» what do filtered images look like?

* here is a noisy image

« a light square against dark background, plus noise
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Examples
» what do filtered images look like?

here is the magnitude of its DSFT (origin at center), it contains:
a peak at the center

some background signal at all frequencies,

a cross-like pattern that goes from low to high frequencies

why does it look like this?
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Examples

» one way to find out is to filter and reconstruct the image
» we simulate the ideal low-pass filter by

e removing all signal components outside a circle in the frequency
domain

 this is what the spectrum looks like

 this gets rid of the background signal that covers all frequencies
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Examples
» this Is the resulting image

« the component we removed was due to the noise
* “white” noise has energy at all frequencies

* notice that there are some artifacts (i.e. ringing) in the
reconstructed image
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Examples

» What about the stuff other than noise?

 let’s high-pass by removing everything inside the circle
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Examples

» this is the resulting image

e we now get mostly noise, as expected

* note that the square has mostly gone away
 this means that the flat part is low-frequency
» but we can still see the edges
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Examples
» this Is interesting

* the edges are not only low-pass
* maybe they are the reason for the cross-shaped pattern

» to check we band-pass
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Examples
» this is the resulting image

* we now get mostly the edges
e we were right, the edges cause the cross-shaped pattern

e note that the edges are very hard to filter out
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Examples
» this is one of the fundamental properties of images:

» edges have energy at all frequencies

original low-pass

band-pass high-pass
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Linear Filtering

» Image smoothing is implemented with linear filters

» given an image X(n4,n,), filtering is the process of
convolving it with a kernel h(n,,n,)

y(n,n,) = Zx(ky Ko)h(n, —k;,n, —k,)

kiky
» SOMe very common operations in image processing are
nothing but filtering, e.g.

e smoothing an image by low-pass filtering

e contrast enhancement by high pass filtering
« finding image derivatives

* noise reduction
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Popular filters

» box function
R/le/vz (/71’ /72) = {

» Fourier transform of a box is the sinc, low-pass filter

1, 0<n <N -10<n,<N,-1
0 otherwise

[Mey el

a/n+ 0.5 ° e ar+05
» side-lobes produce artifacts, smoothed image does not
look like the result of defocusing
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Example: Smoothing by Averaging




Smoothing by averaging

» the filtered image has a lot of ringing

» this is due to the very sharp edges of the filter

« the example below shows this more clearly by convolving a
synthetic image with a sharp filter

* note that the problem is not the shape of the filter but the
sharpness of the edges
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Camera defocusing

» If you point an out-of-focus
camera at a very small
white light (e.g. a light-
bulb) at night, you get
something like this

» the light can be thought of
as an impulse

» this must be the impulse
response

» well approximated by a
Gaussian

» more natural filter for
iImage blur than the box

hx.y) =

exp[_

X2+ y?

20°

|



The Gaussian

» the discrete space version is

1 n’+n,’
h(n,n,)= exp| ——+——-2
(1. 77,) 270° p[ 20° ]
» obviously separable

n n
1 A1 I

\N2mo o 2O

h(m) h(n,)

/7(/71’/72):

» h(ny,n,) has Fourier transform
O-Z(wlz +wzz)\

2 )

H(w, @,)= exp(—
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The Gaussian filter

» the Fourier transform of a Gaussian is a Gaussian
(oy.0y) o (Uoy,,1/0,,)

» note that there are no annoying side-lobes

025 025

0.2-] 0.2-]

0,15 0,15
0.1 o o a1

0.05- 0.05-

0. 0
bl bl
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o o
u) u)
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Smoothing by averaging

» when the image is convolved with the Gaussian filter
» the output has very little ringing

» note:

» the effects of ringing are most noticeable in the flat image regions
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Smoothing by averaging

» .g. consider the result of fllterlng this image with the two

R U‘" * 4‘

"’ﬂ --—--!J|
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Smoothing by averaging

» this is the result for the sharper filter

rnging
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Smoothing by averaging

» this Is the result for the Gaussian filter

no
ringing
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Smoothing by Averaging




Smoothing with a Gaussian




Role of the variance

g=0.1 o=0.2

» the variance
- controls the
Bl cmoothing  @mount of
: smoothing

» each column
shows different
realizations of

o=lpixel  gn image of
gaussian noise

» each row shows
smoothing with
gaussians of

=2 pixels )
different o

34



Gradients and edges

» for iImage understanding, one of the problems is that there
IS too much information in an image

» just smoothing is not good enough
» how to detect important (most informative) image points?

» note that derivatives are large at points of great change

« changes in reflectance (e.g. checkerboard pattern)
« change in object (an object boundary is different from background)
« change in illumination (the boundary of a shadow)

» these are usually called edge points

» detecting them could be useful for various problems

¢ segmentation: we want to know what are object boundaries

e recognition: cartoons are easy to recognize and terribly efficient to
transmit
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The importance of edges

light

reflectance

boundary



Gradients

» for a 2D function, f(x,y) the f(x.y)
gradient at a point (X,,Yo)

Vi (Xo’ yo) — (g]:((xo’ yo)lg(xo’ YO)j

= (£, (X, Yo), f, (%, Yo) '

IS the direction of greatest
Increase at that point

» the gradient magnitude

HVf(XO,yO)HZ :(2—f(X01yo)j +(E(X0’J/o)j
X oy

measures the rate of change

— large gradient magnltude

» it IS large at edges!
g 9 — small gradient magnitude
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Derivatives and convolution

» recall that a derivative is defined as

of (x) - f(x+Ax)-7(x)
OX _AX—)O AX

» [Inear and shift invariant, so must be the result of a
convolution.

» we could approximate as

8;57/7) _ f(/? +l])-—f(/7) _ f(n+1)—f(/7): f*h(n)

» where the derivative kernel Is

hn)=o0(n+1)—-o(n)
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Finite difference kernels

» In two dimensions we have various possible kernels

» e.g., N;=2, N,=3, derivative along n,, (line n,=k)
(horizontal)

Ny
0 0 1 -1
1 1 1 -1
O O 1 '1 I nl
» derivative along n, (line n;=k) (vertical)
0 -1 0 -1 -1 -1 ‘
0 1 0 1 1 1 .

» derivative along line n,=n, (diagonal)

n,
O 0 -1 1 -1 0 | j
0 -1
1 1

0O O 0 1
0O O 0O O
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Finite difference kernels

» note that, when
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» derivative is a high-pass filter
» hw: check that this holds for all others

» intuitive, because a derivative I1s a measure of the rate of
change of a function








