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Images
the incident light is collected by an image sensor
• that transforms it into a 2D signal
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2D-DSP
in summary:
• image is a N x M array of pixels
• each pixel contains three colors
• overall, the image is a 2D discrete-space

signalg
• each entry is a 3D vector
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• for simplicity, we consider only single
channel images

},...,0{2 Mn ∈                               

g

},...,0{
},...,0{],,[

2

121

Mn
Nnnnx

∈
∈

               
  

3

• but everything extends to color in a straightforward manner



2D convolution
the operation
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is the 2D convolution of x and h
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• we will denote it by
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this is of great practical importance:
• for an LSI system the response to any input can be obtained by thefor an LSI system the response to any input can be obtained by the 

convolution with this impulse response
• the IR fully characterizes the system
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• it is all that I need to measure



Separable systems
Definition: a system is separable if and only if its impulse 
response is a separable sequencep p q

i thi th l ti i lifi

 ][][],[ 221121 nhnhnnh ×=

in this case the convolution simplifies
step1) for every k1,

f[k n ] is 1D convolution of x[k n ] and h [n ]• f[k1,n2] is 1D convolution of x[k1,n2] and h2[n2]
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• which means: “convolve the 
columns of x with h2
to obtain columns of f”
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Separable systems
step2) for every n2, 
• y[n1 n2] is 1D convolution of f[n1 n2] and h1[n1]y[n1,n2] is 1D convolution of f[n1,n2] and h1[n1]
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• which means: “convolve the rows of f with h1 to obtain rows of y”
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The Discrete-Space Fourier Transform
is, once again, a straightforward extension of the 1D 
Discrete-Time Fourier Transform
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properties:
• basically the same as in 1D (see table in Lim page 25)basically the same as in 1D (see table in Lim, page 25)
• only novelty is separability (homework)
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Properties of the DSFT
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Properties of the DSFT
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Properties of the DSFT
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Example
consider the separable impulse response 
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note that: 
• this system is a high-pass filter
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this system is a high pass filter
• “diagonal” frequencies are enhanced



Examples
what do filtered images look like?
• here is a noisy imagehere is a noisy image
• a light square against dark background, plus noise
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Examples
what do filtered images look like?
• here is the magnitude of its DSFT (origin at center), it contains:
• a peak at the center,
• some background signal at all frequencies, 
• a cross like pattern that goes from low to high frequencies• a cross-like pattern that goes from low to high frequencies
• why does it look like this?
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Examples
one way to find out is to filter and reconstruct the image
• we simulate the ideal low-pass filter by 
• removing all signal components outside a circle in the frequency 

domain
• this is what the spectrum looks likep
• this gets rid of the background signal that covers all frequencies
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Examples
hi i h l i ithis is the resulting image
• the component we removed was due to the noise
• “white” noise has energy at all frequencies• white  noise has energy at all frequencies
• notice that there are some artifacts (i.e. ringing) in the 

reconstructed image

15



Examples
what about the stuff other than noise?
• let’s high-pass by removing everything inside the circleg p y g y g
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Examples
hi i h l i ithis is the resulting image
• we now get mostly noise, as expected
• note that the square has mostly gone away• note that the square has mostly gone away
• this means that the flat part is low-frequency
• but we can still see the edges
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Examples
hi i i ithis is interesting
• the edges are not only low-pass
• maybe they are the reason for the cross shaped pattern• maybe they are the reason for the cross-shaped pattern
• to check we band-pass
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Examples
hi i h l i ithis is the resulting image
• we now get mostly the edges
• we were right the edges cause the cross shaped pattern• we were right, the edges cause the cross-shaped pattern
• note that the edges are very hard to filter out
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Examples
hi i f h f d l i f ithis is one of the fundamental properties of images:
• edges have energy at all frequencies

original low-pass

band-pass high-pass
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Linear Filtering
image smoothing is implemented with linear filters
given an image x(n n ) filtering is the process ofgiven an image x(n1,n2), filtering is the process of
convolving it with a kernel h(n1,n2)
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some very common operations in image processing are
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some very common operations in image processing are 
nothing but filtering, e.g.
• smoothing an image by low-pass filtering
• contrast enhancement by high pass filtering
• finding image derivatives
• noise reduction
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Popular filters
box function
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Fourier transform of a box is the sinc, low-pass filter
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side-lobes produce artifacts, smoothed image does not 
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Example: Smoothing by Averaging
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Smoothing by averaging
the filtered image has a lot of ringing
this is due to the very sharp edges of the filterthis is due to the very sharp edges of the filter
• the example below shows this more clearly by convolving a 

synthetic image with a sharp filter
• note that the problem is not the shape of the filter but the 

sharpness of the edges

* =
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Camera defocusing
if you point an out-of-focus 
camera at a very small 

hite light (e g a lightwhite light (e.g. a light-
bulb) at  night, you get  
something like this
the light can be thought of 
as an impulse
this must be the impulse 
response
well approximated by awell approximated by a 
Gaussian
more natural filter for ⎟⎟
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The Gaussian
the discrete space version is
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h(n n ) has Fourier transform

44344214434421
)()(

21

21

22
),(

nhnh

σπσπ

h(n1,n2) has Fourier transform

⎟
⎞

⎜⎜
⎛ +
−=

2
)(exp),(

2
2

2
1

2

21
ϖϖσϖϖH

26

⎠
⎜
⎝ 2

p),( 21



The Gaussian filter
the Fourier transform of a Gaussian is a Gaussian
(σx,σy) ∝ (1/σw1,1/σw2)

F

note that there are no annoying side lobes
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note that there are no annoying side-lobes



Smoothing by averaging
when the image is convolved with the Gaussian filter
the output has very little ringingthe output has very little ringing

* =

note:
• the effects of ringing are most noticeable in the flat image regions
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Smoothing by averaging
e.g. consider the result of filtering this image with the two 
filters
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Smoothing by averaging
this is the result for the sharper filter

ringingringing
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Smoothing by averaging
this is the result for the Gaussian filter

nono 
ringing
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Smoothing by Averaging
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Smoothing with a Gaussian
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Role of the variance
the variance 
controls the 
amount of 
smoothing

h leach column 
shows different 
realizations of 
an image of 
gaussian noise
each row showseach row shows 
smoothing with 
gaussians of 
diff t
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Gradients and edges
for image understanding, one of the problems is that there 
is too much information in an image 
just smoothing is not good enough
how to detect important (most informative) image points?
note that derivatives are large at points of great change
• changes in reflectance (e.g. checkerboard pattern)
• change in object (an object boundary is different from background)• change in object (an object boundary is different from background)
• change in illumination (the boundary of a shadow)

these are usually called edge points
detecting them could be useful for various problems
• segmentation: we want to know what are object boundaries
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• recognition: cartoons are easy to recognize and terribly efficient to 
transmit



The importance of edges
light

reflectancereflectance
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boundary



Gradients
for a 2D function, f(x,y) the 
gradient at a point (x0,y0)
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the gradient magnitude
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it is large at edges!

– large gradient magnitude

– small gradient magnitude



Derivatives and convolution
recall that a derivative is defined as
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linear and shift invariant so must be the result of a
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linear and shift invariant, so must be the result of a 
convolution.
we could approximate aspp
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Finite difference kernels
in two dimensions we have various possible kernels
e g N =2 N =3 derivative along n (line n =k)e.g. , N1=2, N2=3, derivative along n1, (line n2=k)
(horizontal)
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Finite difference kernels
note that, when 
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we have

1 -1
0 0

( ) 1ϖjH
222

111 ϖϖϖ jjj
eee ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−

( ) 1, 1
21 −= ϖϖϖ jeH

derivative is a high-pass filter

21
1

2
sin2

ϖϖ j
e⎟
⎠
⎞

⎜
⎝
⎛=

derivative is a high pass filter
hw: check that this holds for all others
intuitive, because a derivative is a measure of the rate of
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intuitive, because a derivative is a measure of the rate of 
change of a function
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