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Model fitting
• one common problem in signal processing is to fit a 

model to a signal
– in vision, we typically have a scene
– it contains some “signal”, which is what we are trying to 

understand about the scene
– but it also contains “noise”

• typically we have a model for our signal
– e.g. the planes the planes that we 

used to model the wall in PS 2
– we saw that going from 3D to 2D is a 

relatively easy problem
– vision is the opposite: I give you the image 

and you tell me what the 3D planes are
– a lot harder, many scenes could fit the image
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Model fitting
• we typically need to make assumptions on the scene
• these are usually in the form of a model
• while models are great help, the real world is never 

exactly like we modeled it, due to
– 1) noise in the imaging process: usually not

a major concern, unless the scenario is extreme
(night vision, underwater, bad weather)

– 2) deviations from the model: no model is 
perfect, e.g. the sun is really not a point 
source and is not really infinitely far away

– this is usually the greater source of concern
– we model what we can and assume that

the rest is “noise”

• hence, we need to fit our models to the data
– in an optimal manner, that minimizes errors due to noise 3



Regression
• model fitting is a regression problem
• in a regression problem we have

– two random variables X and Y
– a dataset of examples D = {(x1,y1), … (xn,yn)}
– a parametric model of the form

– where Θ is a parameter vector, and ε a random variable that 
accounts for noise

• two types of problems
– linear regression: when f(.) is linear on Θ
– non-linear regression: otherwise
– note that what matters is linearity on Θ, not on X!

ε+Θ= );(xfy
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Examples
• linear regression:

– line fitting

– polynomial fitting

– truncated Fourier series

• non-linear regression:
– neural networks

– sinusoidal decompositions

– etc.
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Example
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• let’s consider the problem of line fitting
– the model is

– we are given a set of points 

D = {(x1,y1),…,(xn,yn)}

– the error of the fit is

– we are looking for the line that makes these distances as small as 
possible
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Optimization
• minimizing a function 

• when x is a scalar is high-school calculus

• we have a maximum when
– first derivative is zero
– second derivative is negative

)(min xf
x
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The gradient

∇f

• in higher dimensions, the generalization of the derivative 
is the gradient

• the gradient of a function f(w) at z is 

• the gradient has a nice geometric
interpretation
– it points in the direction of maximum 

growth of the function
– which makes it perpendicular to the 

contours where the function is constant
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max

min

saddle

• note that if ∇f = 0
– there is no direction of growth
– also -∇f = 0, and there is no direction of 

decrease
– we are either at a local minimum or maximum 

or “saddle” point
• conversely, at local min or max or saddle 

point
– no direction of growth or decrease
– ∇f = 0

• this shows that we have a critical point if 
and only if ∇f = 0

• to determine which type we need second 
order conditions

The gradient



The Hessian
• the extension of the second-order derivative is the 

Hessian matrix

– at each point x, gives us the quadratic function 

that best approximates f(x)
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The Hessian
• this means that, when gradient is 

zero at x, we have
– a maximum when  function can be 

approximated by an “upwards-facing” 
quadratic

– a minimum when function can be 
approximated by a “downwards-facing” 
quadratic

– a saddle point otherwise

max

min
saddle
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max

min

The Hessian
• for any matrix M, the function

• is
– upwards facing quadratic when M

is negative definite
– downwards facing quadratic when M

is positive definite
– saddle otherwise

• hence, all that matters is the positive
definiteness of the Hessian

• we have a minimum when the Hessian 
is positive definite

Mxxxf t=)(

saddle
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Optimality conditions
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• Definition: each of the following is a necessary and 
sufficient condition for a real symmetric matrix A to be 
(semi) positive definite:

i)   xTAx ≥ 0, ∀ x ≠ 0 
ii)  all eigenvalues of A satisfy λi ≥ 0
iii) all upper-left submatrices Ak have non-negative determinant
iv) there is a matrix R with independent rows such that

A = RTR

• upper left submatrices:
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Optimality conditions
• in summary
• w* is a local minimum of f(w) if and only if

– f has zero gradient at w*

– and the Hessian of f at w* is positive definite

– where

min
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Example
• to solve

– we set the gradient to zero
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Example
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Example
• the solution is
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Least squares
• what if I have other models?
• can we write this more generally?

– we can write the model 

– as 

• this can be generalized to any model if we make
Θ=Θ Txxf )();( γ
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Examples
• note that the γ(x) can be arbitrary non-linear functions of 

x
– line fitting

– polynomial fitting

– truncated Fourier series
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Least squares
• we can write the error

• as 

• or

• where 
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Examples
• the most important component is the matrix Γ(x)

– line fitting polynomial fitting

– truncated Fourier series
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Matrix derivatives
• to compute the gradient and Hessian it is useful to rely on 

matrix derivatives
• some examples that we will use

• there are various lists of the most popular formulas
• one example is 

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html
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Least squares
• in summary, we always have

• to minimize this we simply have 
to find x such that

or

from which, as long as Γ(x)TΓ(X) is invertible,
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Least squares
• we next check the Hessian

• this is positive definite if the rows of Γ(x) are independent
• which turns out to be 

– the condition for Γ(x)TΓ(X) to be invertible,
– which is the necessary condition for the solution to be feasible

• note that we design Γ(x), so we can always make this 
happen

• usually we only have to make sure all the xi are different
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Least squares
• in summary

– a problem of the type

– has least squares solution

– the matrix  

– is called the pseudo-inverse of Γ(x)
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Least squares
• here is a way of thinking about this

– we have a system of equations

– this cannot be solved because Γ(x)
is not invertible

– e.g. for the line

– we multiply both sides by Γ(x)T
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Least squares
– this is now a solvable system

– whose solution is given by the pseudo-inverse

– and we have just seen that this is the best solution for the original 
problem in the least squares sense
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Least squares
• in general the least squares solution is quite easy to 

compute
• let’s redo the line example
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Least squares
• and

• leads to

• which is the solution that we had obtained before, with a 
lot more work 
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Least squares
• what about a kth order

polynomial model
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Least squares
• and

• combining the two

• it can’t get any easier than this!
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Geometric interpretation
• there is also a nice geometric way to derive the least 

squares solution
• we want to minimize
• given the known matrix

• the vector

is a linear combination of the column vectors Γi
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Geometric interpretation
• this means that ΓΘ is a vector in the column space of 

(Γ1, …, ΓK)

• assume that y is as shown
– what is the value of ΓΘ closest to y?
– it has to be the projection of y on the hyper-plane
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Geometric interpretation
• let’s denote this by ΓΘ*. Then,

– y-ΓΘ* is in the null space of Γ, i.e.

• or
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Geometric interpretation
• from which

and we get our well known equation
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