# Least squares 

Nuno Vasconcelos
UCSD

## Model fitting

- one common problem in signal processing is to fit a model to a signal
- in vision, we typically have a scene
- it contains some "signal", which is what we are trying to understand about the scene
- but it also contains "noise"
- typically we have a model for our signal
- e.g. the planes the planes that we used to model the wall in PS 2
- we saw that going from 3D to 2D is a relatively easy problem
- vision is the opposite: I give you the image and you tell me what the 3D planes are
- a lot harder, many scenes could fit the image



## Model fitting

- we typically need to make assumptions on the scene
- these are usually in the form of a model
- while models are great help, the real world is never exactly like we modeled it, due to
- 1) noise in the imaging process: usually not a major concern, unless the scenario is extreme (night vision, underwater, bad weather)
- 2) deviations from the model: no model is perfect, e.g. the sun is really not a point source and is not really infinitely far away
- this is usually the greater source of concern
- we model what we can and assume that the rest is "noise"
- hence, we need to fit our models to the data
- in an optimal manner, that minimizes errors due to noise


## Regression

- model fitting is a regression problem
- in a regression problem we have
- two random variables $X$ and $Y$
- a dataset of examples $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)\right\}$
- a parametric model of the form

$$
y=f(x ; \Theta)+\varepsilon
$$

- where $\Theta$ is a parameter vector, and $\varepsilon$ a random variable that accounts for noise
- two types of problems
- linear regression: when $f($.$) is linear on \Theta$
- non-linear regression: otherwise
- note that what matters is linearity on $\Theta$, not on $X$ !


## Examples

- linear regression:
- line fitting

$$
f(x ; \Theta)=\theta_{1} x+\theta_{0}
$$

- polynomial fitting

$$
f(x ; \Theta)=\sum_{i=0}^{K} \theta_{i} x^{i}
$$

- truncated Fourier series

$$
f(x ; \Theta)=\sum_{i=0}^{K} \theta_{i} \sin (i x)
$$

- non-linear regression:
- neural networks

$$
f(x ; \Theta)=\frac{1}{1+e^{-\theta_{1} x-\theta_{0}}}
$$

- sinusoidal decompositions

$$
f(x ; \Theta)=\sum_{i=0}^{K} \sin \left(\theta_{i} x\right)
$$

- etc.


## Example

- let's consider the problem of line fitting
- the model is

$$
f(x ; \Theta)=\theta_{1} x+\theta_{0}
$$

- we are given a set of points

$$
D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$



- the error of the fit is

$$
L=\sum_{i}\left(y_{i}-f\left(x_{i} ; \Theta\right)\right)^{2}=\sum_{i}\left(y_{i}-\theta_{1} x_{i}-\theta_{0}\right)^{2}
$$

- we are looking for the line that makes these distances as small as possible

$$
L^{*}=\min _{\Theta} \sum_{i}\left(y_{i}-f\left(x_{i} ; \Theta\right)\right)^{2}=\min _{\theta_{1}, \theta_{2}} \sum_{i}\left(y_{i}-\theta_{1} x_{i}-\theta_{0}\right)^{2}
$$

## Optimization

- minimizing a function

$$
\min _{x} f(x)
$$

- when x is a scalar is high-school calculus

| $f^{\prime}(x)>0<f^{\prime}(x)=0$ | $f^{\prime}(x)<0 \int_{f^{\prime}(x)=0} f(x)>0$ | $\begin{aligned} & f^{\prime}(x)<0, \\ & f^{\prime \prime}(x)>0 \\ & f^{\prime}(x)=0, \\ & f^{\prime \prime}(x)=0 \end{aligned} \quad \begin{aligned} & f^{\prime}(x)<0, \\ & f^{\prime \prime}(x)<0 \end{aligned}$ |
| :---: | :---: | :---: |
| maximom | minimum | onflection poont |

- we have a maximum when
- first derivative is zero
- second derivative is negative


## The gradient

- in higher dimensions, the generalization of the derivative is the gradient
- the gradient of a function $f(w)$ at $z$ is

$$
\nabla f(z)=\left(\frac{\partial f}{\partial w_{0}}(z), \cdots, \frac{\partial f}{\partial w_{n-1}}(z)\right)^{T}
$$

- the gradient has a nice geometric interpretation

- it points in the direction of maximum growth of the function
- which makes it perpendicular to the contours where the function is constant



## The gradient

- note that if $\mathbb{C f}=0$
- there is no direction of growth
- also - Vf $=0$, and there is no direction of decrease

- we are either at a local minimum or maximum or "saddle" point
- conversely, at local min or max or saddle point
- no direction of growth or decrease
- $\quad$ 右 $=0$
- this shows that we have a critical point if and only if $\mathrm{Vf}=0$
- to determine which type we need second order conditions



## The Hessian

- the extension of the second-order derivative is the Hessian matrix

$$
\nabla^{2} f(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{0}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{0} \partial x_{n-1}}(x) \\
\frac{\partial^{2} f}{\partial x_{n-1} \partial x_{0}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n-1}^{2}}(x)
\end{array}\right]
$$

- at each point $x$, gives us the quadratic function

$$
x^{t} \nabla^{2} f(x) x
$$

that best approximates $f(x)$

## The Hessian

- this means that, when gradient is zero at $x$, we have
- a maximum when function can be approximated by an "upwards-facing" quadratic
- a minimum when function can be approximated by a "downwards-facing" quadratic
- a saddle point otherwise




## The Hessian

- for any matrix M , the function

$$
f(x)=x^{t} M x
$$

- is
- upwards facing quadratic when M is negative definite
- downwards facing quadratic when M is positive definite
- saddle otherwise
- hence, all that matters is the positive definiteness of the Hessian
- we have a minimum when the Hessian is positive definite




## Optimality conditions

- Definition: each of the following is a necessary and sufficient condition for a real symmetric matrix $A$ to be (semi) positive definite:
i) $x^{\top} A x \geq 0, \forall x \neq 0$
ii) all eigenvalues of $A$ satisfy $\lambda_{i} \geq 0$
iii) all upper-left submatrices $A_{k}$ have non-negative determinant
iv) there is a matrix $R$ with independent rows such that

$$
A=R^{\top} R
$$

- upper left submatrices:

$$
A_{1}=a_{1,1} \quad A_{2}=\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right] \quad A_{3}=\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right]
$$

## Optimality conditions

- in summary
- $w^{*}$ is a local minimum of $f(w)$ if and only if
- $f$ has zero gradient at $w^{*}$

$$
\nabla f\left(w^{*}\right)=0
$$

- and the Hessian of $f$ at $w^{*}$ is positive definite

$$
d^{t} \nabla^{2} f\left(w^{*}\right) d \geq 0, \quad \forall d \in \mathfrak{R}^{n}
$$



- where

$$
\nabla^{2} f(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{0}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{0} \partial x_{n-1}}(x) \\
\frac{\vdots}{\partial x_{n-1} \partial x_{0}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n-1}^{2}}(x)
\end{array}\right]
$$

## Example

- to solve

$$
L^{*}=\min _{\theta_{1}, \theta_{2}} \sum_{i}\left(y_{i}-\theta_{1} x_{i}-\theta_{0}\right)^{2}
$$

- we set the gradient to zero

$$
\left\{\begin{array}{l}
\frac{\partial L}{\partial \theta_{0}}=-2 \sum_{i}\left(y_{i}-\theta_{1} x_{i}-\theta_{0}\right)=0 \\
\frac{\partial L}{\partial \theta_{1}}=-2 \sum_{i}\left(y_{i}-\theta_{1} x_{i}-\theta_{0}\right) x_{i}=0
\end{array}\right.
$$



$$
\left\{\begin{array}{c}
\sum_{i} y_{i}=\theta_{1} \sum_{i} x_{i}+n \theta_{0} \\
\sum_{i} y_{i} x_{i}=\theta_{1} \sum_{i} x_{i}^{2}+\theta_{0} \sum_{i} x_{i}
\end{array} \rightarrow\left[\begin{array}{c}
\frac{1}{n} \sum_{i} y_{i} \\
\frac{1}{n} \sum_{i} y_{i} x_{i}
\end{array}\right]=\left[\begin{array}{cc}
1 & \frac{1}{n} \sum_{i} x_{i} \\
\frac{1}{n} \sum_{i} x_{i} & \frac{1}{n} \sum_{i} x_{i}^{2}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]\right.
$$

## Example

$$
\left[\begin{array}{c}
\frac{1}{n} \sum_{i} y_{i} \\
\frac{1}{n} \sum_{i} y_{i} x_{i}
\end{array}\right]=\left[\begin{array}{cc}
1 & \frac{1}{n} \sum_{i} x_{i} \\
\frac{1}{n} \sum_{i} x_{i} & \frac{1}{n} \sum_{i} x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$



- and, denoting

$$
\langle y\rangle=\frac{1}{n} \sum_{i} y_{i}, \quad\left\langle x^{k}\right\rangle=\frac{1}{n} \sum_{i} x_{i}^{k}, \quad\langle y x\rangle=\frac{1}{n} \sum_{i} y_{i} x_{i}
$$

- we get

$$
\left[\begin{array}{l}
\langle y\rangle \\
\langle x y\rangle
\end{array}\right]=\left[\begin{array}{cc}
1 & \langle x\rangle \\
\langle x\rangle & \left\langle x^{2}\right\rangle
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

## Example

- the solution is

$$
\begin{aligned}
{\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & \langle x\rangle \\
\langle x\rangle & \left\langle x^{2}\right\rangle
\end{array}\right]^{-1}\left[\begin{array}{c}
\langle y\rangle \\
\langle x y\rangle
\end{array}\right] \\
& =\frac{1}{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}\left[\begin{array}{cc}
\left\langle x^{2}\right\rangle & -\langle x\rangle \\
-\langle x\rangle & 1
\end{array}\right]\left[\begin{array}{c}
\langle y\rangle \\
\langle x y\rangle
\end{array}\right] \\
& =\frac{1}{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}\left[\begin{array}{c}
\left\langle x^{2}\right\rangle\langle y\rangle-\langle x\rangle\langle x y\rangle \\
\langle x y\rangle-\langle x\rangle\langle y\rangle
\end{array}\right]
\end{aligned}
$$

## Least squares

- what if I have other models?
- can we write this more generally?
- we can write the model

$$
f(x ; \Theta)=\theta_{1} x+\theta_{0}
$$

- as

$$
f(x ; \Theta)=\gamma(x)^{T} \Theta
$$

$$
\gamma(x)=\left[\begin{array}{l}
1 \\
x
\end{array}\right]
$$

$$
\Theta=\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

- this can be generalized to any model if we make

$$
\gamma(x)=\left[\begin{array}{c}
\gamma_{0}(x) \\
\vdots \\
\gamma_{k}(x)
\end{array}\right] \quad \Theta=\left[\begin{array}{c}
\theta_{0} \\
\vdots \\
\theta_{k}
\end{array}\right]
$$

## Examples

- note that the $\gamma(x)$ can be arbitrary non-linear functions of X
- line fitting

$$
f(x ; \Theta)=\theta_{1} x+\theta_{0}
$$

$$
\gamma(x)^{T}=\left[\begin{array}{ll}
1 & x
\end{array}\right]
$$

- polynomial fitting

$$
f(x ; \Theta)=\sum_{i=0}^{K} \theta_{i} x^{i}
$$

$$
\gamma(x)^{T}=\left[\begin{array}{lll}
1 & \ldots & x^{K}
\end{array}\right]
$$

- truncated Fourier series

$$
f(x ; \Theta)=\sum_{i=0}^{K} \theta_{i} \sin (i x)
$$

$$
\gamma(x)^{T}=\left[\begin{array}{lll}
0 & \ldots & \sin (K x)
\end{array}\right]
$$

## Least squares

- we can write the error

$$
L=\sum_{i}\left(y_{i}-\theta_{1} x_{i}-\theta_{0}\right)^{2}
$$

- as

$$
L=\sum_{i}\left(y_{i}-\gamma\left(x_{i}\right)^{T} \Theta\right)^{2}
$$

- Or

$$
L=\|y-\Gamma(x) \Theta\|^{2}
$$

- where

$$
y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \quad \Gamma(x)=\left[\begin{array}{c}
\gamma\left(x_{1}\right)^{T} \\
\vdots \\
\gamma\left(x_{n}\right)^{T}
\end{array}\right] \quad \Theta=\left[\begin{array}{c}
\theta_{0} \\
\vdots \\
\theta_{k}
\end{array}\right]
$$

## Examples

- the most important component is the matrix $\Gamma(x)$
- line fitting

$$
\Gamma(x)=\left[\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
1 \\
1 x_{n}
\end{array}\right]
$$

## polynomial fitting

$$
\Gamma(x)=\left[\begin{array}{ccc}
1 & \ldots & x_{1}^{K} \\
& \vdots & \\
1 & \ldots & x_{n}^{K}
\end{array}\right]
$$

- truncated Fourier series

$$
\Gamma(x)=\left[\begin{array}{ccc}
0 & \ldots & \sin \left(K x_{1}\right) \\
& \vdots & \\
0 & \ldots & \sin \left(K x_{n}\right)
\end{array}\right]
$$

## Matrix derivatives

- to compute the gradient and Hessian it is useful to rely on matrix derivatives
- some examples that we will use

$$
\begin{aligned}
& \nabla_{\Theta}(A \Theta)=A^{T} \\
& \hline \nabla_{\Theta}\left(\Theta^{T} A \Theta\right)=\left(A+A^{T}\right) \Theta \\
& \hline \nabla_{\Theta}\|b-A \Theta\|^{2}=-2 A^{T}(b-A \Theta) \\
& \hline
\end{aligned}
$$

- there are various lists of the most popular formulas
- one example is http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html


## Least squares

- in summary, we always have

$$
L=\|y-\Gamma(x) \Theta\|^{2}
$$

- to minimize this we simply have to find x such that

$$
\nabla_{\Theta} L=-2 \Gamma(x)^{T}[y-\Gamma(x) \Theta]=0
$$

or

$$
\Gamma(x)^{T} \Gamma(x) \Theta=\Gamma(x)^{T} y
$$

from which, as long as $\Gamma(x)^{\top} \Gamma(X)$ is invertible,

$$
\Theta^{*}=\left[\Gamma(x)^{T} \Gamma(x)\right]^{-1} \Gamma(x)^{T} y
$$

## Least squares

- we next check the Hessian

$$
\begin{aligned}
\nabla_{\Theta}^{2} L & =\nabla_{\Theta}\left(\nabla_{\Theta} L\right) \\
& =-2 \nabla_{\Theta}\left\{\Gamma(x)^{T}[y-\Gamma(x) \Theta]\right\} \\
& =2 \Gamma(x)^{T} \Gamma(x)
\end{aligned}
$$

- this is positive definite if the rows of $\Gamma(x)$ are independent
- which turns out to be
- the condition for $\Gamma(x)^{\top} \Gamma(X)$ to be invertible,
- which is the necessary condition for the solution to be feasible
- note that we design $\Gamma(x)$, so we can always make this happen
- usually we only have to make sure all the $x_{i}$ are different


## Least squares

- in summary
- a problem of the type

$$
L=\|y-\Gamma(x) \Theta\|^{2}
$$

- has least squares solution

$$
\Theta^{*}=\left[\Gamma(x)^{T} \Gamma(x)\right]^{-1} \Gamma(x)^{T} y
$$

- the matrix

$$
\Gamma(x)^{\Pi}=\left[\Gamma(x)^{T} \Gamma(x)\right]^{-1} \Gamma(x)^{T}
$$

- is called the pseudo-inverse of $\Gamma(x)$


## Least squares

- here is a way of thinking about this
- we have a system of equations

$$
y=\Gamma(x) \Theta
$$

- this cannot be solved because $\Gamma(x)$ is not invertible
- e.g. for the line

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
\vdots \\
1
\end{array} x_{n}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

- we multiply both sides by $\Gamma(x)^{T}$

$$
\Gamma(x)^{T} y=\Gamma(x)^{T} \Gamma(x) \Theta
$$



## Least squares

- this is now a solvable system

$$
\left[\begin{array}{ccc}
1 & \ldots & 1 \\
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{llll}
1 & \ldots & 1 \\
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
1 x_{1} \\
\vdots \\
\vdots \\
1 x_{n}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

- whose solution is given by the pseudo-inverse

$$
\Theta^{*}=\left[\Gamma(x)^{T} \Gamma(x)\right]^{-1} \Gamma(x)^{T} y
$$

- and we have just seen that this is the best solution for the original problem in the least squares sense

$$
\Theta^{*}=\underset{\Theta}{\arg \min }\|y-\Gamma(x) \Theta\|^{2}
$$

## Least squares

- in general the least squares solution is quite easy to compute
- let's redo the line example

$$
\begin{aligned}
& \Gamma(x)^{T} \Gamma(x)=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{1} \\
\vdots \\
\vdots \\
1 x_{n}
\end{array}\right]=n\left[\begin{array}{cc}
1 & \langle x\rangle \\
\langle x\rangle & \left\langle x^{2}\right\rangle
\end{array}\right] \\
& \Gamma(x)^{T} y=\left[\begin{array}{cccc}
1 & \ldots & 1 & \\
x_{1} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=n\left[\begin{array}{c}
\langle y\rangle \\
\langle x y\rangle
\end{array}\right]
\end{aligned}
$$

## Least squares

- and

$$
\Theta^{*}=\left[\Gamma(x)^{T} \Gamma(x)\right]^{-1} \Gamma(x)^{T} y
$$

- leads to

$$
\Theta^{*}=\left[\begin{array}{cc}
1 & \langle x\rangle \\
\langle x\rangle & \left\langle x^{2}\right\rangle
\end{array}\right]^{-1}\left[\begin{array}{c}
\langle y\rangle \\
\langle x y\rangle
\end{array}\right]
$$

- which is the solution that we had obtained before, with a lot more work


## Least squares

- what about a $k^{\text {th }}$ order polynomial model

$$
f(x ; \Theta)=\sum_{i=0}^{K} \theta_{i} x^{i}
$$

$$
\Gamma(x)=\left[\begin{array}{ccc}
1 & \ldots & x_{1}^{K} \\
& \vdots & \\
1 & \ldots & x_{n}^{K}
\end{array}\right]
$$

$$
\Gamma(x)^{T} \Gamma(x)=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
& \vdots & \\
x_{1}^{K} & \ldots & x_{n}^{K}
\end{array}\right]\left[\begin{array}{ccc}
1 & \ldots & x_{1}^{K} \\
& \vdots & \\
1 & \ldots & x_{n}^{K}
\end{array}\right]
$$

$$
=n\left[\begin{array}{ccc}
1 & \ldots & \left\langle x^{K}\right\rangle \\
& \vdots & \\
\left\langle x^{K}\right\rangle & \ldots & \left\langle x^{2 K}\right\rangle
\end{array}\right]
$$

## Least squares

- and

$$
\Gamma(x)^{T} y=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
& \vdots & \\
x_{1}^{K} & \ldots & x_{n}^{K}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=n\left[\begin{array}{c}
\langle y\rangle \\
\vdots \\
\left\langle x^{K} y\right\rangle
\end{array}\right]
$$

- combining the two

$$
\Theta^{*}=\left[\begin{array}{ccc}
1 & \ldots & \left\langle x^{K}\right\rangle \\
& \vdots & \\
\left\langle x^{K}\right\rangle & \ldots & \left\langle x^{2 K}\right\rangle
\end{array}\right]^{-1}\left[\begin{array}{c}
\langle y\rangle \\
\vdots \\
\left\langle x^{K} y\right\rangle
\end{array}\right]
$$

- it can't get any easier than this!


## Geometric interpretation

- there is also a nice geometric way to derive the least squares solution
- we want to minimize
- given the known matrix

$$
L=\|y-\Gamma(x) \Theta\|^{2}
$$

- the vector

$$
\Gamma(x)=\left[\begin{array}{ccc}
\mid & & \mid \\
\Gamma_{1} & \ldots & \Gamma_{K} \\
\mid & & \mid
\end{array}\right]
$$

$$
\Gamma(x) \Theta=\left[\begin{array}{ccc}
\mid & & \mid \\
\Gamma_{1} & \ldots & \Gamma_{K} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{K}
\end{array}\right]=\left[\begin{array}{c}
\mid \\
\sum_{i} \theta_{i} \Gamma_{i} \\
\mid
\end{array}\right]
$$

is a linear combination of the column vectors $\Gamma_{\mathrm{i}}$

## Geometric interpretation

- this means that $\Gamma \Theta$ is a vector in the column space of $\left(\Gamma_{1}, \ldots, \Gamma_{K}\right)$

- assume that y is as shown
- what is the value of $\Gamma \Theta$ closest to $y$ ?
- it has to be the projection of $y$ on the hyper-plane


## Geometric interpretation

- let's denote this by $\Gamma \Theta^{*}$. Then,
$-y-\Gamma \Theta^{*}$ is in the null space of $\Gamma$, i.e.

- or

$$
\left\{\begin{array} { c } 
{ \Gamma _ { 1 } ^ { T } ( y - \Gamma \Theta ^ { * } ) = 0 } \\
{ \vdots } \\
{ \Gamma _ { K } ^ { T } ( y - \Gamma \Theta ^ { * } ) = 0 }
\end{array} \Leftrightarrow \left\{\left[\begin{array}{ccc}
- & \Gamma_{1}^{T} & - \\
& \vdots & \\
- & \Gamma_{K}^{T} & -
\end{array}\right]\left(y-\Gamma \Theta^{*}\right)=0 \Leftrightarrow \Gamma^{T}\left(y-\Gamma \Theta^{*}\right)=0\right.\right.
$$

## Geometric interpretation

- from which

$$
\Gamma^{T}\left(y-\Gamma \Theta^{*}\right)=0 \Leftrightarrow \Gamma^{T} y=\Gamma^{T} \Gamma \Theta^{*}
$$

and we get our well known equation

$$
\Theta^{*}=\left[\Gamma(x)^{T} \Gamma(x)\right]^{-1} \Gamma(x)^{T} y
$$




