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Beyond edges

» we have talked a lot about edges

» while they are important, it is now recognized that they
are not enough

» for many objects they are not even defined (think of a
landscape with green grass, a mountain, and sky)

» fortunately there is a lot more we can do with filtering
than look for edges

» today we will talk about such extensions
» let’s start by recalling that filters are templates



Filters as templates

» applying a filter at some point can be seen as taking a dot-
product between the image and some vector

» filtering the image is a set of dot products

» insight
 filters look like the effects they are intended to find
o filters find effects they look like

» Q: what are good filters (detectors) for vision?




Filters for vision

» the answer is that it depends on what you are looking for

» in the absence of good answers we can look for them in
biological vision

» it has been observed that cells in early stages of the brain
tend be respond to either

e spots (e.g. a white spot surrounded by black)
* Dbars (e.g. half the cell exposed to white, the other to black)

» this has drawn a lot of attention to spots and bars, which
book emphasizes, but they do not have to be the ones

» €.g. if you are working with man-made scenes, e.g.
buildings, it is probably a must to detect corners

» but they do illustrate the concept of filters as detectors






Scale and orientation

» non-controversial: apply a set of
filters that cover a broad range of
scales and orientations

» a large filter will detect coarse
object properties, e.g. a building
IS a box

» a small filter will detect detalls,
e.g. this box contains many little
boxes (windows)

» the same with orientation:
buildings are vertical boxes, cars
are horizontal

» this Is a general principle




How to filter at multiple scales

» if two filters have the same shape,
the one that has more pixels will
detect features of larger scale

» but filtering images with very large
filters Is expensive
» alternative:

» keep the filter constant

« apply it to down-sampled replicas of
the image

» the collection of down-sampled
Images is called a pyramid

» we apply the filter to all levels



Example

» at high-resolution the
filter Is quite small

» detects the contours of
the antennae, i.e. edges

» at low-resolution It
covers a lot more
ground

» detects the antennae as
“parts”

» note that the stuff which
IS not oriented like the
filter is ignored




Orientations at small scale




» note that there is significant leakage between orientations
(and scales)

» the detectors are not perfect, but provide a workable
decomposition

» given this we could say: butterflies have antennae, look
for strong response by 4&5, small for the others

» this is an image classifier
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Pyramids

» how do we go about creating a

pyramid?

» we want to downsample by two
(each direction) at each level

» to avoid aliasing we have to low-
pass filter with cut-off (n/2,7/2).
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In the frequency domain

» recall: downsamplig expands the spectrum

» each stage:

» at full resolution this is
equivalent to a sequence
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The Gaussian pyramid

» the low pass filter is a Gaussian
» inspired by human vision

« we have seen that Gaussian type of receptive fields appear in
various parts of the brain

» computationally consistent
o X;~N(y,07), X;~N(1,0,), iIndependent
© Z=Xt Xy Zis Nyt 0t 0,)
* but pz(z) = pxi(2) * Px2(2)
» conclusion: gaussian(0,c)*gaussian(0,c)=gaussian(0,2c)

» this is exactly what we need: the nt convolution is low
pass filtering with bandwith #/2"
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Wavelets

» so far, low frequencies are » at full resolution equivalent
replicated at all levels to a sequence of filters

» redundancy problematic H
for some applications

» wavelets: each filter is 2
bandpass H2

/2

» this Is called a critically
sampled pyramid —nl4 /4

» N0 redundancy |-| |-|

» for vision redundancy is P
sometimes good others
not
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The Laplacian Pyramid

» it is the poor’s man version of a wavelet
» to obtain band-pass filtering

e compute a Gaussian pyramid
e upsample each level and subtract from its predecessor

)

| 2x2

» the same as filtering with a DoG filter, i.e. bandpass
» |owest resolution is low-pass, other layers have incremental detail
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Oriented pyramids

» pyramids seen so far do not produce orientation info

» for this need to filter each pyramid level with oriented
kernels

» this is an oriented pyramid

First component of
layer 1

Layer |

Layer 2

Layer 3

Laplacian Pyramid Oriented Pyramid
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Oriented pyramid

Filter Kernels
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» Q: how do we design a filter centered at a certain
frequency and with a certain orientation?
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Gabor filters

» come In pairs:

* oOnerecovers symmetric components In a antisymetric

direction,
» the other recovers antisymmetric l] m II"
components
» definition: . u “ ml

2 2

X
G, (X, y) = cos(k,x+K,y) exp{— -

20,

'

symmetric

2 2

G, (%, y) =sin(k,x+k, y)expl—-—— -1
w2 N

» parameters: (k,,k,) location, (oy,0,)
scale




In frequency

» this is just amplitude modulation of a cosine by a
Gaussian

G(x) = cos(k, ) exp{— X : }

20,

G(@) = exp{— o (wz_ k) } + exp{— 7@ +k,) }

2

» allows coverage of the frequency spectrum with a set of
filters (shown here only ®,>0)

SO
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| ocalization

» Gabor localized in space, frequency, and orientation
» decomposition into many frequency “channels”
» contrast with Fourier: non-localized basis functions elx

» localization is important for detailed understanding, e.g.
correlations

Localized (e.g. Gabor)
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Localized representations

» note that Gabor is G(X, y) = cos(k X +k, y)w(Xx, y)
» where window w(X,y) Is a Gaussian

» this is what localizes representation in space, cosine (or
sine, or el*X) is already localized in frequency () wx))

» in fact the localization in frequency gets worse, we go
from a Dirac delta to a Gaussian

» once again this is just the uncertainty principle:

» Fourier: point support in frequency, infinite support in space

« Gabor: finite (well, close to) support in space, finite support in
frequency

» is the Gaussian the only possible window?
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Other localized representations

» N0. Any low-pass filter will do.
» various wavelets correspond to other choices of window
» note also that if w(x,y) is the box filter we get

G(X,y) =cos(k,x+K, y)Ry ., (X, ¥)

» convolving with these filters is the same as computing
the DCT of image blocks

» antisymmetric part corresponds the discrete sine transtf.
G(x,y)=sin(kx+K,y)Ry ., (X, ¥)
» and is we combine both we get the short-time Fourier

transform ko)
' ' RleN2 (X’ y)

G(x,y)=e
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Short-time DCT

» the filters are these —m
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» appealing because
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 real for real images —

» fast, lots of hardware available ; L

» but also because filters
detect various attributes
that appear relevant

-
-
-
-
-
'._'.

» vertical/horizontal edges

e corners, t-junctions, spot, checkerboards, various flows

» it IS also a basis: any function can be reconstructed
» Gabor does not assure that
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Texture

» we have learned a lot about the importance of
localization, scale, and orientation in vision

» but what is this good for in practice?

» one of the major applications Is texture
analysis/synthesis

» Texture is important for

e recognition (why is it SO easy to recognize a zebra,
why is the cheetah not a cat?)

e segmentation (what are the boundaries between
water and grass?)

« graphics: to synthesize a tiger | need samples
of its fur

e etc.
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Representing textures

» but what is a texture?
» | have not heard a good definition yet

» it IS one of those things that everyone can recognize, but
few can describe, e.qg. “like that stuff that X is made of”.

» book: “textures are made up of quite stylised sub-
elements, repeated in meaningful ways”

» this is sensible (most of the time) and a workable
definition

» anyway, interesting that definition is not easy yet texture
gives so much info:

e e.g.on the next slide it is not clear what “sub-elements” means

« yet we get plenty of information on geometry, geography,
atmospheric conditions, etc.
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Representing textures

» possible representation:

» find the sub-elements, and represent their statistics

» but what are the sub-elements, and how do we find
them?

* by applying filters, looking at the magnitude of the response

» What statistics?
« within reason, the more the merrier.
» at least, mean and standard deviation
» better, various probability estimates
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Segmentation

» what are the various components of the scene?

» simple example from the book: two derivatives + square
+ average over a local window + thresholding

» illustrates segmentation into horizontal/vertical
Components squared responses

vertical

classification

horizontal

smoothed mean 32



Recognition
» What texture iIs like this?

» example: Gabor
decomposition + compute
mean and std of each
channel + stack in a vector

» each texture in database
summarized by one vector t.

» recognition: find vector
t. closest to query @

miian -t

ﬁ (uery region

Em-n IE’L“ | Lo, o2 J
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