Least squares and motion

Nuno Vasconcelos
ECE Department, UCSD

Plan for today

\rightarrow today we will discuss motion estimation

- this is interesting in two ways
- motion is very useful as a cue for recognition, segmentation, compression, etc.
- is a great example of least squares problem
- we will also wrap up discussion on least squares
- introduce two types of motion estimation
- block matching
- differential methods
- will talk about motion ambiguities, and local vs global motion

Least squares

- a least squares problem is one where we have
- two variables (X, Y) related by an unknown function $Y=g(X)$
- a training set $D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- a model $Y=f(x ; \Phi)$ where $\Phi=\left(\phi_{1}, \ldots, \phi_{k}\right)$ is a vector of parameters
\rightarrow the goal is:
- to find the model parameters that lead to the best approximation to the observed data, i.e. to determine

$$
\varepsilon^{*}=\min _{\Phi} \sum_{i}\left[y_{i}-f\left(x_{i}, \Phi\right)\right]^{2}
$$

- the canonical example is the problem of fitting a line to a set of points
- here $\Phi=(a, b)$, and $f(x ; a, b)=a x+b$

Two main cases

- non-linear least squares
- $f(x, \Phi)$ not linear on Φ, e.g.

$$
f(x ; \Phi)=\sum_{k} \sin \left(\phi_{k} x\right)
$$

- linear least squares
- $f(x, \Phi)$ linear on Φ, e.g.

$$
f(x ; \Phi)=\sum_{k} \phi_{k} \sin (x)
$$

- note: all that matters is linearity on Φ, both nonlinear on x
- other linear models: polynomials, splines, neural networks, Fourier decompositions, etc.

Non-linear least squares

- most difficult case
- optimal solution if and only if:
- gradient of ε is zero
- Hessian of ε negative definite

$$
\forall z, \quad z^{T}\left(\nabla_{\Phi}^{2} \varepsilon\right) z<0
$$

- in general this has no closed form
- numerical solution, e.g. gradient descent
- pick initial estimate $\Phi^{(0)}$
- iterate $\Phi^{(n+1)}=\Phi^{(n)}-\alpha \nabla_{\Phi} \varepsilon\left(\Phi^{(n)}\right)$

Linear least squares

closed form solution

- write

$$
\left[\begin{array}{c}
f\left(x_{1}, \Phi\right) \\
\vdots \\
f\left(x_{n}, \Phi\right)
\end{array}\right]=\Gamma\left(x_{1}, \cdots, x_{n}\right) \Phi, \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

- solution is given by normal equations

$$
\Phi=\left(\Gamma^{T} \Gamma\right)^{-1} \Gamma^{T} y
$$

$>$ e.g. for a line $f\left(x ; \phi_{0}, \phi_{1}\right)=\phi_{0}+\phi_{1} x$

$$
\Gamma\left(x_{1}, \cdots, x_{n}\right)=\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \quad\left[\begin{array}{c}
\phi_{0} \\
\phi_{1}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i} 1 & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} x_{i}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\sum_{i} y_{i} \\
\sum_{i} y_{i} x_{i}
\end{array}\right]
$$

Very powerful

- Q: what is the best linear approximation of a N point sequence by M DFT style exponentials?

$$
x_{n}=\sum_{k=1}^{M} \phi_{k} e^{j \frac{2 \pi}{N} k n}
$$

- to get least squares solution, we need $\Gamma(1, \ldots, N)$

$$
\left[\begin{array}{c}
X_{0} \\
X_{1} \\
\vdots \\
X_{N-1}
\end{array}\right]=\left[\begin{array}{c}
\sum_{k=0}^{M-1} \phi_{k} e^{j \frac{2 \pi 0}{N} k} \\
\sum_{k=0}^{M-1} \phi_{k} e^{j \frac{2 \pi}{N} k} \\
\vdots \\
\sum_{k=0}^{M-1} \phi_{k} e^{j \frac{2 \pi(N-1)}{N} k}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
e^{j \frac{2 \pi}{N}} & e^{j \frac{4 \pi}{N}} & \cdots & e^{j \frac{2(M-1) \pi}{N}} \\
e^{j \frac{2 \pi(N-1)}{N}} & e^{j \frac{4 \pi(N-1)}{N}} & \cdots & e^{j \frac{2(M-1) \pi(N-1)}{N}}
\end{array}\right]\left[\begin{array}{c}
\phi_{0} \\
\phi_{1} \\
\vdots \\
\phi_{M-1}
\end{array}\right]
$$

Best Fourier approximation

\rightarrow this means that

$$
\Gamma=\left[\begin{array}{cccc}
\frac{1}{\frac{2 \pi}{j \frac{2 \pi}{N}}} & e^{\frac{1}{j \frac{4 \pi}{N}}} & \cdots & e^{j \frac{1}{j(M-1) \pi}} \mathrm{N} \\
e^{j \frac{2 \pi(N-1)}{N}} & e^{j \frac{4 \pi(N-1)}{N}} & \cdots & e^{j \frac{2(M-1) \pi(N-1)}{N}}
\end{array}\right]
$$

- this is orthonormal, i.e. $\Gamma^{\top} \Gamma=\mathrm{I}$, and

$$
\Phi=\left(\Gamma^{T} \Gamma\right)^{-1} \Gamma^{T} x=\Gamma^{T} x \quad \Leftrightarrow \quad \phi_{k}=\sum_{n=0}^{N-1} x_{n} e^{j \frac{2 \pi}{N} k n}, \quad k=0, \ldots, M-1
$$

i.e. the best approximation are the M DFT coefficients associated with the exponentials

Signal approximation

- Q: what is the band-pass filter $h(n)$ whose output $y(n)$ best approximates a signal $x(n)$ in the frequency range Ω ?
- we have seen that $\mathrm{y}(\mathrm{n})$ must have DFT

$$
Y(k)=\left\{\begin{array}{cc}
X(k), \quad k \in \Omega \\
0, & \text { otherwise }
\end{array}\right.
$$

- hence optimal filter has DFT

$$
H(k)=\left\{\begin{array}{lc}
1, & k \in \Omega \\
0, & \text { otherwise }
\end{array}\right.
$$

i.e. it is the ideal band-pass filter of band Ω

- intuitive: ideal = best approximation in LS sense!

Motion estimation

- is an important practical example of LS problems
- many applications:
- recognition: many events are characterized by the type of motion (e.g. walking vs running)
- strong clues about scene structure (e.g. when we rotate a 3D object, motion of a pixel determined by how far the 3D point is from camera)
- segmentation (things that move "together" belong to the same object)
- alignment (once we know the motion we can align images in a sequence, e.g. the NASA panoramas)
- compression (estimate motion, align images, transmit only error)
- etc

Motion estimation

- consider the following two images

Motion estimation

- consider the following two images

Motion estimation

- goal: given images $I(x, y, t)$ and $I(x, y, t+1)$, for each pixel find (u, v) which minimizes difference

$$
D(x, y)=[I(x-u, y-v, t)-I(x, y, t+1)]^{2}
$$

- problem: impossible to solve from one pixel alone
- two unknowns (u, v), one equation

Fundamental law

- motion can only be solved over a neighborhood
- need at least two pixels
- makes sense to consider more and minimize the average error
- this is least squares

$$
\varepsilon=\sum_{x, y \in R}[/(x-u, y-v, t)-/(x, y, t+1)]^{2}
$$

Block matching

- in fact, it is a non-linear least squares problem, since $I(x-u, y-v, t)$ is a non-linear function of (u, v)
-solution I: block matching
- for each block in $I(x, y, t+1)$ do an exhaustive search in $I(x, y, t)$ for the closest match
- very common in compression, e.g. MPEG

Block matching

- is computationally intensive
- need to compute the squared error between the block and a collection of blocks in the previous image
- does not always produce good motion estimates
- e.g. many matches can be equally good
- this is a problem for all motion estimation methods:
- motion can be ambiguous when measured locally (e.g. by matching windows)

Motion ambiguities

- clearly we cannot determine the motion of a flat neighborhood
- for an edge neighborhood, we can only determine one of the two components
- the two components are uniquely defined only when the neighborhood contains 2D image structure
- this is called the "aperture problem"

Differential methods

- we can at least eliminate the complexity problem, by looking for a closed-form solution to

$$
\varepsilon^{*}=\min _{d_{x}, d_{y}} \sum_{x, y \in R}[/(x-u, y-v, t)-I(x, y, t+1)]^{2}
$$

- problem: this is a non-linear function of (u, v)
- solution: clearly, the problem is due to

$$
\Delta=I(x, y, t+1)-I(x-u, y-v, t)
$$

- this equation can be made linear on (u, v) by a Taylor series approximation

$$
/(x-u, y-v, t)=/(x, y, t)-u \frac{\partial /(x, y, t)}{\partial x}-v \frac{\partial /(x, y, t)}{\partial y}
$$

Differential methods

- which leads to

$$
\Delta=\underbrace{I(x, y, t+1)-I(x, y, t)}_{A}+\underbrace{u \frac{\partial I(x, y, t)}{\partial x}+v \frac{\partial I(x, y, t)}{\partial y}}_{B}
$$

- note: we know how to compute these terms
- A is the difference between consecutive frames

$$
A=I_{t}(x, y, t)=I(x, y, t+1)-I(x, y, t)
$$

- B is

$$
B=\nabla /(x, y, t)^{T}\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

i.e. a function of the image gradient

$$
\begin{aligned}
\nabla /(x, y, t) & =\left(I_{x}(x, y, t), I_{y}(x, y, t)\right)^{T} \\
& =\left(\frac{\partial /(x, y, t)}{\partial x}, \frac{\partial /(x, y, t)}{\partial y}\right)^{T}
\end{aligned}
$$

Differential methods

- we thus have

$$
\Delta=I_{t}(x, y, t)+u I_{x}(x, y, t)+V I_{y}(x, y, t)
$$

- and the least squares problem is

$$
\varepsilon^{*}=\sum_{x, y \in R}\left[I_{t}(x, y)+u I_{x}(x, y)+v l_{y}(x, y)\right]^{2}
$$

(note: since t is constant, we omit it)

- this is now linear least squares, we can just use our formula
- recall that

Linear least squares

- if

$$
\varepsilon^{*}=\min _{\Phi} \sum_{i}\left[y_{i}-f\left(x_{i}, \Phi\right)\right]^{2}
$$

- then the LS solution is:
- write

$$
\left[\begin{array}{c}
f\left(x_{1}, \Phi\right) \\
\vdots \\
f\left(x_{n}, \Phi\right)
\end{array}\right]=\Gamma\left(x_{1}, \cdots, x_{n}\right) \Phi, \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

- solution is given by normal equations

$$
\Phi=\left(\Gamma^{T} \Gamma\right)^{-1} \Gamma^{T} y
$$

Least squares solution

- for motion, instead of

$$
\varepsilon^{*}=\sum_{i}\left[y_{i}-f\left(x_{i}, \Phi\right)\right]^{2}
$$

- we have

$$
\varepsilon^{*}=\sum_{x, y \in R}\left[I_{t}(x, y)+u l_{x}(x, y)+v l_{y}(x, y)\right]^{2}
$$

- and write

$$
\left[\begin{array}{c}
f\left(x_{1}, y_{1}, \Phi\right) \\
\vdots \\
f\left(x_{n}, y_{n}, \Phi\right)
\end{array}\right]=-\left[\begin{array}{ccc}
I_{x}\left(x_{1}, y_{1}\right) & & I_{y}\left(x_{1}, y_{1}\right) \\
& \vdots & \\
I_{x}\left(x_{n}, y_{n}\right) & & I_{y}\left(x_{n}, y_{n}\right)
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right], \quad y=\left[\begin{array}{c}
I_{t}\left(x_{1}, y_{1}\right) \\
\vdots \\
I_{t}\left(x_{n}, y_{n}\right)
\end{array}\right]
$$

Least squares solution

- the normal equations are

$$
\begin{aligned}
{\left[\begin{array}{c}
u \\
v
\end{array}\right]=} & -\left(\left[\begin{array}{lll}
I_{x}\left(x_{1}, y_{1}\right) & \cdots & I_{x}\left(x_{n}, y_{n}\right) \\
I_{y}\left(x_{1}, y_{1}\right) & \cdots & I_{y}\left(x_{n}, y_{n}\right)
\end{array}\right]\left[\begin{array}{lll}
I_{x}\left(x_{1}, y_{1}\right) & & I_{y}\left(x_{1}, y_{1}\right) \\
I_{x}\left(x_{n}, y_{n}\right) & \vdots & I_{y}\left(x_{n}, y_{n}\right)
\end{array}\right]\right)^{-1} x \\
& x\left[\begin{array}{lll}
I_{x}\left(x_{1}, y_{1}\right) & \cdots & I_{x}\left(x_{n}, y_{n}\right) \\
I_{y}\left(x_{1}, y_{1}\right) & \cdots & I_{y}\left(x_{n}, y_{n}\right)
\end{array}\right]\left[\begin{array}{c}
I_{t}\left(x_{1}, y_{1}\right) \\
\vdots \\
I_{t}\left(x_{n}, y_{n}\right)
\end{array}\right]
\end{aligned}
$$

- leading to the solution

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{cc}
\sum_{x, y \in R}^{\prime} l_{x}^{2}(x, y) & \sum_{x, y \in R} I_{x}(x, y) I_{y}(x, y) \\
\sum_{x, y \in R} \prime_{x}(x, y) f_{y}(x, y) & \sum_{x, y \in R} f_{y}^{2}(x, y)
\end{array}\right]^{-1}\left[\begin{array}{l}
\sum_{x, y \in R} I_{x}(x, y) I_{t}(x, y) \\
\sum_{x, y \in R} f_{y}(x, y) I_{t}(x, y)
\end{array}\right]
$$

Least squares solution

- when is this well defined?
\rightarrow note that

$$
\left[\begin{array}{cc}
\sum_{x, y \in R} I_{x}^{2}(x, y) & \sum_{x, y \in R} I_{x}(x, y) /_{y}(x, y) \\
\sum_{x, y \in R} I_{x}(x, y) /_{y}(x, y) & \sum_{x, y \in R} I_{y}^{2}(x, y)
\end{array}\right]
$$

- has to be invertible
- it turns out that this is a function of the image structure within the window R

Orientation representations

- more general question: what sorts of structure are there?
- It is common to describe image patches by the variation of the gradient orientation

- important types:
- constant window
- small gradient mags
- edge window
- few large gradient mags in one direction
- flow window
- many large gradient mags in one direction (e.g. hair)
- corner window
- large gradient mags that swing (e.g. corner)

Representing Windows

- how can we detect these types of windows?
- the key is the matrix

$$
\begin{aligned}
\square & =\sum 00^{T}=0 \\
H & =\sum_{\text {edge pts }}\binom{-k}{0}\left(\begin{array}{ll}
-k & 0
\end{array}\right)=\left(\begin{array}{cc}
n k^{2} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$$
H=\sum_{\text {window }}(\nabla I)(\nabla I)^{T}
$$

$$
\boldsymbol{H} \boldsymbol{H}=\#\{\text { edges }\}\left(\begin{array}{cc}
n k^{2} & 0 \\
0 & 0
\end{array}\right)
$$

- how does it relate to edges?
- the answer is in the rank

$$
\begin{aligned}
& T \\
& H=\sum_{\text {verteage }}\binom{-k}{0}\left(\begin{array}{ll}
-k & 0
\end{array}\right)+\sum_{\text {noriz eage }}\binom{0}{-k}\left(\begin{array}{ll}
0 & -k
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
\frac{n k^{2}}{2} & 0 \\
0 & \frac{n k^{2}}{2}
\end{array}\right)
$$

Representing Windows

- recall: the eigenvalues of a diagonal matrix are the diagonal entries

$$
H=\sum_{\text {window }}(\nabla I)(\nabla I)^{T}
$$

- hence:
- constant window
- small eigenvalues
- edge window

- one medium, one small
- flow window
- one large, one small
- corner window
- two large eigenvalues

$$
\begin{aligned}
& H \text { H } H \propto\left(\begin{array}{cc}
k^{2} & 0 \\
0 & 0
\end{array}\right) \\
& H \quad H \propto\left(\begin{array}{cc}
k^{2} & 0 \\
0 & k^{2}
\end{array}\right)
\end{aligned}
$$

Representing Windows

- what about other orientations?

$$
H=\sum_{\text {window }}(\nabla I)(\nabla I)^{T}
$$

- useful property
- if A is a 2×2 matrix
- then

$$
\begin{aligned}
& \lambda_{1} \lambda_{2}=\operatorname{det}(A) \\
& \lambda_{1}+\lambda_{2}=a_{11}+a_{22}=\operatorname{trace}(A)
\end{aligned}
$$

- to have full rank we need diversity in the component matrices
- i.e. need edges of different orientation

$$
\begin{aligned}
\lambda H & =\sum_{\text {edge }}\binom{-a}{-b}\left(\begin{array}{ll}
-a & -b
\end{array}\right)=n\left(\begin{array}{ll}
a^{2} & a b \\
a b & b^{2}
\end{array}\right) \\
\lambda_{1} & =n\left(a^{2}+b^{2}\right) ; \lambda_{2}=0
\end{aligned}
$$

$$
\forall H=n_{1}\left(\begin{array}{ll}
a^{2} & a b \\
a b & b^{2}
\end{array}\right)+n_{2}\left(\begin{array}{cc}
c^{2} & 0 \\
0 & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
n_{1} a^{2}+n_{2} c^{2} & a b \\
a b & b^{2}
\end{array}\right)
$$

$$
\lambda_{1}, \lambda_{2}>0
$$

Representing Windows

- in summary:
- constant window

$$
\square H=0
$$

- small eigenvalues
- edge window
- one medium, one small
- flow window
- one large, one small
- corner window
- two large eigenvalues

$$
H \quad H \propto\left(\begin{array}{cc}
k^{2} & 0 \\
0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \text { HW} H \propto\left(\begin{array}{cc}
k^{2} & 0 \\
0 & 0
\end{array}\right) \\
& H \quad H \propto\left(\begin{array}{cc}
k^{2} & 0 \\
0 & k^{2}
\end{array}\right)
\end{aligned}
$$

- this confirms what we had already seen:
- motion can only be computed unambiguously when the neighborhood contains 2D information (e.g. corners)

In summary

- $[U, V]=\operatorname{Isme}(I, I \prime, w)$
- compute gradients $I_{x}, I_{y}, I_{t}=I I^{\prime}-I$
- for each pixel (x,y)
- let window $R=\left\{\left(x_{i}, y_{i}\right) \mid x-w \leq x_{i} \leq x+w, y-w \leq y_{i} \leq y+w\right\}$
- compute

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{cc}
\sum_{x, y \in R} I_{x}^{2}(x, y) & \sum_{x, y \in R} I_{x}(x, y) I_{y}(x, y) \\
\sum_{x, y \in R} f_{x}(x, y) I_{y}(x, y) & \sum_{x, y \in R} f_{y}^{2}(x, y)
\end{array}\right]^{-1}\left[\begin{array}{l}
\sum_{x, y \in R} f_{x}(x, y) I_{t}(x, y) \\
\sum_{x, y \in R} f_{y}(x, y) I_{t}(x, y)
\end{array}\right]
$$

- make $U(x, y)=u, V(x, y)=v$
- return U, V

Problems

- recall we used the Taylor series approximation

$$
I(x-u, y-v, t)=I(x, y, t)-u \frac{\partial I(x, y, t)}{\partial x}-v \frac{\partial I(x, y, t)}{\partial y}
$$

- this is a good approximation only for small (u, v)
- to avoid this problem we need to use pyramids

Hierarchical estimation

- algorithm:
- do motion estimation using I_{0} and I_{o} to obtain ($\mathrm{u}_{0}, \mathrm{~V}_{0}$)
- warp I_{0} with $\left(u_{0}, v_{0}\right)$:

$$
\operatorname{wpd}_{0}(x, y)=I_{0}\left(x-u_{0}, y-v_{0}\right)
$$

- up-sample by 2 to get I_{1}
- do motion estimation using I_{1} and I_{1} to obtain (u_{1}, v_{1})
- warp I_{1} with $\left(u_{1}, v_{1}\right)$
- etc.

Hierarchical estimation

- each stage improves the match
- solution:
- upsample all $\left(u_{i}, v_{i}\right)$ to full resolution
- add to obtain (u, v)
- note that
- small displacements at low resolution
- are large displacements at full resolution
- combines linearity with ability to estimate large displacements

-••

Motion models

- so far we have dealt
- local motion (each pixel moves by itself)
- translation

$$
/(x, y, t+1)=/(x-u, y-v, t)
$$

- local motion is the most generic (e.g. tree leaves blowing in the wind)
- one important alternative case is that of global motion
- motion of all pixels satisfies one common equation
- usually due to camera motion: panning, rotation, zooming

Important cases

- point (x, y) at time t warped into point $\left(x^{\prime}, y^{\prime}\right)$ at time $t+1$
- important global motions are
- translation by (u, v)

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

- rotation by θ

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- scaling by $\left(s_{x}, s_{y}\right)$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Affine transformations

- these are all special cases of the affine transformation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

- motion of entire image described by $\Phi=(a, b, c, d, e, f)^{\top}$
- can account for translation, rotation, scaling, and shear

translation
rotation

uniform scale
nonuniform scale

shearing

