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Plan for today
today we will discuss motion estimation
this is interesting in two ways
• motion is very useful as a cue for recognition, segmentation, 

compression, etc.
• is a great example of least squares problem

we will also wrap up discussion on least squares
introduce two types of motion estimation
• block matching
• differential methods

will talk about motion ambiguities, and local vs global 
motion
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Least squares
a least squares problem is one where we have
• two variables (X,Y) related by an unknown function Y = g(X)
• a training set D = {(x1,y1), …, (xn,yn)}
• a model Y = f(x;Φ) where Φ = (φ1,…,φk) is a vector of parameters

the goal is:
• to find the model parameters that lead to the best approximation

to the observed data, i.e. to determine

• the canonical example is the problem of fitting a line to a set of 
points

• here 
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Two main cases
non-linear least squares
• f(x,Φ) not linear on Φ, e.g. 

linear least squares
• f(x,Φ) linear on Φ, e.g. 

note: all that matters is linearity on Φ, both nonlinear on x
other linear models: polynomials, splines, neural 
networks, Fourier decompositions, etc.
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Non-linear least squares

most difficult case
optimal solution if and only if:
• gradient of ε is zero
• Hessian of ε negative definite

in general this has no closed form
numerical solution, e.g. gradient descent
• pick initial estimate Φ(0)

• iterate
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Linear least squares
closed form solution
• write

• solution is given by normal equations

e.g. for a line f(x;φ0,φ1)  = φ0 + φ1x
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Very powerful
Q: what is the best linear approximation of a N point 
sequence by M DFT style exponentials?

to get least squares solution, we need Γ(1,…,N)
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Best Fourier approximation
this means that

this is orthonormal, i.e. ΓTΓ = I,  and

i.e. the best approximation are the M DFT coefficients 
associated with the exponentials
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Signal approximation
Q: what is the band-pass filter h(n) whose output y(n) 
best approximates a signal x(n) in the frequency range 
Ω?
we have seen that y(n) must have DFT 

hence optimal filter has DFT 

i.e. it is the ideal band-pass filter of band Ω
intuitive: ideal = best approximation in LS sense!
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Motion estimation
is an important practical example of LS problems
many applications:
• recognition: many events are characterized by the type of motion 

(e.g. walking vs running)
• strong clues about scene structure (e.g. when we rotate a 3D 

object, motion of a pixel determined by how far the 3D point is 
from camera)

• segmentation (things that move “together” belong to the same 
object)

• alignment (once we know the motion we can align images in a 
sequence, e.g. the NASA panoramas)

• compression (estimate motion, align images, transmit only error)
• etc
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Motion estimation
consider the following two images

time t
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Motion estimation
consider the following two images

time t+1
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Motion estimation
goal: given images I(x,y,t) and I(x,y,t+1), for each pixel 
find (u,v) which minimizes difference

problem: impossible to solve from one pixel alone
• two unknowns (u,v), one equation
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Fundamental law
motion can only be solved over a neighborhood
• need at least two pixels
• makes sense to consider more and minimize the average error

this is least squares
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Block matching
in fact, it is a non-linear least squares problem, since 
I(x-u,y-v,t) is a non-linear function of (u,v)
solution I: block matching
• for each block in I(x,y,t+1) do an exhaustive search in I(x,y,t) for 

the closest match 
• very common in compression, e.g. MPEG
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Block matching
is computationally intensive
• need to compute the squared error 

between the block and a collection of 
blocks in the previous image

does not always produce good 
motion estimates
• e.g. many matches can be equally 

good

this is a problem for all motion 
estimation methods:
• motion can be ambiguous when 

measured locally (e.g. by matching 
windows)

?
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Motion ambiguities

?
? ?

clearly we cannot determine the 
motion of a flat neighborhood
for an edge neighborhood, we 
can only determine one of the 
two components
the two components are 
uniquely defined only when the 
neighborhood contains 2D 
image structure
this is called the “aperture 
problem”

? ?

?



18

Differential methods
we can at least eliminate the complexity problem, by 
looking for a closed-form solution to

problem: this is a non-linear function of (u,v)
solution: clearly, the problem is due to 

this equation can be made linear on (u,v) by a Taylor 
series approximation
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Differential methods
which leads to

note: we know how to compute these terms
• A is the difference between consecutive frames

• B is 

i.e. a function of the image gradient
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Differential methods
we thus have

and the least squares problem is

(note: since t is constant, we omit it)
this is now linear least squares, we can just use our 
formula 
recall that
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Linear least squares
if 

then the LS solution is:
• write

• solution is given by normal equations
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Least squares solution
for motion, instead of

we have

and write
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Least squares solution
the normal equations are

leading to the solution
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Least squares solution
when is this well defined?
note that

has to be invertible
it turns out that this is a function of the image structure 
within the window R
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Orientation representations
more general question: 
what sorts of structure are 
there?
It is common to describe 
image patches by the 
variation of the gradient 
orientation

important types:
• constant window

• small gradient mags

• edge window
• few large gradient mags in 

one direction

• flow window
• many large gradient mags in 

one direction (e.g. hair)

• corner window
• large gradient mags that 

swing (e.g. corner)
edge flow 2Dconst.
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Representing Windows
how can we detect these 
types of windows?
the key is the matrix

how does it relate to 
edges?
the answer is in the rank
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Representing Windows
recall: the eigenvalues of a 
diagonal matrix  are the 
diagonal entries
hence:
• constant window

• small eigenvalues

• edge window
• one medium, one small

• flow window
• one large, one small

• corner window
• two large eigenvalues

H = ∇I( ) ∇I( )T
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Representing Windows
H = ∇I( ) ∇I( )T

window
∑what about other 

orientations?
useful property
• if A is a 2 x 2 matrix
• then

to have full rank we need 
diversity in the component 
matrices
i.e. need edges of different 
orientation
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Representing Windows
in summary: 
• constant window

• small eigenvalues

• edge window
• one medium, one small

• flow window
• one large, one small

• corner window
• two large eigenvalues

this confirms what we had already seen:
• motion can only be computed unambiguously when the 

neighborhood contains 2D information (e.g. corners)
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In summary
[U,V] = lsme(I,I’,w)
• compute gradients Ix,Iy,It = I’-I
• for each pixel (x,y)

• let window
• compute 

• make U(x,y) = u, V(x,y) = v

• return U,V
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Problems
recall we used the Taylor series approximation

this is a good approximation only for small (u,v)
to avoid this problem we need to use pyramids
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Hierarchical estimation I0 I’0

algorithm:
• do motion estimation using I0 and I’0 to 

obtain (u0,v0)

• warp I0 with (u0,v0) :

wpd0(x,y) = I0(x-u0,y-v0)

• up-sample by 2 to get I1

• do motion estimation using I1 and I’1 to 

obtain (u1,v1)

• warp I1 with (u1,v1)

• etc.

motion
estimation

motion
estimation

warp

⇑2

warp
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...

(u0,v0)

wpd0

I1

I’1

(u1,v1)

wpd1
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Hierarchical estimation
each stage improves the match

solution: 

• upsample all (ui,vi) to full resolution 

• add to obtain (u,v)

note that 
• small displacements at low resolution
• are large displacements at full 

resolution

combines linearity with ability to 
estimate large displacements

⇑2

+

⇑2

...

(u0,v0)

(u1,v1)
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Motion models

rotation
so far we have dealt 
• local motion (each pixel moves by itself)
• translation

local motion is the most generic (e.g. 
tree leaves blowing in the wind)
one important alternative case is that 
of global motion
• motion of all pixels satisfies one common 

equation
• usually due to camera motion: panning, 

rotation, zooming

),,()1,,( tvyuxItyxI −−=+

zoom
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Important cases
point (x,y) at time t warped into point (x’,y’) at time t+1
important global motions are
• translation by (u,v)

• rotation by θ

• scaling by (sx,sy)
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Affine transformations
these are all special cases of the affine transformation

motion of entire image described by Φ = (a,b,c,d,e,f)T

can account for translation, rotation, scaling, and shear
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