Radiometry

Nuno Vasconcelos UCSD

- Last class: geometry of image formation
- pinhole camera:
 - point (x,y,z) in 3D scene projected into image pixel of coordinates (x', y')
 - according to the perspective projection equation:

Perspective projection

- the inverse dependence on depth (Z)
 - causes objects to shrink with distance
- while pinhole is a good mathematical model
- in practice, cannot really use it
 - not enough light for good pictures

Lenses

- the basic idea is:
 - lets make the aperture bigger so that we can have many rays of light into the camera
 - to avoid blurring we need to concentrate all the rays that start in the same 3D point
 - so that they end up on the same image plane point

Lenses

• fundamental relation

$$\frac{1}{d_1} \approx \frac{1}{n_1} \left(\frac{n_2 - n_1}{R} - \frac{n_2}{d_2} \right)$$

- note that it does not depend on the vertical position of P
- we can show that it holds for all rays that start in the plane of P

Lenses

- note that, in general,
 - can only have in focus objects that are in a certain depth range
 - this is why background is sometimes out of focus

- by controlling the focus you are effectively changing the plane of the rays that converge on the image plane without blur
- for math simplicity, we will work with pinhole model!

- today : what is the pixel brightness or image intensity?
- clearly, depends on three factors:
 - lighting of the scene
 - the reflectance properties of the material
 - various angles

Radiance

- to study light
- first important concept is radiance
 - appropriate unit for measuring distribution of light
- Definition: radiance is
 - power (energy/unit time) traveling at x in direction V
 - per unit area perpendicular to V
 - per unit solid angle
- measured in
 - watts/square meter x steradian (w x m⁻² x sr ⁻¹)
 - (steradian = radian squared)
- it follows that it is a function of a point x and a direction V

Х

Radiance

- important property
 - in a lossless medium (e.g. air)
 - whatever radiance is emitted by the object at P_o
 - is the radiance that is received by the image at P_i

 "in a lossless medium radiance is constant along straight lines"

- the next question is:
 - what is the relation between
 - the illumination that reaches the object

• this is measured by the bidirectional reflectance distribution function (BRDF)

BRDF

 is the ratio of energy in outgoing direction (V_o) to incoming direction (V_i)

 $\rho_{bd}\left(P,V_{i},V_{o}\right)$

- important property (Helmoltz reciprocity)
 - BRDF is symmetric

$$\rho_{bd}\left(P,V_{i},V_{o}\right) = \rho_{bd}\left(P,V_{o},V_{i}\right)$$

- but we can do even simpler than this
 - for Lambertian surfaces, the BRDF does not depend direction at all
 - they reflect light equally in all directions

$$\rho_{bd}\left(P,V_{i},V_{o}\right) = \rho\left(P\right)$$

Albedo

• in this case the surface is described by its albedo

 $\rho(P)$

- note that
 - most surfaces are not Lambertian,
 - but the Lambertian assumption makes the equations a lot easier
 - commonly used in practice, even though Lambertian objects do not appear realistic (not good enough for graphics)

Albedo

- in laymen's terms:
 - albedo is percentage of light reflected by an object
 - it depends on the color and material properties of the object
 - light colors reflect more light (why you should wear white in the desert)
 - this turns out to have major consequences for object temperature
 - e.g., it is one of the main justifications for global warming

Albedo and global warming

- snow turns out to have the largest possible albedo, and reflects almost 100% of the light
- most other objects absorb light, and heat up

Albedo and global warming

- by reflecting most of the incident light
- the polar cap cools off the planet
- as ice melts, less light is reflected
- the planet warms up, more ice melts, etc.
- this is one of the main reasons for global warming

- 1 Light colored ice reflects back the Sun's energy efficiently.
- 2 Exposed land is darker colored and absorbs more energy.
- 3 As the ice melts, more land is exposed. This absorbs more heat, melting more ice.
- 4 The altitude of the melting ice is reduced so it becomes harder for new ice to form.

Albedo and parking lots

- these day, this effect is taken very seriously
- it turns out that increasing reflections is useful in many other ways
- for example, it can save a lot of lighting (energy)
- an example of how paving parking lots with pavement of higher reflectance can make a difference

Angles

- is the object albedo the only factor that matters for how much light it reflects?
- no, the angle at which the light is incident also matters

- this is easy to see
- consider the following experiment

- energy absorbed by object depends on its surface area
- this varies with the incident angle
- concept that captures this dependence on angles is that of foreshortening

- foreshortening: very important concept
 - tilted surface looks smaller than when seen at 90°
 - best understood by example
 - if I show you a tilted person it looks smaller than when you view you at 90°

foreshortening

• what is the **foreshortened area** for a patch of area dA?

- it depends on the angle θ between
 - the normal to the patch
 - viewing direction
- for a known area dA we can actually compute the foreshortening factor

• this is easy for a simple case

• foreshortened area is

 $dA' = dI_1' dI_2' = dI_1 dI_2 \cos \theta = dA \cos \theta$

• it can be shown that this holds for a patch of any shape.

foreshortened area = area x cos (angle between viewing direction and surface normal)

- putting everything together,
 - we have an equation for the light reflected by an object
 - assuming surface reflects equally in all directions (Lambertian)
 - outgoing radiance is

$$L(P, V_o) = \rho(P)L(P, V_i) \cos \theta_i, \forall V_o$$

- "light reflected at point *P* in direction V_o = albedo at *P* x incident light from direction V_i x cos (normal, incident)"
- note that
 - it holds for any outgoing direction V_o
 - is a function of V_i
 - if there are multiple incoming directions, we have to integrate over V_i

• this allows us to propagate light throughout a scene

$$L(P_n, V) = L(P_0, V_0) \left[\prod_{i=0}^{n} \rho(P_i) \right] \left[\prod_{i=1}^{n+1} \cos \theta_i \right], \forall V$$

note that on

$$L(P_n, V) = L(P_0, V_0) \left[\prod_{i=0}^{n} \rho(P_i) \right] \left[\prod_{i=1}^{n+1} \cos \theta_i \right], \forall V$$

- unless all cosines are close to 1
- their product goes to zero quickly
- e.g. see decay of $\cos^{n}(\theta)$ with n
- this means that only light that arrives frontally to all the bounces gets propagated very far
- such an alignment is very unlikely
- we don't really have to worry about many bounces
- the process becomes tractable

- on the other hand,
 - there are still various single-bounce paths
 - e.g. each source has a single bounce path to each non-shaded object
 - to deal with this we need to know more about light sources

Light sources

- most common model is "point source at infinity"
 - assume all light comes from a single point
 - which is very far away from the scene
- reasonable assumption for vision where one of two cases tend to hold
 - source is much smaller than the scene (e.g. a light-bulb)
 - source is very far away (e.g. the sun)
- hence, in general, relative to its size and the size of the scene the source can be considered distant

Point source at infinity

- why is this interesting?
 - because a PS @ infinity only emits light in one direction
 - this can be understood intuitively
 - e.g. while a nearby source hits the object in all directions

 rays that originate far away become parallel by the time they reach the object

- hence, there is only one incoming direction of light

- in summary, we have
 - PS @ infinity
 - Lambertian surface
- we know that

- only paths with a few bounces, from source to object, matter
- source light hits each object along single direction
- we can go back to our original scenario

• overall, we have an extremely simple relationship!

$$P(P_i) = E\rho(P_0)\cos\theta$$

- the power at pixel P_i is the product of
 - source power E,
 - albedo of the object at reflection point,
 - and angle between source direction and object normal

- note that
 - if *n* is the surface normal and *s* the light direction
 - the two vectors have unit norm
 - then $\cos \theta = \mathbf{n} \cdot \mathbf{s}$ and

 $P(P_i) = E\rho(P_0)\vec{n}(P_0).\vec{s}$

- note that
 - light direction s is constant
 - but the surface normal n and the albedo ρ are functions on the object surface

$$P(P_i) = E\rho(P_0)\vec{n}(P_0).\vec{s}$$

Vision vs graphics

this is a nice example of why vision is much harder than graphics

$$P(P_i) = E\rho(P_0)\vec{n}(P_0).\vec{s}$$

- graphics: given ρ , \boldsymbol{n} , and \boldsymbol{s} compute P
- this is just a multiplication
- vision: given *P*, find ρ , *n*, and *s*
- really hard problem
- note that both
 p and *n* depend on the pixel, so the # of unknowns is three times the # of constraints
- cannot be solved, unless we make assumptions about these functions

Vision vs graphics

• once again, your brain is stellar at doing this

- why do we see two spheres of uniform color and not two flat objects that get darker as you move down the image?
- requires preference for 3D objects, assumption that the spheres are smooth, that the light is at the top, that there are shadows ...
- a lot of vision is really just checking what you know already!

Vision

- it turns out that if you make the right assumptions
 - it can be done
 - research problem, not perfect yet

shading (cos θ)

Multiple light sources

• finally, note that the equation is linear on **s**

$$P(P_i) = E\rho(P_0)\vec{n}(P_0).\vec{s}$$

if we have n PS @ infinity, we can just assume that
s = s₁ + ...+ s_n

$$P = E\rho(P_0)\vec{n}(P_0)\sum_k \vec{s}_k$$
$$= \sum_k E\rho(P_0)\vec{n}(P_0)\cdot\vec{s}_k = \sum_i P_k$$

• resulting image is sum of the images due to each source

