Radiometry

Nuno Vasconcelos
UCSD

Light

- Last class: geometry of image formation
- pinhole camera:
- point (x, y, z) in 3D scene projected into image pixel of coordinates (x^{\prime}, y^{\prime})
- according to the perspective projection equation:

$$
\binom{x^{\prime}}{y^{\prime}}=f\binom{x / z}{y / z}
$$

Perspective projection

- the inverse dependence on depth (Z)
- causes objects to shrink with distance
- while pinhole is a good mathematical model
- in practice, cannot really use it
- not enough light for good pictures

Lenses

- the basic idea is:
- lets make the aperture bigger so that we can have many rays of light into the camera
- to avoid blurring we need to concentrate all the rays that start in the same 3D point
- so that they end up on the same image
 plane point

Lenses

- fundamental relation $\frac{1}{d_{1}} \approx \frac{1}{n_{1}}\left(\frac{n_{2}-n_{1}}{R}-\frac{n_{2}}{d_{2}}\right)$
- note that it does not depend on the vertical position of P
- we can show that it holds for all rays that start in the plane of P

Lenses

- note that, in general,
- can only have in focus objects that are in a certain depth range
- this is why background is sometimes out of focus

- by controlling the focus you are effectively changing the plane of the rays that converge on the image plane without blur
- for math simplicity, we will work with pinhole model!

Light

- today : what is the pixel brightness or image intensity?
- clearly, depends on three factors:
- lighting of the scene
- the reflectance properties of the material
- various angles

Radiance

- to study light
- first important concept is radiance
- appropriate unit for measuring distribution of light
- Definition: radiance is
- power (energy/unit time) traveling at x in direction V
- per unit area perpendicular to \mathbf{V}
- per unit solid angle

- it follows that it is a function of a point x and a direction V

Radiance

- important property
- in a lossless medium (e.g. air)
- whatever radiance is emitted by the object at P_{0}
- is the radiance that is received by the image at P_{i}

- "in a lossless medium radiance is constant along straight lines"

Light

- the next question is:
- what is the relation between
- the illumination that reaches the object
- and the reflected light?

- this is measured by the bidirectional reflectance distribution function (BRDF)

BRDF

- is the ratio of energy in outgoing direction $\left(\mathrm{V}_{\mathrm{o}}\right)$ to incoming direction $\left(\mathrm{V}_{\mathrm{i}}\right)$

$$
\rho_{b d}\left(P, V_{i}, V_{o}\right)
$$

- important property (Helmoltz reciprocity)
- BRDF is symmetric

$$
\rho_{b d}\left(P, V_{i}, V_{o}\right)=\rho_{b d}\left(P, V_{o}, V_{i}\right)
$$

- but we can do even simpler than this
- for Lambertian surfaces, the BRDF does not depend direction at all
- they reflect light equally in all directions

$$
\rho_{b d}\left(P, V_{i}, V_{o}\right)=\rho(P)
$$

Albedo

- in this case the surface is described by its albedo

$$
\rho(P)
$$

- note that
- most surfaces are not Lambertian,
- but the Lambertian assumption makes the equations a lot easier
- commonly used in practice, even though Lambertian objects do not appear realistic (not good enough for graphics)

Albedo

- in laymen's terms:
- albedo is percentage of light reflected by an object
- it depends on the color and material properties of the object
- light colors reflect more light (why you should wear white in the desert)
- this turns out to have major consequences for object temperature
- e.g., it is one of the main justifications for global warming

Albedo and global warming

- snow turns out to have the largest possible albedo, and reflects almost 100\% of the light
- most other objects absorb light, and heat up

Albedo and global warming

- by reflecting most of the incident light
- the polar cap cools off the planet
- as ice melts, less light is reflected
- the planet warms up, more ice melts, etc.
- this is one of the main reasons for global warming

1 Light colored ice reflects back the Sun's energy efficiently.
2 Exposed land is darker colored and absorbs more energy.
3 As the ice melts, more land is exposed. This absorbs more heat, melting more ice.
4 The altitude of the melting ice is reduced so it becomes harder for new ice to form.

Albedo and parking lots

- these day, this effect is taken very seriously
- it turns out that increasing reflections is useful in many other ways
- for example, it can save a lot of lighting (energy)
- an example of how paving parking lots with pavement of higher reflectance can make a difference

Angles

- is the object albedo the only factor that matters for how much light it reflects?
- no, the angle at which the light is incident also matters

Light

- this is easy to see
- consider the following experiment

- energy absorbed by object depends on its surface area
- this varies with the incident angle
- concept that captures this dependence on angles is that of foreshortening

Light

- foreshortening: very important concept
- tilted surface looks smaller than when seen at 90°
- best understood by example
- if I show you a tilted person it looks smaller than when you view you at 90°

foreshortening

Light

- what is the foreshortened area for a patch of area dA?

- it depends on the angle θ between
- the normal to the patch
- viewing direction
- for a known area dA we can actually compute the foreshortening factor

Light

- this is easy for a simple case

viewing direction

- foreshortened area is

$$
\mathrm{dA}^{\prime}=\mathrm{dl}_{1}{ }^{\prime} \mathrm{dl}_{2}{ }^{\prime}=\mathrm{dl}_{1} \mathrm{dl}_{2} \cos \theta=\mathrm{dA} \cos \theta
$$

- it can be shown that this holds for a patch of any shape.
- foreshortened area = area x cos (angle between viewing direction and surface normal)

Lambertian surfaces

- putting everything together,
- we have an equation for the light reflected by an object
- assuming surface reflects equally in all directions (Lambertian)
- outgoing radiance is

$$
L\left(P, V_{o}\right)=\rho(P) L\left(P, V_{i}\right) \cos \theta_{i}, \forall V_{o}
$$

- "light reflected at point P in direction $V_{o}=$ albedo at $P \times$ incident light from direction $V_{i} \times \cos$ (normal, incident)"
- note that
- it holds for any outgoing direction V_{o}
- is a function of V_{i}
- if there are multiple incoming directions, we have to integrate over V_{i}

Lambertian surfaces

- this allows us to propagate light throughout a scene

Lambertian surfaces

- using constancy of radiance along straight lines

Lambertian surfaces

- using reflection equation again

$$
\begin{gathered}
L\left(P_{0}, V_{1}\right)=L\left(P_{0}, V_{0}\right) \rho\left(P_{0}\right) \cos \theta_{1}, \forall V_{1} \\
L\left(P_{1}, V_{2}\right)=L\left(P_{0}, V_{1}\right) \rho\left(P_{1}\right) \cos \theta_{2}, \forall V_{2} \\
\mathbb{\imath} \\
L\left(P_{1}, V_{2}\right)=L\left(P_{0}, V_{0}\right) \rho\left(P_{1}\right) \rho\left(P_{0}\right) \cos \theta_{2} \mathrm{x} \\
\mathrm{x} \cos \theta_{1}
\end{gathered}
$$

Lambertian surfaces

- and we have a rule for any number of bounces

$$
\angle\left(P_{n}, V\right)=L\left(P_{0}, V_{0}\right)\left[\prod_{i=0}^{n} \rho\left(P_{i}\right)\right]\left[\prod_{i=1}^{n+1} \cos \theta_{i}\right], \forall V
$$

Lambertian surfaces

- note that on

$$
L\left(P_{n}, V\right)=L\left(P_{0}, V_{0}\right)\left[\prod_{i=0}^{n} \rho\left(P_{i}\right)\right]\left[\prod_{i=1}^{n+1} \cos \theta_{i}\right], \forall V
$$

- unless all cosines are close to 1
- their product goes to zero quickly
- e.g. see decay of $\cos ^{n}(\theta)$ with n
- this means that only light that arrives frontally to all the bounces gets propagated very far
- such an alignment is very unlikely
- we don't really have to worry about many bounces
- the process becomes tractable

Lambertian surfaces

- on the other hand,
- there are still various single-bounce paths
- e.g. each source has a single bounce path to each non-shaded object
- to deal with this we need to know more about light sources

Light sources

- most common model is "point source at infinity"
- assume all light comes from a single point
- which is very far away from the scene
- reasonable assumption for vision where one of two cases tend to hold

- source is much smaller than the scene (e.g. a light-bulb)
- source is very far away (e.g. the sun)
- hence, in general, relative to its size and the size of the scene the source can be considered distant

Point source at infinity

- why is this interesting?
- because a PS @ infinity only emits light in one direction
- this can be understood intuitively
- e.g. while a nearby source hits the object in all directions

- rays that originate far away become parallel by the time they reach the object

- hence, there is only one incoming direction of light

Lambertian surfaces

- in summary, we have
- PS @ infinity
- Lambertian surface
- we know that

- only paths with a few bounces, from source to object, matter
- source light hits each object along single direction
- we can go back to our original scenario

Lambertian surfaces

- overall, we have an extremely simple relationship!

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \cos \theta
$$

- the power at pixel P_{i} is the product of
- source power E,
- albedo of the object at reflection point,
- and angle between source direction and object normal

Lambertian surfaces

- note that
- if \boldsymbol{n} is the surface normal and \boldsymbol{s} the light direction
- the two vectors have unit norm
- then $\cos \theta=\boldsymbol{n} . \boldsymbol{s}$ and

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

Lambertian surfaces

- note that
- light direction s is constant
- but the surface normal \boldsymbol{n} and the albedo ρ are functions on the object surface

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

Vision vs graphics

- this is a nice example of why vision is much harder than graphics

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

- graphics: given ρ, \boldsymbol{n}, and \boldsymbol{s} compute P
- this is just a multiplication
- vision: given P, find ρ, \boldsymbol{n}, and \boldsymbol{s}
- really hard problem
- note that both ρ and \boldsymbol{n} depend on the pixel, so the \# of unknowns is three times the \# of constraints
- cannot be solved, unless we make assumptions about these functions

Vision vs graphics

- once again, your brain is stellar at doing this

- why do we see two spheres of uniform color and not two flat objects that get darker as you move down the image?
- requires preference for 3D objects, assumption that the spheres are smooth, that the light is at the top, that there are shadows ...
- a lot of vision is really just checking what you know already!

Vision

- it turns out that if you make the right assumptions
- it can be done
- research problem, not perfect yet

shading $(\cos \theta)$

Multiple light sources

- finally, note that the equation is linear on s

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

- if we have n PS @ infinity, we can just assume that

$$
\mathbf{s}=\mathbf{s}_{1}+\ldots+\mathbf{s}_{n}
$$

$$
\begin{aligned}
P & =E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \sum_{k} \vec{s}_{k} \\
& =\sum_{k} E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}_{k}=\sum_{i} P_{k}
\end{aligned}
$$

- resulting image is sum of the images due to each source

