Radiometry

Nuno Vasconcelos
UCSD
Light

- Last class: geometry of image formation
- pinhole camera:
 - point \((x, y, z)\) in 3D scene projected into image pixel of coordinates \((x', y')\)
 - according to the perspective projection equation:
Perspective projection

• the inverse dependence on depth (Z)
 – causes objects to shrink with distance

• while pinhole is a good mathematical model

• in practice, cannot really use it
 – not enough light for good pictures
Lenses

• the basic idea is:
 – let's make the aperture bigger so that we can have many rays of light into the camera

 – to avoid blurring we need to concentrate all the rays that start in the same 3D point

 – so that they end up on the same image plane point
Lenses

- fundamental relation

\[\frac{1}{d_1} \approx \frac{1}{n_1} \left(\frac{n_2 - n_1}{R} - \frac{n_2}{d_2} \right) \]

 - note that it does not depend on the vertical position of \(P \)
 - we can show that it holds for all rays that start in the plane of \(P \)
Lenses

• note that, in general,
 – can only have in focus objects that are in a certain depth range
 – this is why background is sometimes out of focus

 – by controlling the focus you are effectively changing the plane of the rays that converge on the image plane without blur

• for math simplicity, we will work with pinhole model!
Light

• today: what is the pixel brightness or image intensity?
• clearly, depends on three factors:
 – lighting of the scene
 – the reflectance properties of the material
 – various angles
Radiance

• to study light

• first important concept is radiance
 – appropriate unit for measuring distribution of light

• **Definition:** radiance is
 – power (energy/unit time) traveling at \(x \) in direction \(\mathbf{V} \)
 – per unit area perpendicular to \(\mathbf{V} \)
 – per unit solid angle

• measured in
 – watts/square meter \(\times \) steradian (\(w \times m^{-2} \times sr^{-1} \))
 – (steradian = radian squared)

• it follows that it is a function of a point \(x \) and a direction \(\mathbf{V} \)
Radiance

• important property
 – in a lossless medium (e.g. air)
 – whatever radiance is emitted by the object at \(P_o \)
 – is the radiance that is received by the image at \(P_i \)

• “in a lossless medium radiance is constant along straight lines”
Light

- the next question is:
 - what is the relation between
 - the illumination that reaches the object
 - and the reflected light?

- this is measured by the bidirectional reflectance distribution function (BRDF)
BRDF

- is the ratio of energy in outgoing direction (V_o) to incoming direction (V_i)
 $$\rho_{bd} (P, V_i, V_o)$$

- important property (Helmoltz reciprocity)
 - BRDF is symmetric
 $$\rho_{bd} (P, V_i, V_o) = \rho_{bd} (P, V_o, V_i)$$

- but we can do even simpler than this
 - for Lambertian surfaces, the BRDF does not depend direction at all
 - they reflect light equally in all directions
 $$\rho_{bd} (P, V_i, V_o) = \rho (P)$$
Albedo

• in this case the surface is described by its albedo

\[\rho(P) \]

• note that
 – most surfaces are not Lambertian,
 – but the Lambertian assumption makes the equations a lot easier
 – commonly used in practice, even though Lambertian objects do not appear realistic (not good enough for graphics)
Albedo

• in laymen’s terms:
 – albedo is percentage of light reflected by an object
 – it depends on the color and material properties of the object
 – light colors reflect more light (why you should wear white in the desert)
 – this turns out to have major consequences for object temperature
 – e.g., it is one of the main justifications for global warming
Albedo and global warming

• snow turns out to have the largest possible albedo, and reflects almost 100% of the light
• most other objects absorb light, and heat up
Albedo and global warming

• by reflecting most of the incident light
• the polar cap cools off the planet
• as ice melts, less light is reflected
• the planet warms up, more ice melts, etc.
• this is one of the main reasons for global warming

1 Light colored ice reflects back the Sun’s energy efficiently.
2 Exposed land is darker colored and absorbs more energy.
3 As the ice melts, more land is exposed. This absorbs more heat, melting more ice.
4 The altitude of the melting ice is reduced so it becomes harder for new ice to form.
Albedo and parking lots

• these day, this effect is taken very seriously
• it turns out that increasing reflections is useful in many other ways
• for example, it can save a lot of lighting (energy)
• an example of how paving parking lots with pavement of higher reflectance can make a difference
Angles

• is the object **albedo the only factor that matters** for how much light it reflects?
• **no**, the **angle** at which the light is incident also matters
Light

- this is easy to see
- consider the following experiment

![Diagram showing a light source and a sheet of paper with lots of reflected light on one side and no reflection on the other.]

- energy absorbed by object depends on its surface area
- this varies with the incident angle
- concept that captures this dependence on angles is that of foreshortening
Light

- **foreshortening**: very important concept
 - tilted surface looks smaller than when seen at 90°
 - best understood by example
 - if I show you a tilted person it looks smaller than when you view you at 90°
Light

• what is the foreshortened area for a patch of area dA?

• it depends on the angle θ between
 – the normal to the patch
 – viewing direction

• for a known area dA we can actually compute the foreshortening factor
Light

• this is easy for a simple case

• foreshortened area is

\[dA' = dl_1' dl_2' = dl_1 dl_2 \cos \theta = dA \cos \theta \]

• it can be shown that this holds for a patch of any shape.

 – **foreshortened area = area \times \cos (angle between viewing direction and surface normal)**
Lambertian surfaces

• putting everything together,
 – we have an equation for the light reflected by an object
 – assuming surface reflects equally in all directions (Lambertian)
 – outgoing radiance is

\[L(P, V_o) = \rho(P) L(P, V_i) \cos \theta_i, \forall V_o \]

– “light reflected at point \(P \) in direction \(V_o = \) albedo at \(P \) x incident light from direction \(V_i \) x cos (normal, incident)”

– note that
 • it holds for any outgoing direction \(V_o \)
 • is a function of \(V_i \)
 • if there are multiple incoming directions, we have to integrate over \(V_i \)
Lambertian surfaces

- this allows us to propagate light throughout a scene
Lambertian surfaces

- using constancy of radiance along straight lines

\[L(P_1, V_1) = L(P_0, V_1) \]

\[L(P_1, V_2) = L(P_1, V_1) \rho(P_1) \cos \theta_2, \forall V_2 \]

\[\Downarrow \]

\[L(P_1, V_2) = L(P_0, V_1) \rho(P_1) \cos \theta_2, \forall V_2 \]
Lambertian surfaces

• using reflection equation again

\[L(P_0, V_1) = L(P_0, V_0) \rho(P_0) \cos \theta_1, \forall V_1 \]

\[L(P_1, V_2) = L(P_0, V_1) \rho(P_1) \cos \theta_2, \forall V_2 \]

\[L(P_1, V_2) = L(P_0, V_0) \rho(P_1) \rho(P_0) \cos \theta_2 \times \cos \theta_1 \]
Lambertian surfaces

- and we have a rule for any number of bounces

\[
L(P_n, V) = L(P_0, V_0) \left[\prod_{i=0}^{n} \rho(P_i) \right] \left[\prod_{i=1}^{n+1} \cos \theta_i \right], \forall V
\]
Lambertian surfaces

- note that on

\[
L(P_n, V) = L(P_0, V_0) \left[\prod_{i=0}^{n} \rho(P_i) \right] \left[\prod_{i=1}^{n+1} \cos \theta_i \right], \forall V
\]

- unless all cosines are close to 1
- their product goes to zero quickly
- e.g. see decay of \(\cos^n(\theta)\) with \(n\)
- this means that only light that arrives frontally to all the bounces gets propagated very far
- such an alignment is very unlikely
- we don’t really have to worry about many bounces
- the process becomes tractable
Lambertian surfaces

• on the other hand,
 – there are still various single-bounce paths
 – e.g. each source has a single bounce path to each non-shaded object
 – to deal with this we need to know more about light sources
Light sources

• most common model is “point source at infinity”
 – assume all light comes from a single point
 – which is very far away from the scene

• reasonable assumption for vision where
 one of two cases tend to hold
 – source is much smaller than the scene (e.g. a light-bulb)
 – source is very far away (e.g. the sun)

• hence, in general, relative to its size and
 the size of the scene the source can be
 considered distant
Point source at infinity

- why is this interesting?
 - because a **PS @ infinity** only emits light in one direction
 - this can be understood intuitively
 - e.g. while a nearby source hits the object in all directions

 - rays that originate far away become parallel by the time they reach the object

 - hence, **there is only one incoming direction of light**
Lambertian surfaces

• in summary, we have
 – PS @ infinity
 – Lambertian surface

• we know that
 – only paths with a few bounces, from source to object, matter
 – source light hits each object along single direction

• we can go back to our original scenario
Lambertian surfaces

- overall, we have an extremely simple relationship!

\[P(\mathbf{P}_i) = E \rho(\mathbf{P}_0) \cos \theta \]

- the power at pixel \(P_i \) is the product of
 - source power \(E \),
 - albedo of the object at reflection point,
 - and angle between source direction and object normal

![Diagram showing light source, object, and pixel relationship](image)
Lambertian surfaces

- note that
 - if n is the surface normal and s the light direction
 - the two vectors have unit norm
 - then $\cos \theta = n \cdot s$ and

$$P(P_i) = E \rho(P_0) \vec{n}(P_0).\vec{s}$$
Lambertian surfaces

- note that
 - light direction s is constant
 - but the surface normal n and the albedo ρ are functions on the object surface

$$P(P_i) = E \rho(P_0) \vec{n}(P_0) \cdot \vec{s}$$
Vision vs graphics

- this is a nice example of why vision is much harder than graphics

\[P(P_i) = E \rho(P_0) \tilde{n}(P_0) \cdot \tilde{s} \]

- **graphics**: given \(\rho, n, \) and \(s \) compute \(P \)
- this is just a multiplication
- **vision**: given \(P \), find \(\rho, n, \) and \(s \)
- really hard problem
- note that both \(\rho \) and \(n \) depend on the pixel, so the # of unknowns is three times the # of constraints
- cannot be solved, unless we make assumptions about these functions
Vision vs graphics

• once again, your brain is stellar at doing this

 – why do we see two spheres of uniform color and not two flat objects that get darker as you move down the image?
 – requires preference for 3D objects, assumption that the spheres are smooth, that the light is at the top, that there are shadows ...
 – a lot of vision is really just checking what you know already!
Vision

• it turns out that if you make the right assumptions
 – it can be done
 – research problem, not perfect yet

!image
![shading (cos θ)](shading)
![albedo (ρ)](albedo)
Multiple light sources

• finally, note that the equation is linear on \(s \)

\[
P(P_i) = E\rho(P_0)\vec{n}(P_0) \cdot \vec{s}
\]

• if we have \(n \) PS @ infinity, we can just assume that \(s = s_1 + \ldots + s_n \)

\[
P = E\rho(P_0)\vec{n}(P_0) \cdot \sum_k \vec{s}_k
\]

\[
= \sum_k E\rho(P_0)\vec{n}(P_0) \cdot \vec{s}_k = \sum_i P_i
\]

• resulting image is sum of the images due to each source
Any questions?