Radiometry

Nuno Vasconcelos
UCSD

Image formation

- two components: geometry and radiometry
- geometry:
- pinhole camera
- point (x, y, z) in 3D scene projected into image pixel of coordinates (x^{\prime}, y^{\prime})
- according to the perspective projection equation:

$\binom{x^{\prime}}{y^{\prime}}=f(X, Y, Z)$
What is $f(X, Y, Z)$?

Image formation

- two components: geometry and radiometry
- geometry:
- pinhole camera
- point (x, y, z) in 3D scene projected into image pixel of coordinates (x^{\prime}, y^{\prime})
- according to the perspective projection equation:

$$
\left(\begin{array}{l}
\left.x^{\prime}\right) \\
\left.y^{\prime}\right)
\end{array}=f\binom{x / z}{y / z}\right.
$$

Radiometry

- simplifying assumptions
- objects:
- Lambertian surfaces: reflect light equally in all directions
- reflections determined by albedo:
 ratio of reflected/incident light
- light sources:
- point source @ infinity

...
- by the time they hit the object all rays are parallel
- single direction s of light for the whole scene

Radiometry

- radiometry equation:
- the power at pixel P_{i} is a function of
- object properties (which?)
- light source (which)
- interaction between the two?

Radiometry

- radiometry equation:

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \cos \theta
$$

- the power at pixel P_{i} is the product of
- source power E,
- albedo of the object at reflection point,
- and angle between source direction and object normal

Radiometry

- a rule for any number of bounces

$$
P\left(P_{n}\right)=E\left[\prod_{i=0}^{n} \rho\left(P_{i}\right)\right]\left[\prod_{i=1}^{n+1} \cos \theta_{i}\right]
$$

Lambertian surfaces

- note that on

$$
P\left(P_{n}\right)=E\left[\prod_{i=0}^{n} \rho\left(P_{i}\right)\right]\left[\prod_{i=1}^{n+1} \cos \theta_{i}\right]
$$

- unless all cosines are close to 1
- their product goes to zero quickly
- e.g. see decay of $\cos ^{n}(\theta)$ with n
- this means that only light that arrives frontally to all the bounces gets propagated very far
- such an alignment is very unlikely
- we don't really have to worry about many bounces
- the process becomes tractable

In vector form

- note that
- if \boldsymbol{n} is the surface normal and s the light direction
- the two vectors have unit norm
- then $\cos \theta=\boldsymbol{n} . \boldsymbol{s}$ and

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

Lambertian surfaces

- note that
- light direction s is constant
- but the surface normal n and the albedo ρ are functions on the object surface

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

Normals

- the amount of reflected light at P depends on the surface normal $n(P)$
- how do I compute this?
- first we note that a surface is a function of three variables

$$
f(x, y, z)=0
$$

- e.g., the sphere of radius r and center ($\mathrm{X}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) is described by

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}-r^{2}=0
$$

Normals

- the key is to note that
- the normal is orthogonal to the surface
- the surface is the set of points where the function $f(x, y, z)$ is constant
- to "walk" along the surface I "walk" along the set of points where $f(x, y, z)$ stays constant (infinitesimally, this is the plane tangent to the surface at P)

- to "walk" along the normal, I have
to "walk" in the direction along which $f(x, y, z)$ grows most quickly
- the key is then to find this direction of largest growth

Normals

- recall that
- a scalar function grows the most when its derivative is largest
- the generalization to a multivariate function is the gradient

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)^{T}
$$

- f increases the most in the direction of its gradient
- hence,

"the normal to surface $f(x, y, z)=0$ at point P is the gradient of $f(x, y, z)$ evaluated at P "

Normals

- this is an important result that we will use many times in the course
- e.g. for the sphere of center (0,0,0)

$$
\nabla f=2(x, y, z)^{T}
$$

and "the normal at point P is simply $2 P^{\prime \prime}$

- e.g.

$$
n(1,0,0)=(2,0,0)
$$

Normals

- note that this explains the shading of a sphere
- we have seen a light source of direction s generates an image

$$
\begin{aligned}
I\left(P_{0}\right) & =E \rho\left\langle\vec{n}\left(P_{0}\right), \vec{s}\right\rangle \\
& \propto\left\langle\vec{n}\left(P_{0}\right), \vec{s}\right\rangle
\end{aligned}
$$

- for the sphere this is just

$$
I\left(P_{0}\right) \propto\left\langle P_{0}, \vec{s}\right\rangle
$$

"the dot product of \boldsymbol{s} with \boldsymbol{P}_{0} itself"

Normals

- what about more complex objects?
- we approximate by a triangle mesh
- sample a number of points on the surface
- there are computer graphics algorithms for doing this
- approximate surface by the triangles that connect those points
- the more triangles you use, the better the approximation

Normals

- how do I compute the normal to a triangle?
- use the fact that a triangle is a patch of a plane
- how do I
- compute the normal to a plane?
- know what is the plane associated with my triangle?
- Q1: a plane is a function of the form

$$
a x+b y+c z+d=0
$$

- this is the plane of parameters (a,b,c,d)
- in this case

$$
f(x, y, z)=a x+b y+c z+d
$$

Normals

- and

$$
\nabla f(x, y, z)=(a, b, c)^{T}
$$

- note that this tells us various things:
- all points in the plane have the same normal
- this is called the "normal to the plane"

$$
\vec{n}=(a, b, c)^{T}
$$

- the parameter d only has to do with the distance to the origin
- note that if $(0,0,0)$ is on the plane, then $d=0$, otherwise $d=0$
- the normal and d fully specify the plane

$$
\text { plane }=\{P \mid\langle n, P\rangle=-d\}
$$

Normals

- Q2: how do I know the plane associated with my triangle
- note that triangle $=3$ points, P_{0}, P_{1}, P_{2}
- three points define a plane
- we just have to solve the system of equations

$$
\left\{\begin{array}{l}
\left\langle n, P_{0}\right\rangle=-d \\
\left\langle n, P_{1}\right\rangle=-d \\
\left\langle n, P_{2}\right\rangle=-d
\end{array}\right.
$$

- note that multiplying n and d by the same number does not change anything.
- need to enforce extra constraint that $\|n\|=1$

example (from hw)

- three points

$$
\begin{aligned}
& \left\{\begin{array}{l}
\langle n,(0,1,1)\rangle=-d \\
\langle n,(0,0,1)\rangle=-d \\
\langle n,(1,0,2)\rangle=-d
\end{array}\right. \\
& \left\{\begin{array} { c }
{ b = - d - c } \\
{ c = - d } \\
{ a = - d - 2 c }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
b=0 \\
c=-d \\
a=d
\end{array}\right.\right.
\end{aligned}
$$

- leads to the plane equation

$$
d x-d z=-d \Leftrightarrow z=x+1
$$

Planes

- for a plane our radiometry equation

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \vec{n}\left(P_{0}\right) \cdot \vec{s}
$$

- simplifies to

$$
\begin{aligned}
P\left(P_{i}\right) & =E\langle\vec{n}, \vec{s}\rangle \rho\left(P_{0}\right) \\
& \propto \rho\left(P_{0}\right)
\end{aligned}
$$

- this means that (constant) shading is uniform

- the variations that we see are variations in albedo

Meshes

- for a mesh
- this holds for each triangle

$$
P\left(P_{i}\right)=E\langle\vec{n}, \vec{s}\rangle \rho\left(P_{0}\right)
$$

- but $<n, s>$ changes from triangle to triangle (different normals)
- hence, we can still have complex shading effects as the number of triangles increases

More complexity

- in summary, we can do a lot with our simplistic model
- Lambertian surfaces
- point source @ infinity

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \cos \theta
$$

- turns out that we can work with much more complex light sources

Multiple light sources

- the key insight that the equation is linear on s

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), \vec{s}\right\rangle
$$

- if we have n PS @ infinity, we can just assume that

$$
\mathbf{s}=\mathbf{s}_{1}+\ldots+\mathbf{s}_{\mathrm{n}}
$$

$$
\begin{aligned}
P & =E \rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), \sum_{k} \vec{s}_{k}\right\rangle \\
& =\sum_{k} E \rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), \vec{s}_{k}\right\rangle=\sum_{i} P_{k}
\end{aligned}
$$

- resulting image is sum of the images due to each source

Demo

- we start from this image

Demo

adding this

Demo

- we get the image lit by two light sources

Demo

-

adding this

Demo

- we get the image lit by the three light sources

Demo

adding this

Demo

- we get the image lit by the four light sources

Demos

- other possible patterns

Demos

- From these I can create a movie

Demo

- and this happens in the real world too (note comb
of
geometry and radiometry

More complexity

- and what about fluorescent lights, etc.?
- is this still a point source?
- no, but an infinitesimal patch is

- the patch dA is a point source
- we work with the power density, instead of power
- e.g. dA, centered at x, emits density $E(x) d A$ in its normal direction $s(x)$

More complexity

- the contribution of patch centered at x to the power that hits object point P_{0} is

$$
P(x)=E(x) \rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), s(x)\right\rangle d A
$$

to compute the overall power, due to all patches, we simply integrate

$$
P=\int_{A} E(x) \rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), s(x)\right\rangle d A
$$

- and by linearity of the dot product

$$
P=\rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), \int_{A} E(x) s(x) d A\right\rangle
$$

More complexity

- we thus have

$$
P=\rho\left(P_{0}\right)\left\langle\vec{n}\left(P_{0}\right), \int_{A} E(x) s(x) d A\right\rangle
$$

- note that the integral does not depend on P_{0}
- this is the same as computing

$$
\vec{E}=\int_{A} E(x, y, z) \vec{s}(x, y, x) d x d y d z
$$

(which is a 3D vector) and assuming a point source of magnitude $E^{\prime}=| | E \|$ and unit direction $s^{\prime}=E /| | E \|$

In summary

- geometry

$$
\binom{x^{\prime}}{y^{\prime}}=f\binom{x / z}{y / z}
$$

- radiometry

$$
P\left(P_{i}\right)=E \rho\left(P_{0}\right) \cos \theta
$$

