
RadiometryRadiometry

Nuno Vasconcelos
UCSD



Image formation
• two components: geometry and radiometry
• geometry:

– pinhole camera
– point (x,y,z) in 3D scene projected into image pixel of 

coordinates (x’, y’)( y )
– according to the perspective projection equation:
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Radiometry
• simplifying assumptions
• objects:

– Lambertian surfaces: reflect light 
equally in all directions

– reflections determined by albedo: y
ratio of reflected/incident light

• light sources:
point source @ infinity– point source @ infinity

...

– by the time they hit the object all rays are parallel
single direction s of light for the whole scene
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– single direction s of light for the whole scene



Radiometry
• radiometry equation:
• the power at pixel Pi is a function of

– object properties (which?)
– light source (which)
– interaction between the two?interaction between the two?
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Radiometry
• radiometry equation:

θρ cos)()( 0PEPP i =

• the power at pixel Pi is the product of
– source power E,

θρ cos)()( 0PEPP i

source power E, 
– albedo of the object at reflection point, 
– and angle between source direction and object normal 
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Radiometry
• a rule for any 

number of bounces
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Lambertian surfaces
• note that on
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– unless all cosines are close to 1
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– their product goes to zero quickly
– e.g. see decay of cosn(θ) with n
– this means that only light that– this means that only light that 

arrives frontally to all the bounces 
gets propagated very far

– such an alignment is very unlikely– such an alignment is very unlikely
– we don’t really have to worry

about many bounces
the process becomes tractable
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– the process becomes tractable



In vector form
• note that 

– if n is the surface normal and s the light direction
– the two vectors have unit norm
– then cos θ = n . s and 
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Lambertian surfaces
• note that 

– light direction s is constant
– but the surface normal n and the albedo ρ are functions on the 

object surface
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Normals
• the amount of reflected light at P depends on the surface 

normal n(P)
• how do I compute this?
• first we note that a surface is

a function of three variablesa function of three variables

f(x,y,z) = 0
surface normal map

• e.g., the sphere of radius r and center
(x0,y0,z0) is described by

p

(x0,y0,z0) is described by

(x-x0)2 + (y-y0)2 +(z-z0)2 - r2 = 0
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Normals
• the key is to note that 

– the normal is orthogonal to
the s rfacethe surface

– the surface is the set of points
where the function f(x,y,z) is
constant

P
constant

– to “walk” along the surface I
“walk” along the set of points
where f(x y z) stays constant tg planewhere f(x,y,z) stays constant
(infinitesimally, this is the plane
tangent to the surface at P)

“ ”

f(x,y,z)=0

tg plane

– to “walk” along the normal, I have 
to “walk” in the direction along which f(x,y,z) grows most quickly

– the key is then to find this direction of largest growth
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Normals
• recall that

– a scalar function grows the most when its derivative is largest

• the generalization to a multivariate function is the 
gradient

∇f
no increase
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• f increases the most in the 
direction of its gradient
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• hence, 

“the normal to surface f(x,y,z) = 0 at point P is the
gradient of f(x y z) evaluated at P”
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gradient of f(x,y,z) evaluated at P”



Normals
• this is an important result that

we will use many times 
i th

∇f(P)
P

in the course
• e.g. for the sphere of center

(0,0,0) tg plane(0,0,0)

f(x,y,z)=0

tg plane

( )Tzyxf ,,2=∇

and “the normal at 
point P is simply 2P” 2P

• e.g.

n(1 0 0) = (2 0 0)
P
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n(1,0,0) = (2,0,0)



Normals
• note that this explains the shading of a sphere

– we have seen a light source 
of direction s generates anof direction s generates an 
image E

sPnEPI rr )()( = ρ s
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– for the sphere this is just

sPPI r)( 00 ∝

“the dot product of s with P0 itself”

sPPI , )( 00 ∝
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Normals
• what about more complex objects?

– we approximate by a triangle mesh
– sample a number of points on the surface
– there are computer graphics algorithms for doing this
– approximate surface by the triangles that connect those points
– the more triangles you use, the better the approximation
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Normals
• how do I compute the normal to a triangle?
• use the fact that a triangle is a patch of a plane
• how do I

– compute the normal to a plane?
know what is the plane associated with my triangle?– know what is the plane associated with my triangle?

• Q1: a plane is a function of the form

db
– this is the plane of parameters (a b c d)

0=+++ dczbyax
this is the plane of parameters (a,b,c,d)

– in this case

dczbyaxzyxf +++=)(
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Normals
• and

Tcbazyxf )()( =∇
n=(a,b,c)

• note that this tells us various things:
– all points in the plane have the same normal

cbazyxf ),,(),,( =∇
P

all points in the plane have the same normal
– this is called the “normal to the plane”

Tcban )(=
r

– the parameter d only has to do with the distance to the origin
– note that if (0 0 0) is on the plane then d = 0 otherwise d = 0

ax+by+cz+d=0
cban ),,(=

– note that if (0,0,0) is on the plane, then d = 0, otherwise d = 0
– the normal and d fully specify the plane

{ }dPnPplane −== |
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Normals
• Q2: how do I know the plane associated with my triangle

– note that triangle = 3 points, P0, P1, P2

– three points define a plane
– we just have to solve the system of equations P0 P1
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P2

⎪

⎪
⎨

⎧
−=
−=

dPn
dPn

1

0

,
,

note that multiplying n and d by the same number does not

⎪
⎩ −= dPn 2,

– note that multiplying n and d by the same number does not 
change anything. 

– need to enforce extra constraint that ||n|| = 1

19



example (from hw)
• three points
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Planes
• for a plane our radiometry equation

sPnPEPP rr )()()( ρ

• simplifies to

sPnPEPP i ).()()( 00ρ=

simplifies to

)(
)(,)( 0

P
PsnEPP i ρ=

rr

• this means that (constant) shading

)(          0Pρ∝

( ) g
is uniform

• the variations that we see are variations in albedo
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Meshes
• for a mesh

– this holds for each triangle

but <n s> changes from triangle to triangle (different normals)

)(,)( 0PsnEPP i ρrr
=

– but <n,s> changes from triangle to triangle (different normals)
– hence, we can still have complex shading effects as the number 

of triangles increases 
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More complexity
• in summary, we can do a lot with our simplistic model

– Lambertian surfaces
θρ cos)()( PEPP =– point source @ infinity θρ cos)()( 0PEPP i =

θ
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Multiple light sources
• the key insight that the equation is linear on s

PPEPP rr )()()(

• if we have n PS @ infinity, we can just assume that
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if we have n PS @ infinity, we can just assume that 
s = s1 + ...+ sn
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• resulting image is sum of the images due to each source



Demo
• we start from this image
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Demo
• adding this

++
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Demo
• we get the image lit by two light sources
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Demo
• adding this

++

28



Demo
• we get the image lit by the three light sources
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Demo
• adding this

++
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Demo
• we get the image lit by the four light sources
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Demos
• other possible patterns
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Demos
• From these I can create a movie
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Demo
• and this happens in the real world too

(note
bcombo

of 
geo-
metry
and
radio-radio
metry
)
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More complexity
• and what about fluorescent lights, etc.?
• is this still a point source?
• no, but an infinitesimal

patch is

• the patch dA is a 

dA

point source
• we work with the

power density insteadpower density, instead
of power

• e.g. dA, centered at x, emits density E(x)dA in its normal 
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More complexity
• the contribution of patch centered at x to the power that 

hits object point P0 is

x1

x2 s(x2)dAxsPnPxExP )(),()()()( 00
rρ=

to compute the overall power, due to all
patches, we simply integrate

x1

s(x1)

∫∫=
A

dAxsPnPxEP )(),()()( 00
rρ

• and by linearity of the dot product

∫ dAxsxEPnPP )()()()( rρ
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More complexity
• we thus have x2 s(x2)

∫ x1

s(x1)
∫=
A

dAxsxEPnPP )()(),()( 00
rρ

• note that the integral does not
depend on P0

thi i th ti• this is the same as computing

∫= dxdydzxyxszyxEE ),,(),,( rr

(which is a 3D vector) and assuming a point source of 
magnitude E’ = ||E|| and unit direction s’ = E/||E||

∫
A
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magnitude E  = ||E|| and unit direction s  = E/||E||



In summary
• geometry
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• radiometry
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