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1. In this problem we will consider the traditional probability scenario of coin tossing. However, we
will consider two variations. First, the coin is not fair. Denoting by S the outcome of the coin toss we
have

PS(heads) = α, α ∈ [0, 1].

Second, you do not observe the coin directly but have to rely on a friend that reports the outcome of
the toss. Unfortunately your friend is unreliable, he will sometimes report heads when the outcome was
tails and vice-versa. Denoting the report by R we have

PR|S(tails|heads) = θ1 (1)

PR|S(heads|tails) = θ2 (2)

where θ1, θ2 ∈ [0, 1]. Your job is to, given the report from your friend, guess the outcome of the toss.

a) Given that your friend reports heads, what is the optimal decision function in the minimum proba-
bility of error sense. That is, when should you guess heads, and when should you guess tails?

b) Consider the case θ1 = θ2. Can you give an intuitive interpretation to the rule derived in a)?

c) You figured out that if you ask your friend to report the outcome of the toss various times, he will
produce reports that are statistically independent. You then decide to ask him to report the outcome
n times, in the hope that this will reduce the uncertainty. (Note: there is still only one coin toss, but
the outcome gets reported n times). What is the new minimum probability of error decision rule?

d) Consider the case θ1 = θ2 and assume that the report sequence is all heads. Can you give an intuitive
interpretation to the rule derived in c)?
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2. Consider a two dimensional classification problem with two Gaussian classes

PX|Y (x|i) =
1√

(2π)2|Σ|
e−

1
2 (x−µi)

T Σ−1(x−µi), i ∈ {0, 1}

of identical covariance Σ = σ2I. For all problems assume the “0-1” loss function.

a) If the classes have means

µ0 = −µ1 =

[
1
0

]
.

and equal prior probabilities, PY (0) = PY (1), what is the Bayes decision rule for this problem?

b) What are the marginal distributions for the features x1 and x2 for each class? In particular

1. derive expressions for the class-conditional densities PX1|Y (x1|i) and PX2|Y (x2|i) for i ∈ {0, 1},
where x = (x1, x2)T .

2. plot a sketch of the two densities associated with class Y = 0 and a sketch of the two densities
associated with class Y = 1.

3. determine which feature is most discriminant.

c) A linear transformation of the form
z = Γx

was applied to the data, where Γ is a 2× 2 matrix. The decision boundary associated with the BDR is
now the hyperplane of normal w = (1/

√
2,−1/

√
2)T which passes through the origin.

1. determine the matrix Γ

2. What would happen if the the prior probability of class 0 was increased after the transformation?
Here it suffices to give a qualitative answer, i.e. simply say what would happen to the hyperplane.

3. what is the distance in the original space (x) which is equivalent to the Euclidean distance in the
transformed space (z)?
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3. Consider a classification problem with two Gaussian classes

PX|Y (x|i) = G(x, µi,Σ), i ∈ {0, 1}

of equal probability
PY (i) = 1/2.

In class, we have considered the BDR solution to this problem. This consists of estimating the param-
eters of the Gaussian classes and then plugging on the BDR to obtain the decision boundary. Here we
will consider an alternative solution, that works directly on the class posteriors.

a) Show that the posterior probability for class 1 is of the form (the posterior for class 0 is 1−PY |x(1|x))

PY |X(1|x) =
1

1 + e−wT t
(3)

where tT = [xT 1]. What is the vector w?

b) Show that an iid sample D = {(x1, y1), . . . , (xn, yn)} has posterior probability

PY|X(Dy|Dx) =

n∏
i=1

PY |X(yi|xi) (4)

with

PY |X(yi|xi) =

(
1

1 + e−wT ti

)yi ( e−wT ti

1 + e−wT ti

)1−yi

, (5)

where Dy = {y1, . . . , yn} and Dx = {x1, . . . ,xn}.

Note: We can now learn the classification boundary, by learning the posterior probabilities with
standard maximum likelihood estimation. For example we can solve for w? such that

w? = arg max
w

PY|X(Dy|Dx).
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