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1.

a) For this problem, the Bayesian decision rule is to guess heads when

PS|R(heads|heads) > PS|R(tails|heads) (1)

PR|S(heads|heads)PS(heads) > PR|S(heads|tails)PS(tails) (2)

(1− θ1)α > θ2(1− α) (3)

α >
θ2

1− θ1 + θ2
(4)

and tails when

α <
θ2

1− θ1 + θ2
. (5)

When

α =
θ2

1− θ1 + θ2
(6)

any guess is equally good.

b)When θ1 = θ2 = θ the minimum probability of error decision is to declare heads if

α > θ (7)

and tails otherwise. This means that you should only believe your friend’s report if your prior for heads
is greater than the probability that he lies. To see that this makes a lot of sense let’s look at a few
different scenarios.

• If your friend is a pathological lier (θ = 1), then you know for sure that the answer is not heads
and you should always say tails. This is the decision that (7) advises you to take.

• If he never lies (θ = 0) you know that the answer is heads. Once again this is the decision that (7)
advises you to take.

• If both α = 0 and θ = 0 we have a contradiction, i.e. you know for sure that the result of the toss
is always tails but this person that never lies is telling you that it is heads. In this case Bayes
just gives up and says “either way is fine”. This is a sensible strategy, there is something wrong
with the models, you probably need to learn something more about the problem.

• If your friend is completely random, θ = 1/2, (7) tells you to go with your prior and ignore him. If
you believe that that the coin is more likely to land on heads say heads otherwise say tails. Bayes
has no problem with ignoring the observations, whenever these are completely uninformative.
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• When you do not have prior reason to believe that one of the outcomes is more likely than the
other, i.e. if you assume a fair coin (α = 1/2), (7) advises you to reject the report whenever you
think that your friend is more of a lier (θ > 1/2) and to accept it when you believe that he is
more on the honest side (θ < 1/2). Once again this makes sense.

• In general, the optimal decision rule is to “modulate” this decision by your prior belief on the
outcome of the toss: say heads if your prior belief that the outcome was really heads is larger
than the probability that your friend is lying.

c) Denoting by Ri the ith report and assuming that the sequence of reports {r1, . . . , rn} has nhheads
and n− nh tails, the BDR is now to say heads if

PS|R1,...,Rn(heads|r1, . . . , rn) > PS|R1,...,Rn(tails|r1, . . . , rn) (8)

PR1,...,Rn|S(r1, . . . , rn|heads)PS(heads) > PR1,...,Rn|S(r1, . . . , rn|tails)PS(tails) (9)

(1− θ1)nhθn−nh1 α > θnh2 (1− θ2)n−nh(1− α) (10)

α >
θnh2 (1− θ2)n−nh

(1− θ1)nhθn−nh1 + θnh2 (1− θ2)n−nh
(11)

α >
1

1 + ( 1−θ1
θ2

)nh( θ1
1−θ2 )n−nh

(12)

(13)

and tails otherwise.

d) When θ1 = θ2 = θ and the report sequence is all heads (nh = n), the BDR becomes to declare heads
if

α >
1

1 +
(

1−θ
θ

)n (14)

and tails otherwise. As n becomes larger, i.e. n→∞, we have three situations.

• Your friend is more of a lier, θ > 1/2. In this case, (1− θ/θ)n → 0 and the decision rule becomes
α > 1. That is, you should always reject his report.

• Your friend is more of a honest person, θ < 1/2. In this case, (1 − θ/θ)n → ∞ and the decision
rule becomes α > 0. That is, you should always accept his report.

• Your friend is really just random, θ = 1/2. In this case, the decision rule becomes α > 1/2 and
you should go with your prior.

Once again this makes a lot of sense. Now you have a lot of observations so you are much more confident
on the data and need to rely a lot less on your prior. It also takes a lot less work to figure out what you
should do, since you do not have to make detailed probability comparisons. Because your friend seems
to be so certain of the outcome (he always says heads), you either: 1) not trust him (θ somewhere in
between 1/2 and 1) therefore believe that he is just trying to fool you and reject what he says, or 2)
trust him (θ somewhere in between 0 and 1/2) and accept his report. It is only in the case that he is
completely unpredictable that the prior becomes important. This looks like a really good strategy, and
sounds a lot like the way people think. As you can see in this example, the optimal Bayesian decision
can be something as qualitative as: if you trust accept, if you doubt reject, otherwise ignore.
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2. a) The BDR is to choose Y = 0 if [
1 0

]
x = x1 > 0

where x = (x1, x2)T , and choose Y = 1 for “<”.

b) The marginal distributions for the features are

1.
PX1|Y (x1|0) = N (1, σ2),

PX1|Y (x1|1) = N (−1, σ2),

PX2|Y (x2|0) = PX2|Y (x2|1) = N (0, σ2)

2. the plots are omitted.

3. feature 1 is more discriminant, as knowing the value of feature 2 does not provide any information
as to which class the point could have come from.

c) 1. As the decision boundary now coincides with the line x1 = x2, the two class means must lie
on a line that is normal to the decision boundary, i.e. on x1 = −x2. It is easy to see then that the
transformation matrix Γ is a clockwise rotation transformation of π/4,

Γ =

[ √
2

2

√
2

2

−
√

2
2

√
2

2

]

2. If the prior probability of class 0 was increased after transformation, then the decision boundary
of BDR would still have the same normal as before, i.e., w = (1/

√
2,−1/

√
2)T , but move toward the

mean of class 1.

3. Noting that

||Tx−Ty||2 = (x− y)TTTT(x− y)

= (x− y)T (x− y)

= ||x− y||2

we see that the distance is still the Euclidean distance. This is due to the fact that T is a rotation, and
rotations do not change distances between points.

3. a) The posterior is given by

PY |X(1|x) =
PX|Y (x|1)PY (1)

PX|Y (x|1)PY (1) + PX|Y (x|0)PY (0)

=
PX|Y (x|1)

PX|Y (x|1) + PX|Y (x|0)

=
1

1 +
PX|Y (x|0)

PX|Y (x|1)

=
1

1 + e−
1
2

(x−µ0)TΣ−1(x−µ0)

e−
1
2

(x−µ1)TΣ−1(x−µ1)
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=
1

1 + e
µT

0
Σ−1x− 1

2
µT

0
Σ−1µ0

e
µT

1
Σ−1x− 1

2
µT

1
Σ−1µ1

=
1

1 + e(µ0−µ1)TΣ−1x− 1
2 (µT0 Σ−1µ0−µT1 Σ−1µ1)

=
1

1 + e−wT t

with

w =

[
Σ−1(µ1 − µ0)

µT0 Σ−1µ0−µT1 Σ−1µ1

2

]
. (15)

b) We start by noting that

PY |X(yi|xi) =

{
1

1+e−wT ti
, yi = 1

1− 1

1+e−wT ti
, yi = 0

=

{ 1

1+e−wT ti
, yi = 1

e−wT ti

1+e−wT ti
, yi = 0

which can be written as

PY |X(yi|xi) =

(
1

1 + e−wT ti

)yi ( e−w
T ti

1 + e−wT ti

)1−yi

.

The fact that

PY|X(Dy|Dx) =

n∏
i=1

PY |X(yi|xi) (16)

is a straightforward consequence of the fact that the sample is iid.
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