
ECE-175A

Elements of Machine Intelligence - I

Nuno Vasconcelos 

(Ken Kreutz-Delgado)

ECE Department, UCSD



2

The course

The course will cover basic, but important, aspects 
of machine learning and pattern recognition

We will cover a lot of ground, at the end of the 
quarter you’ll know how to implement a lot of things 
that may seem very complicated today
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Logistics

Exams: 1 mid-term - 35%
1 final – 45% (covers everything)

Quizzes (20%):

• one problem every week. 

• a small computational problem. By small, I mean in terms of 
concepts, thinking, etc. 

• some computational problems will require a fair amount of 
computer power, e.g. a few hours on a laptop.

• be sure to start early

• will count 20%, but almost impossible without it.

• will give you the hands-on experience needed to be able 
to claim that you really know learning!
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Quiz policy

Homework sets

• include pen+paper and computer problems

• pen+paper are not due, for practice only

Quizzes: computer problems are due

• issue and due dates specified on course web site

• it is your responsibility to keep track of the dates

• Quizzes are individual

• due on the specified due-date. No exceptions, unless there is 
an extension to the entire class. 

The final course grade will be curve-based.

• do not get discouraged if a homework problem is hard, just 
put some extra effort into solving it.  Try your best.



Academic integrity

not allowed to

• talk to friends or classmates about graded problems

• use any ECE175A material not explicitly handed out by us

• this includes consulting any websites other than the class 
web site, piazza, or canvas

graded problems

• think of these as part of an exam

• don’t ask questions you would not ask on exam room

• don’t ask “does my result look OK?,” or “did anyone get 
something like this?”

all work done for grade must be individual

• we refer violations to UCSD Academic Integrity Office

• despite these warnings there are always 3-4 cases a year 
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Resources

Course web page:
http://www.svcl.ucsd.edu/~courses/ece175/

• all materials, except homework and exam solutions will be 
available there. 

Discussion forum: 

• We will be using piazza. You will get email.

Course Instructor: 

• Nuno Vasconcelos, nuno@ece.ucsd.edu, EBU 1- 5602

• office hours: TBA

mailto:nuno@ece.ucsd.edu
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Texts
Required:

• “Introduction to Machine Learning”

• Ethem Alpaydin, MIT Press, 2004

Various other good, but optional, texts:

• “Pattern Classification”, Duda, Hart, Stork, Wiley, 2001

• “Elements of Statistical Learning”, Hastie, Tibshirani, Fredman, 2001

• “Pattern Recognition and Machine Learning”, C.M. Bishop, Springer, 
2007.

Prerequisites you must know well:

• “Linear Algebra”, Gilbert Strang, 1988

• “Fundamentals of Applied Probability”, Drake, McGraw-Hill, 1967
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Why Machine Learning?

Good question!  After all, many systems & processes in the 
world that are well-modeled by deterministic equations

• E.g. f = m a; V = I R, Maxwell’s equations, and other physical laws. 

• There are acceptable levels of “noise”, “error”,  and other 
“variability”.

• In such domains, we don’t need statistical learning.

However, learning is necessary when there is a need for 
predictions about, or classification of, poorly known and/or 
random vector data Y, that  

• represents important  events, situations, or objects in the world;

• which may (or may not) depend on other factors (variables) X;

• is impossible or too difficult to derive an exact, deterministic model 
for;
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Examples and Perspectives

The “Data-Mining” viewpoint:

• huge amounts of data that does not follow deterministic rules

• E.g. given an history of thousands of customer records and some 
questions that I can ask you, how do I predict that you will pay on 
time?

• Impossible to derive a theory for this, must be learned

While many associate learning with data-mining, it is by no means 
the only important application or viewpoint.

The Signal Processing viewpoint:

• Signals combine in ways that depend on “hidden structure” (e.g. 
speech waveforms depend on language, grammar, etc.)

• Signals are usually subject to significant amounts of “noise” (which 
sometimes means “things we do not know how to model”)
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Examples - Continued

Signal Processing viewpoint 
(Cont’d)

• E.g. the Cocktail Party Problem:

• Although there are all these people 
talking loudly at once, you can still 
understand what your friend is saying.

• How could you build a chip to 
separate the speakers? (As well as your 
ear and brain can do.)

• Model the hidden dependence as

– a linear combination of independent 
sources + noise

• Many other similar examples in the 
areas of wireless, communications, 
signal restoration, etc.
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Examples (cont’d)

The Perception/AI viewpoint:

• It is a complex world; one cannot model 
everything in detail

• Rely on probabilistic models that explicitly 
account for the variability

• Use the laws of probability to make 
inferences.  E.g.,

• P( burglar | alarm, no earthquake) is high

• P( burglar | alarm, earthquake) is low

• There is a whole field that studies 
“perception as Bayesian inference”

• In a sense, perception really is 
“confirming what you already know.”

• priors + observations = robust inference
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The Communications 
Engineering viewpoint:

• Detection problems: 

• You observe Y and know 
something about the statistics 
of the channel. What was X?

• This is the canonical detection 
problem.

• For example, face detection in 
computer vision: “I see pixel 
array Y. Is it a face?” 

Examples (cont’d)

channel
X Y
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What is Statistical Learning?

Goal: Given a relationship between
a feature vector x and a vector y,  
and data samples (xi,yi), find an 
approximating function  f (x)  y

This is called training or learning.

Two major types of learning:

• Unsupervised: only X is known, usually referred to as
clustering.

• Supervised : both X and target value Y are known 
during training, only X is known at test time. Usually 
referred to as classification or regression.

( )ŷ yf x= x
( )·f
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Supervised Learning

X can be anything, but the type of 
known data Y dictates the type of 
supervised learning problem

• Y in {0,1} is referred to as Detection or
Binary Classification

• Y in {0, ..., M-1} is referred to as 
(M-ary) Classification

• Y continuous is referred to as Regression

Theories are quite similar, and 
algorithms similar most of the time

We will usually emphasize 
classification, but will talk about 
regression when particularly insightful
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Example
Classification of Fish:

• Fish roll down a conveyer belt

• Camera takes a picture

• Decide if is this a salmon or a 
sea-bass?

Q: What is X? E.g. what 
features do I use to 
distinguish between the 
two fish?

This is somewhat of an art-
form. Frequently, the best is 
to ask domain experts. 

E.g., expert says use overall 
length and width of scales.
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Classification/Detection

Two major types of classifiers

Discriminant: determine the 
decision boundary in feature 
space that best separates 
the classes;

Generative: fit a probability 
model to each class and 
then compare the 
probabilities to find a 
decision rule.

A lot more on the relationship 
between these two 
approaches later!
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Caution
How do we know learning has 
worked?

We care about generalization, i.e. 
accuracy outside the training set

Models that are “too powerful” can 
lead to over-fitting:

• E.g. in regression one can always 
exactly fit n pts with polynomial of
order n-1.

• Is this good? how likely is the error
to be small outside the training set?

• Similar problem for classification

Fundamental Rule: only hold-out
test-set performance results matter!!!
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Generalization

Good generalization requires 
controlling the trade-off 
between training and test error

• training error large, test error large

• training error smaller, test error 
smaller

• training error smallest, test error 
largest

This trade-off is known by many 
names

In the generative classification 
world it is usually due to the bias-
variance trade-off of the class 
models
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