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Statistical Learning
Goal: Given a relationship between
a feature vector x and a vector y,  
and iid data samples (x y ) find anand iid data samples (xi,yi), find an 
approximating function  f (x) ≈ y

( )ŷ yf x= ≈x

This is called training or learning.

( )y yf x ≈x
( )·f

g g
Two major types of learning:

• Unsupervised Classification (aka Clustering) : only X is known.
• Supervised Classification or Regression: both X and target value 

Y are known during training, only X is known at test time.
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Unsupervised Learning – Clustering
Why learning without supervision?
• In many problems labels are not available 

or are impossible or expensive to getor are impossible or expensive to get.
• E.g. in the hand-written digits example, a 

human sat in front of the computer for 
hours to label all those exampleshours to label all those examples.

• For other problems the classes to be 
labeled depend on the application.

• A good example is image segmentation:
if you want to know if this is an image of the 
wild or of a big city, there is probably no 
need to segment.
If you want to know if there is an animal in 
the image, then you would segment. 
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– Unfortunately, the segmentation mask is 
usually not available



Review of Supervised Classification
Although our focus on clustering, let us start 
by reviewing supervised classification:

To implement the optimal decision rule 
for a supervised classification problem,
we need towe need to
• Collect a labeled iid training data set

D = {(x1,y1) , … , (xn,yn)}
where xi is a vector of observations
and yi is the associated class label,

and then 
Learn a probability model for each class

This involves estimating PX|Y(x|i) and PY(i) for each class i
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Supervised Classification
This can be done by Maximum Likelihood Estimation
MLE has two steps:
1) Choose a parametric model for each class pdf:

| ( | ; )iX iY iP x i θ θ ∈Θ

2) Select the parameters of  class i 
to be the ones that maximize 

| ( | ; )iX iY i

the probability of the iid data from 
that class:
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Maximum Likelihood Estimation
We have seen that MLE can be a straightforward procedure.  
In particular, if the pdf is twice differentiable then:

max• Solutions are parameters values 
such that

max

( )( | ˆ ) 0iP i θ∂ D (
|

)( | ; ) 0i
i

i
X YP i θ

θ
=
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D

( )
2

ˆ( | ; ) 0 ipT iP i θ θθ θ
∂

≤ ∀ ∈Θ ⊂D

• You always have to check 
h d d di i

( )
2 | ( | ; ) 0,   ipi

i i i
i

Y i iXP i θ
θ

θθ θ ≤ ∀ ∈Θ ⊂
∂

D

the second-order condition
• We must also find an MLE for the class probabilities PY (i)

B t h th i t h h i f b bilit d lBut here there is not much choice of probability model
o E.g. Bernoulli: ML estimate is the percent of training points in the class
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Maximum Likelihood Estimation
We have worked out the Gaussian case in detail:
• D  ( i ) = {x1

(i) , ... , xni
(i)} = set of examples from class i

• The ML estimates for class i are

( )1ˆ i
i jxµ = ∑ ˆ ( ) in

P i =

( ) ( )1ˆ ˆ ˆ( )( )i i Tx xµ µΣ = − −∑

i
ji

jn
µ ∑ ( )YP i

n
=

There are many other distributions for which we can 

( )( )i j i i
i

j
j

x x
n

µ µΣ = ∑

derive a similar set of equations
But the Gaussian case is particularly relevant for 
clustering (more on this later)
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clustering (more on this later)



Supervised Learning via MLE
This gives probability models for each of the classes
Now we utilize the fact that:
• assuming the zero/one loss, the 

optimal decision rule (BDR) is the 
MAP rule:MAP rule:

*
|( ) argmax ( | )Y Xi

i x P i x=

Which can also be written as

*
|( ) arg max log ( | ) log ( )X Y Yi x P x i P i⎡ ⎤= +⎣ ⎦

• This completes the process of supervised learning of a BDR.  

|( ) a g a og ( | ) og ( )X Y Yi
i x x i i⎣ ⎦
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We now have a rule for classifying any (unlabeled) future 
measurement x.



Gaussian Classifier
di i i t f

In the Gaussian case the BDR is
2*( ) arg min ( , )i x d x µ α⎡ ⎤= +⎣ ⎦

discriminant for
PY|X(1|x ) = 0.5

with

( ) arg min ( , )i i ii
i x d x µ α⎡ ⎤= +⎣ ⎦

2 1( , ) ( ) ( )ii
Td x y x y x y−= − Σ −

log(2 ) 2 log ( )d P iα π Σ
This can be seen as finding the nearest class neighbor, 
using a funny metric

log(2 ) 2 log ( )i i YP iα π= Σ −

using a funny metric
• Each class has its own squared-distance which is the sum of 

Mahalanobis-squared for that class plus the α constant
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o We effectively have different metrics in different regions of the space 



Gaussian Classifier
A i l f i i h

discriminant for
P (1|  )  0 5A special case of interest is when

• all classes have the same covariance Σi = Σ

PY|X(1|x ) = 0.5

ith

2*( ) argmin ( , )i ii
i x d x µ α⎡ ⎤= +⎣ ⎦

with

12 ( , ) ( ) ( )Td x y x y x y−= − Σ −

2log ( )i YP iα = −

• Note: αi can be dropped when all classes have equal probability
Then this is close to the NN classifier with Mahalanobis distance
However instead of finding the nearest neighbor it looks for the
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However, instead of finding the nearest neighbor, it looks for the 
nearest class “prototype” or “template” µi



Gaussian Classifier discriminant for
P (1|x ) = 0 5

Σi = Σ for two classes (detection)
• One important property of this case

PY|X(1|x ) = 0.5

One important property of this case 
is that the decision boundary is a 
hyperplane.

• This can be shown by computing the• This can be shown by computing the 
set of points x such that

0 0 1 1
2 2( , ) ( , )d x d xµ α µ α+ = +

and showing that they satisfy

0( ) 0Tw x x− =
w

x0

This is the equation of a hyperplane
with normal w.  x0 can be any fixed point 
on the hyperplane, but it is standard to  
h it t h i i i

x 1

x n

x

11

choose it to have minimum norm, in 
which case w and x0 are then parallel x 3

x2

n



Gaussian Classifier
if all the covariances are the identity Σi = Ι

2*( ) argmin ( , )i ii
i x d x µ α⎡ ⎤= +⎣ ⎦ *?
with

i

22 ( , ) || ||d x y x y= −

*?

This is just (Euclidean distance)

2log ( )i YP iα = −

This is just (Euclidean distance)
template matching with class 
means as templates

f di it l ifi ti th l (t l t )• e.g. for digit classification, the class means (templates) are:
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• Compare complexity of template matching to nearest neighbors!



Unsupervised Classification - Clustering
I l i bl d hIn a clustering problem we do not have 
labels in the training set
We can try to estimate bothWe can try to estimate both
the class labels  and 
the class pdf parameters
Here is a strategy:
• Assume k classes with pdf’s initialized 

to randomly chosen parameter valuesto randomly chosen parameter values 
• Then iterate between two steps:

1) Apply the optimal decision rule for the (estimated) class pdf’s
this assigns each point to one of the clusters, 
creating  pseudo-labeled data

2) Update the pdf estimates by doing parameter estimation within 
each estimated (pseudo-labeled) class cluster found in step 1
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each estimated (pseudo-labeled) class cluster found in step 1



Unsupervised Classification - Clustering
Natural question: what probability model do we assume?
• Let’s start as simple as possible 
• Assume: k Gaussian classes with identity covariances & equal PY (i)
• Each class has an unknown mean (prototype) µi which must be learned

Resulting clustering algorithm is the k means algorithm:Resulting clustering algorithm is the k-means algorithm:
• Start with some initial estimate of the µi (e.g. random, but distinct)
• Then, iterate betweenThen, iterate between

1) BDR Classification using the current estimates of the k class means:

2*( ) arg min ii x x µ= −

2) Re-estimation of the k class means:

1
( ) g

k ii
µ

≤ ≤

( )1 in
i∑
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means Clustering
The name comes from the fact that we are trying to learnThe name comes from the fact that we are trying to learn 
the “k” means (mean values) of “k” assumed clusters
It is optimal if you want to minimize the expected value It is optimal if you want to minimize the expected value 
of the squared error between vector x and template to 
which x is assigned.  K-means results in a Voronoi 
tessellation of the feature spacetessellation of the feature space.
Problems:
• How many clusters? (i.e., what is k?)How many clusters? (i.e., what is k?)

• Various methods available, Bayesian information criterion, Akaike 
information criterion, minimum description length

• Guessing can work pretty well• Guessing can work pretty well

• Algorithm converges to a local minimum solution only
• How does one initialize?
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• Random can be pretty bad
• Mean Splitting can be significantly better



Growing k via Mean Splitting
Let k = 1.  Compute the sample mean of all points, µ  ( 1 ) . 
(The superscript denotes the current value of k)
T i iti li f k 2 t b th (1) d lTo initialize means for k = 2 perturb the mean µ (1) randomly 
• µ1

(2) = µ  (1)

• µ2
(2) = (1+ε) µ  (1) ε << 1µ2  (1 ε) µ  ε  1

Then run k-means until convergence for k = 2
Initialize means for k = 4
• µ1

(4) = µ1
(2)

• µ2
(4) = (1+ε) µ1

(2)

• µ (4) = µ (2)• µ3
(4) =  µ2

(2)

• µ4
(4) = (1+ε) µ2

(2)

Then run k-means until convergence for k = 4
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Deleting “Empty” Clusters
“Empty” Clusters can be a source of algorithmic difficulties
Therefore, at the end of each iteration of k-means,
• Check the number of elements in each cluster
• If too low, throw the cluster away
• Reinitialize the mean of the most populated cluster

with a perturbed version of that mean

Note that there are alternative names:Note that there are alternative names: 
• In the compression literature this is known as the 

Generalized Loyd Algorithm
Thi i t ll th i ht i L d th fi t t i t it• This is actually the right name, since Loyd was the first to invent it

• It is also known as (data) Vector Quantization and is used in the 
design of vector quantizers
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Vector Quantization
Is a popular data compression technique
• Find a “codebook” of prototypes for the vectors to compressFind a codebook  of prototypes for the vectors to compress
• Instead of transmitting each vector, transmit the codebook index
• Image compression example

• Each pixel has 3 colors (requiring 3 bytes of information)
• Instead, find the optimal 256 color 

prototypes!  (256 ~ 1 byte of information)
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Vector Quantization
We now have an image compression scheme
• Each pixel has 3 colors  (1 byte per color = 3 bytes total needed))
• Instead, find the nearest neighbor template for 256 colors
• We transmit the template index
• Since there are only 256 templates only need one byte needed• Since there are only 256 templates, only need one byte needed
• Using the index, the decoder looks up the prototype in its table
• By sacrificing a little bit of distortion, we saved 2 bytes per pixel!

24



K-means
There are many other applications of K-means
• E.g. image segmentation: decompose each image into 

component objectscomponent objects
• Then run k-means on the colors and look at the assignments
• E.g., the pixels assigned to the red cluster tend to be from the booth:
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K-means
We can also use texture information in addition to color
• Many methods for clustering using “texture metrics”y g g
• Here are some results

• Note that this is not the state-of-the-art in image segmentation
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• But gives a good idea of what k-means can do



Extensions to basic K-means
There are many extensions to the basic k-means algorithm
• One of the most important applications is to the problem of  

learning accurate approximations to general, nontrivial PDF’s.
• Remember that the optimal decision rule

⎡ ⎤

is optimal iff the true probabilities P (x|i) are correctly estimated

*
|( ) argmax log ( | ) log ( )X Y Yi

i x P x i P i⎡ ⎤= +⎣ ⎦

is optimal iff the true probabilities PX|Y(x|i) are correctly estimated
• This often turns out to be impossible when we use overly simple 

parametric models like the Gaussian – Often the true probability is 
too complicated for any simple model to hold accuratelytoo complicated for any simple model to hold accurately

• Even if simple models provide good local approximations, there 
are usually multiple clusters when we take a global view
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• These weakness can be addressed by use of mixture distributions and 
the use of the Expectation-Maximization (EM) Algorithm



Mixture Distributions
Consider the following problem
• Certain types of traffic banned from a bridgeyp g
• We want an automatic detector/classifier to see if the ban is holding
• A sensor measures vehicle weight
• Want to classify each car into 

class = “OK” or class = “Banned” 
• We know that in each class

there are multiple sub-classes
• E.g. OK = {compact, sedan,

station wagon, SUV}g , }
Banned = {truck, bus, semi}

• Each of the sub-classes  is close 
to Gaussian but for the whole
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to Gaussian, but for the whole
class we get this



Mixture distributions
This distribution is a mixture
• The overall shape is determined

by a number of (sub) class densities
• We introduce a random 

variable Z to account for this
• A value of Z = c points to class c

and thus picks out the cth component 
density from the mixture.

• E.g. a Gaussian mixture:
# of mixture components

cth component “weight”

th “ i t t”
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cth “mixture component”
= Gaussian pdf



Mixture Distributions
Learning a mixture density is a type of “soft” clustering problemLearning a mixture density is a type of soft  clustering problem
• For each training point xk we need 

to figure out from which component class
Z = Z(x ) = j it was drawnZk = Z(xk) = j it was drawn

• Once we know how points are 
assigned to a component j we can 
estimate the component j pdf parametersestimate the component j pdf parameters

This could be done with k-means
A more general algorithm is Expectation Maximization (EM)A more general algorithm is Expectation-Maximization (EM) 
• A key difference from k-means: we never “hard assign” the points xk

• In the expectation step we compute posterior probabilities that a point xkp p p p p p k  
belongs to class j, for every j, conditioned on all the data D.

But we do not make a hard decision! (e.g., we do not assign the point 
xk only to a single class via the  MAP rule.)
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k o y to a s g e c ass a t e u e )

• Instead, in the maximization step, the point xk  “participates” in all
classes to a degree weighted by the posterior class probabilities



Expectation-Maximization (EM)
The EM Algorithm:The EM Algorithm:
1. Start with an initial parameter vector estimate θ (0)

2 E-step: Given current parameters θ (i) and observations in D2. E step: Given current parameters θ and observations in D,   
estimate the indicator functions χ(Zk = j) via the 
conditional Expectation

{ } { | }hkj =  E{ χ(Zk = j)| D ;  θ (i)  }  =  E{χ(Zk = j )| xk ;  θ (i)   }
1. M-step: Weighting the data xk by hkj, we have a complete data  

MLE problem for each class j I e Maximize the classMLE problem for each class j.  I.e. Maximize the class   
j likelihoods for the parameters, i.e. re-compute θ (i+1)

2. Go to 2. E-step
In a graphical form: Estimate

parameters
θ (i+1)

Fill in class
assignments

hkj

p

31

kj

M-step



Expectation Maximization (EM)
Note that for any mixture density we have:

{ } ( )( ) ( )
|) | ; ZE (Z | ;i i

k j k k Z X k kP j xh j xχ θ θ== = ={ } ( )|

( ) ( )
|

( )

) | ;

(from Bayes rule)
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∑
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Expectation-Maximization (EM)
I i l f G i i hIn particular, for a Gaussian mixture we have: 
Expectation Step
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Compare to the single (non mixture) Gaussian MLE solution
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Compare to the single (non-mixture) Gaussian MLE solution 
shown on slide 7!  They are equivalent solutions when hkj is the 
hard indicator function which selects class-labeled data.



Expectation-Maximization (EM)
Note that the difference between EM and k-means is that
• In the E-step hij is not hard-limited to 0 or 1

D i ld k th M t tl th kDoing so would make the M-step exactly the same as k-means

• Plus we get estimates of the class covariances and class 
probabilities automatically

k-means can be seen as a “greedy” version of EM
At each iteration, for each point we make a hard decision (the 
optimal MAP BDR for identity covariances & equal class priors)optimal MAP BDR for identity covariances & equal class priors)
But this does not take into account the information in the points
we “throw away”.  I.e., potentially all points carry information about 
all (sub) classesall (sub) classes
Note:  If the hard assignment is best, EM will learn it 

To get a feeling for EM you can use
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• http://www-cse.ucsd.edu/users/ibayrakt/java/em/



END
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