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Gaussian EM Algorithm

» For the Gaussian mixture model, we have
o EXpectation Step (E-Step):
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EM versus K-means
EM k-Means

Data Class Assignments

Soft Decisions: Hard Decisions:
hzg — PZ|X(3|XZ)| i*(xi) =arg max PZ|X (J | Xi)
J
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Parameter Updates

Soft Updates: Hard Updates:
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Important Application of EM

» Recall, in Bayesian decision theory we have

World: States Y in {1, ..., M} and observations of X
Class-conditional densities Py (x|y)

Class (prior) probabilities P(i)

Bayes decision rule (BDR)
¢* = arg max PX,Y(az\i)Py(i)
1

» We have seen that this is only optimal insofar as all
probabilities involved are correctly estimated

» One of the important applications of EM is to more
accurately learn the class-conditional densities



Example

» Image segmentation:

« Given this image, can we segment it
Into the cheetah and background classes?

o Useful for many applications

« Recognition: “this image has
a cheetah”

e Compression: code the cheetah
with fewer bits

e Graphics: plug in for photoshop
would allow manipulating objects

» Since we have two classes (cheetah
and grass), we should be able to do
this with a Bayesian classifier




Example

» Start by collecting a lot of examples of cheetahs

» One can get tons of such images via Google image search



Example
» Represent images as bags of little image patches

» We can fit a simple Gaussian to the transformed patches

discrete cosine
transform
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Example

» Do the same for grass and apply BDR to each patch to
classify each patch into “cheetah” or “grass”

i" =argmax{log G(x, 1, %;) +log R, (i)}

EEE i ([l [ (N I
B CNEEN
B I N

B o 1 D R R R o 1
il ) R e 2121
0 Y O A
— N SN —
[OWSRE PL chol | | Y
R G A ™ T
hatey™
]
[ [ |

A
discrete cosine
+ +
s+
transform Bag of DCT » 4% £
I 4+ 4 _;}- + + X
| | ++ L
B R R L L VeCtorS +++++§¢:"_ +++>$<:j;>< [
R N O PR
N R ik R R N et
"= X TE e X X XX
+++ * ++ ++XX><X><X><>5<XXX X x
—)
x ><><><><><>< %y X R
X «X X g
X




Example

» Better performance is achieved by modeling the cheetah
class distribution as a mixture of Gaussians

discrete cosine
transform
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Example

» Do the same for grass and apply BDR to each patch to
classify

i” =argmax IOgZG(X’:ui,k’Zi,k)ﬂ-i,k +log P, (i)
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Classification

» The use of more sophisticated probability models, e.g.
mixtures, usually improves performance

» However, it Is not a magic solution
» Earlier on in the course we talked about features
» Typically, you have to start from a good feature set

» It turns out that even with a good feature set, you must be
careful

» Consider the following example, from our image
classification problem
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Example

» Cheetah Gaussian classifier, DCT space
8 first DCT features all 64 features

Prob. of error: 4% 8%
» Interesting observation: more features = higher error!
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Comments on the Example

» The first reason why this happens is that things are not
always what we think they are in high dimensions

» One could say that high dimensional spaces are
STRANGE!!

» In practice, we invariable have to do some form of
dimensionality reduction

» We will see that eigenvalues play a major role in this

» One of the major dimensionality reduction techniques is
principal component analysis (PCA)

» But let’s start by discussing the problems of high
dimensions
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High Dimensional Spaces

» Are strange!
» First thing to know:

“Never fully trust your intuition in high dimensions!”

» More often than not you will be wrong!
* There are many examples of this
 We will do a couple here, skipping most of the math
* These examples are both fun and instructive
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The Hypersphere

» Consider the ball of radius r in a space of dimension d

d
=1

The surface of this ball is a (d-1)-dimensional hypersphere.

d

d7T§

:
"(5+1)

where I'(n) is the gamma function T'(n) = /0

» The ball has volume V,(r) =

Xz n—1
e Y dx

» When we talk of the “volume of a hypersphere”, we will
actually mean the volume of the ball it contains.

» Similarly, for “the volume of a hypercube”, etc.
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Hypercube versus Hypersphere

» Consider the hypercube [-a,a]9 and an inscribe hypersphere:

L
N

» Q: what does your intuition tell you about the relative
sizes of these two volumes?

1. volume of sphere =~ volume of cube?
2. volume of sphere >> volume of cube?
3. volume of sphere << volume of cube?
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Answer

» To find the answer, we can compute the relative volumes:
d

a2
d
P Vol(sphere) I‘(%—I—l) B T2
d = Vol(cube) — (2a)¢  o2dr (%4_1)

» This is a sequence that does not depend on the radius a,
just on the dimension d !

d 1 2 3 4 S 6 7
f, 1 |.785].524|.308].164| .08 |.037

» The relative volume goes to zero, and goes to zero fast!
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Hypercube vs Hypersphere

» This means that:

“As the dimension of the space increases, the volume of

the sphere is much smaller (infinitesimally so) than that
of the cube!”

» |s this really going against intuition?

» Itis actually not very surprising, if we think about it. we
can see it even in low dimensions:

1. d=1 _4 ° a volume is the same
2. d=2 a

volume of sphere is already
smaller
-a v a 4
-a
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Hypercube vs Hypersphere

» As the dimension increases, the volume of the shaded
corners becomes larger.

» In high dimensions the picture you should imagine is:

» All the volume of the cube
IS In the “spikes” (corners)!

19



Believe it or Not ...

... we can actually check this mathematically: Consider d and p
a

/ ’d:(a,,a,...,a,)ERd’

B " "™ p=1(a,0,....0) € R?

» note that
|d||? _ da?

d'p
VIdl2[[p]2 2~ a2
a? 1

cosl) = =d—

— — 0
Vda?a? Vd
» d becomes orthogonal to p as d increases,
and infinitely larger!!!
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But there Is even more ...

» Consider the crust of unit sphere of thickness &
» We can compute the volume of the crust: . S
2

_ |, Vol(51)
Vol(crust) = [1 Vol(SQ)] Vol(S5)

(a—c)tr? )
Vol(S1) F(%+1) B a’ (1 —5) B e\ d
Vol(S2) 4 % ad - (1 a
(4+1)

» No matter how small ¢ Is, ratio goes to zero as d increases
» |.e. “all the volume is in the crust!”
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High Dimensional Gaussian

» For a Gaussian, it can be shown that if

X ~ N(0,I), x€R"

and one considers the region outside of the hypersphere
where the probability density drops to 1% of peak value

S0.01(x) = {X

G(x,0,I) < 0.01
G(0,0,1)

then the probability mass in this region is

P, = P[x?(n) > 9.21]

where #?(n) is a chi-squared random variable with n
degrees of freedom
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High-Dimensional Gaussian

» If you evaluate this, you’ll find out that
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» As the dimension increases, virtually all the probability
mass is in the tails

» Yet, the point of maximum density is still the mean

» This is really strange: in high-dimensions the Gaussian is
a very heavy-tailed distribution

» Take-home message:

* “In high dimensions never trust your low-dimensional intuition!”



The Curse of Dimensionality

» Typical observation in Bayes decision theory:

 Error increases when number of features is large

» This is unintuitive since theoretically:

« If I have a problem in n dimensions | can always generate a
problem in n+1 dimensions without increasing the probability of
error, and even often decreasing the probability of error.

» E.g9. two uniform classes in 1-D
A B

can be transformed into a 2-D problem with the same error

e Just add a non-informative variable (extra dimension) y.
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Curse of Dimensionality

» Sometimes it is possible to reduce the error by adding a
second variable which is informative

* On the left there is no decision boundary that will achieve zero error
e On the right, the decision boundary shown has zero error
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Curse of Dimensionality

» In fact, it is theoretically impossible to do worse in 2-D
than 1-D:

If we move the classes along the lines shown in green
the error can only go down, since there will be less
overlap



Curse of Dimensionality

» S0 why do we observe this “curse of dimensionality”?
» The problem is the quality of the density estimates

» All we have seen so far, assumes perfect estimation of
the BDR o

» \We discussed various |
reasons why this is not easy

 Most densities are not simply a
Gaussian, exponential, etc T

» Typically densities are, at best, a |
mixture of several components. o

° There are many unknowns (# Of % 0.1 02 03 04 0s 06 07 08 0o i
components, what type), the likelihood has local minima, etc.

* Even with algorithms like EM, it is difficult to get this right



Curse of Dimensionality

» But the problem goes much deeper than this

» Even for simple models (e.g. Gaussian) we need
a large number of examples n to have good estimates

» Q: What does “large” mean?
This depends on the dimension of the space
» The best way to see this is to think of an histogram:

e Suppose you have 100 points and you need at least 10 bins per
axis in order to get a reasonable quantization

« For uniform data you get, on average:

[dimension| 1 [2]| 3
points/bin| 10 (1| 0.1

 This is decent in1-D:; bad in 2-D;
terrible in 3-D (9 out of each10 bins empty)
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Dimensionality Reduction

» We see that it can quickly become impossible to fill up a high
dimensional space with a sufficient number of data points.

 What do we do about this? We avoid unnecessary dimensions!
» Unnecessary can be measured in two ways:

1. Features are non-discriminant (insufficiently discriminating)
2. Features are not independent

» Non-discriminant means that they don’t separate classes well

Discriminant Feature Non-Discriminant Feature

1 : 20
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15 150

10} 100 |

50
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