
EM Algorithm &
High Dimensional Data

Nuno Vasconcelos
(Ken Kreutz-Delgado)(Ken Kreutz Delgado) 

UCSD



Gaussian EM Algorithm
For the Gaussian mixture model, we have
• Expectation Step (E-Step):

• Maximization Step (M Step):• Maximization Step (M-Step):
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EM versus K-means
EM k-MeansEM k-Means

Data Class Assignments
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Important Application of EM
Recall, in Bayesian decision theory we have
• World: States Y in {1 M} and observations of XWorld: States Y in {1, ..., M} and observations of X
• Class-conditional densities PX|Y(x|y)
• Class (prior) probabilities PY(i)
• Bayes decision rule (BDR)

We have seen that this is only optimal insofar as all y p
probabilities involved are correctly estimated
One of the important applications of EM is to more  

t l l th l diti l d iti
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accurately learn the class-conditional densities 



Example
Image segmentation:
• Given this image, can we segment it

into the cheetah and background classes?
• Useful for many applications

• Recognition: “this image has• Recognition: this image has 
a cheetah”

• Compression: code the cheetah p
with fewer bits

• Graphics: plug in for photoshop 
ld ll i l ti bj twould allow manipulating objects

Since we have two classes (cheetah 
and grass), we should be able to do
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and grass), we should be able to do 
this with a Bayesian classifier



Example
Start by collecting a lot of examples of cheetahs

and a lot of examples of grass

One can get tons of s ch images ia Google image search
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One can get tons of such images via Google image search



Example
Represent images as bags of little image patches
We can fit a simple Gaussian to the transformed patches

discrete cosine
transform
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Example
Do the same for grass and apply BDR to each patch to 
classify each patch into “cheetah” or “grass”

{ })(l)(l* G

++ + + ++ ++++ + ++ ++ ++ + ++
+++

+ +
+ ++

+ ++ + ++

{ })(log),,(logmaxarg
i

* iPxGi Yii +Σ= µ

+
+

++

+++
+ +
+

+

+

+

+

+ +
++

+
+ +
+

+ +
+

+++
+ +
+

+

+

+

+

+ +
++ ++

+++ +
+

+

+

+

+
+ +++

+ +
+

+

+

+

+

+ ++++
+ +
+

+

+

+

+
+

++ ++ ++ +
+ ++

( )grassxP WX ||

discrete cosine +
+ +
+

++++
+

+

+
+

+ + +
+

++
+

+
+ +

+

+
+

+
+

+

+

+
+

+
+

+
+

+
+

+

+

+

+

+

+
++

+

+
+

+

?

transform
+

+
+

+
+

+

+ +

+

+
+

+
+
+

+
+

++
+

+
+

+

+

+

+

+

+
+

++
+

+ +
+

+

+

+

+

+
++

+
+

+

+

+

+

+
+

+
+ +
+

+

+

+

+

+

+++
+

+

+

+

+

+

+ ++
+

+

+

+

+

+

+

+
++

+
+ +
+

+

+

+

+

+

++
+

+
+

+

+

+

+

+

+
+ ++
+ +

+

+

+
Bag of DCT 

vectors

+ +++
+

+ +

+
+
+

+
+

+
+

+
+

+ +
+

++
+

+ +
+

+
+

+
+

+ +
+

+

+

+++
+

+

+

+

+

+

+ ++
+

+
+

+

+

+

+

+

+
+++

+
+

+
+

+

+

+

+

+

+

?

8

( )cheetahxP WX ||



Example
Better performance is achieved by modeling the cheetah 
class distribution as a mixture of Gaussians

discrete cosine
transform
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Example
Do the same for grass and apply BDR to each patch to 
classify
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Classification
The use of more sophisticated probability models, e.g. 
mixtures, usually improves performance, y p p
However, it is not a magic solution
Earlier on in the course we talked about features
Typically, you have to start from a good feature set
It turns out that even with a good feature set, you must be g , y
careful
Consider the following example, from our image 
l ifi ti blclassification problem
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Example
Cheetah Gaussian classifier, DCT space

8 first DCT features all 64 features

Prob. of error: 4% 8%
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Interesting observation: more features = higher error!



Comments on the Example
The first reason why this happens is that things are not 
always what we think they are in high dimensionsy y g
One could say that high dimensional spaces are 
STRANGE!!!
In practice, we invariable have to do some form of 
dimensionality reduction
W ill th t i l l j l i thiWe will see that eigenvalues play a major role in this
One of the major dimensionality reduction techniques is 
principal component analysis (PCA)principal component analysis (PCA)
But let’s start by discussing the problems of high 
dimensions

13



High Dimensional Spaces
Are strange!
First thing to know:First thing to know:

“Never fully trust your intuition in high dimensions!”

More often than not you will be wrong!
There are many examples of this• There are many examples of this

• We will do a couple here, skipping most of the math
• These examples are both fun and instructivep
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The Hypersphere
Consider the ball of radius r in a space of dimension d

The surface of this ball is a (d-1)-dimensional hypersphere.

r

The surface of this ball is a (d 1) dimensional hypersphere.

The ball has volume

where Γ(n) is the gamma function

When we talk of the “volume of a hypersphere”, we will 
actually mean the volume of the ball it contains.
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Similarly, for “the volume of a hypercube”, etc.



Hypercube versus Hypersphere
Consider the hypercube [-a,a]d and an inscribe hypersphere: 

a

a

a

a a-a

-a

Q: what does your intuition tell you about the relative   
sizes of these two volumes?  

1 volume of sphere volume of cube?≈1. volume of sphere      volume of cube?
2. volume of sphere >> volume of cube?
3. volume of sphere << volume of cube?

≈

16



Answer
To find the answer, we can compute the relative volumes:

This is a sequence that does not depend on the radius a, 
just on the dimension d !

d 1 2 3 4 5 6 7
f 1 785 524 308 164 08 037

The relative volume goes to zero, and goes to zero fast!

fd 1 .785 .524 .308 .164 .08 .037
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Hypercube vs Hypersphere
This means that:
“As the dimension of the space increases the volume ofAs the dimension of the space increases, the volume of 
the sphere is much smaller (infinitesimally so) than that 
of the cube!”
Is this really going against intuition?
It is actually not very surprising, if we think about it. we 

it i l di ican see it even in low dimensions:
1. d = 1                                        volume is the same 
2 d = 2

a-a
a2. d = 2

volume of sphere is already
smaller

a-a

18

-a



Hypercube vs Hypersphere
As the dimension increases, the volume of the shaded 
corners becomes larger.g

a

a-a

-a

In high dimensions the picture you should imagine is:

All the volume of the cube
is in the “spikes” (corners)!
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Believe it or Not …
… we can actually check this mathematically: Consider d and p

a

a-a

d

p

note that
-a

d becomes orthogonal to p as d increases, 

20

and infinitely larger!!!



But there is even more …
Consider the crust of unit sphere of thickness ε
We can compute the volume of the crust:We can compute the volume of the crust:

ε

S1

S2

aa

No matter how small ε is, ratio goes to zero as d increases
I e “all the volume is in the crust!”

21

I.e. all the volume is in the crust!



High Dimensional Gaussian
For a Gaussian, it can be shown that if 

and one considers the region outside of the hypersphere
where the probability density drops to 1% of peak valuep y y p p

)
then the probability mass in this region is 

)

where χ2(n) is a chi-squared random variable with n

22

where χ (n) is a chi-squared random variable with n
degrees of freedom 



High-Dimensional Gaussian
If you evaluate this, you’ll find out that

n 1 2 3 4 5 6 10 15 20n 1 2 3 4 5 6 10 15 20
1-Pn .998 .99 .97 .94 .89 .83 .48 .134 .02

As the dimension increases, virtually all the probability 
mass is in the tails
Yet the point of maximum density is still the meanYet, the point of maximum density is still the mean
This is really strange: in high-dimensions the Gaussian is 
a very heavy-tailed distributiona very heavy tailed distribution
Take-home message:
• “In high dimensions never trust your low-dimensional intuition!”

23
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The Curse of Dimensionality
Typical observation in Bayes decision theory:

• Error increases when number of features is large

This is unintuitive since theoretically:
• If I have a problem in n dimensions I can always generate a 

problem in n+1 dimensions without increasing the probability ofproblem in n+1 dimensions without increasing the probability of 
error, and even often decreasing the probability of error.

E.g. two uniform classes in 1-D 
A B

can be transformed into a 2-D problem with the same error

24

• Just add a non-informative variable (extra dimension) y.



Curse of Dimensionality
x x

y y

Sometimes it is possible to reduce the error by adding a 
second variable which is informativesecond variable which is informative
• On the left there is no decision boundary that will achieve zero error
• On the right, the decision boundary shown has zero error

25

On the right, the decision boundary shown has zero error



Curse of Dimensionality
In fact, it is theoretically impossible to do worse in 2-D 
than 1-D:

x

y

If we move the classes along the lines shown in green   
the error can only go down, since there will be less

26

the error can only go down, since there will be less  
overlap



Curse of Dimensionality
So why do we observe this “curse of dimensionality”?
The problem is the quality of the density estimatesp q y y
All we have seen so far, assumes perfect estimation of 
the BDR
We discussed various 
reasons why this is not easy

Most densities are not simply a• Most densities are not simply a
Gaussian, exponential, etc

• Typically densities are, at best, a
mi t re of se eral componentsmixture of several components.

• There are many unknowns (# of 
components, what type), the likelihood has local minima, etc.

27

• Even with algorithms like EM, it is difficult to get this right



Curse of Dimensionality
But the problem goes much deeper than this
Even for simple models (e.g. Gaussian) we need 
a large number of examples n to have good estimates
Q: What does “large” mean?
This depends on the dimension of the spaceThis depends on the dimension of the space
The best way to see this is to think of an histogram:
• Suppose you have 100 points and you need at least 10 bins perSuppose you have 100 points and you need at least 10 bins per 

axis in order to get a reasonable quantization
• For uniform data you get, on average:

• This is decent in1-D; bad in 2-D;

dimension 1 2 3
points/bin 10 1 0.1

28

• This is decent in1-D; bad in 2-D; 
terrible in 3-D (9 out of each10 bins empty)



Dimensionality Reduction
W h i i kl b i ibl fill hi hWe see that it can quickly become impossible to fill up a high 
dimensional space with a sufficient number of data points. 
• What do we do about this? We avoid unnecessary dimensions!What do we do about this? We avoid unnecessary dimensions!

Unnecessary can be measured in two ways:
1. Features are non-discriminant (insufficiently discriminating)( y g)
2. Features are not independent

Non-discriminant means that they don’t separate classes well

Discriminant Feature Non-Discriminant Feature

29



END
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