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Motivation

» Recall, in Bayesian decision theory we have:

 World: States Y in {1, ..., M} and observations of X
* Class conditional densities Py (x|y)

« Class probabilities P (i)

« Bayes decision rule (BDR)

i* = arg max Pxy (z]é) Py (¢)
(/

» We have seen that this procedure is truly optimal only if all
probabilities involved are correctly estimated

» One of the most problematic factors in accurately estimating
probabilities is the dimension of the feature space



Example

» Cheetah Gaussian classifier, DCT space
8 first DCT features all 64 DCT features

Prob. of error: 4% 8%
» Interesting observation: more features = higher error !



Comments on the Example

» The first reason why this happens is that things are not
what we think they are in high dimensions

» one could say that high dimensional spaces are
STRANGE!!

» In practice, we invariably have to do some form of
dimensionality reduction

» Eigenvalues play a major role in this

» One of the major dimensionality reduction techniques is
Principal Component Analysis (PCA)



The Curse of Dimensionality

» Typical observation in Bayes decision theory:

 Error increases when number of features is large

» This is unintuitive since theoretically:

e |If I have a problem in n-D | can always generate a problem in (n+1)-
D without increasing the probability of error, and even often
decreasing the probability of error

» E.g9. two uniform classes in 1D
A B

can be transformed into a 2D problem with the same error

« Just add a non-informative variable (extra feature dimensions) y



Curse of Dimensionality

» On the left, even with the new feature (dimension) vy, there
IS no decision boundary that will achieve zero error

» On the right, the addition of the new feature (dimension) y
allows a detection with has zero error



Curse of Dimensionality

» SO0 why do we observe this curse of dimensionality?
» The problem is the quality of the density estimates
» BDR optimality assumes perfect estimation of the PDFs
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» This is not easy:

4+

* Most densities are not simple
(Gaussian, exponential, etc.)
but a mixture of several factors

35F
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 Many unknowns (# of T
components, what type),

» The likelihood has multiple }
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« Even with algorithms like EM, it is
difficult to get this right



Curse of dimensionality

The problem goes much deeper than this:

» Even for simple models (e.g. Gaussian) we need
a large number of examples n to have good estimates

» Q: what does “large” mean? This depends on the
dimension of the space

» The best way to see this is to think of an histogram

e suppose you have 100 points and you need at least 10 bins per
axis in order to get a reasonable quantization

for uniform data you get, on average,
ldimension| 1 [2]| 3
points/bin| 10 1| 0.1

which Is decent in1D, bad in 2D, terrible in 3D
(9 out of eachl10 bins are empty!)



Curse of Dimensionality

» This is the curse of dimensionality:

* For a given classifier the number of examples required to maintain
classification accuracy increases exponentially with the dimension
of the feature space

» In higher dimensions the classifier has more parameters

» Therefore: Higher complexity & Harder to learn
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Dimensionality Reduction

» What do we do about this? Avoid unnecessary dimensions

» “Unnecessary” features arise in two ways:
1.features are not discriminant

2.features are not independent

» Non-discriminant means that they do not separate the
classes well

discriminant non-discriminant
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Dimensionality Reduction

» Highly dependent features, even if very discriminant, are
not needed - one is enough!

» E.9. data-mining company studying consumer credit card
ratings:

X = {salary, mortgage, car loan, # of kids, profession, ...}
The first three features tend to be highly correlated:

* “the more you make, the higher the mortgage, the more
expensive the car you drive”

« from one of these variables | can predict the others very well

Including features 2 and 3 does not increase the
discrimination, but increases the dimension and leads
to poor density estimates
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Dimensionality Reduction

» Q: How do we detect the presence of these correlations?

» A: The data “lives” in a low dimensional subspace (up to

some amounts of noise). E.g.
new feature y

salary| s salary S
o .y
0%y ° L /
0Pgo projection onto
0
1D subspace: y =a x »
car loan car loan

» In the example above we have a 3D hyper-plane in 5D
» If we can find this hyper-plane we can:

* Project the data onto it

» Getrid of two dimensions without introducing significant error
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Principal Components

» Basic idea:

 If the data lives in a (lower dimensional) subspace, it is going to
look very flat when viewed from the full space, e.g.

1D subspace in 2D 2D subspace in 3D

» This means that:

» If we fit a Gaussian to the data the iso-probability contours are
going to be highly skewed ellipsoids

* The directions that explain most of the variance in the fitted data
give the Principal Components of the data.
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Principal Components

» How do we find these ellipsoids?
» When we talked about metrics we said that the

 Mahalanobis distance X2
measures the “natural” ]
units for the problem
because it is “adapted” to -
the covariance of the data

» We also know that

 What is special about it -
s that it uses X1

» Hence, information about Y1
possible subspace structure

must be in the covariance > —
matrix X d°(X, p)=(X—p) X7 (X— )

T A T T T
-2 -1 0] 1 2 Xl
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Principal Components & Eigenvectors

» It turns out that all relevant information is stored in the
eigenvalue/vector decomposition of the covariance matrix

» SO, let’s start with a brief review of eigenvectors

* Recall: a n x n (square) matrix can represent a linear operator
that maps a vector from the space R" back into the same space
(when the domain and codomain of a mapping are the same, the
mapping is an automorphism).

. v, | [a a, || x, |
e E.g. the equation y = Ax Vs o || 7
represents a linear mapping -
that sends x in R"to y also in R" LYl [@m Qnn L Xn
1 e, 4 e,
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Eigenvectors and Eigenvalues

» What is amazing is that there exist special (“eigen”)
vectors which are simply scaled by the mapping:

Ae
n

€,

» These are the eigenvectors of the n x n matrix A

 They are the solutions ¢ to the equation

Ap, = 4,0,

where the scalars A; are the n eigenvalues of A

» For a general matrix A, there iIs NOT a full set of n
eigenvectors
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Eigenvector Decomposition

» However, If Aisn x n, real and symmetric, it has
n real eigenvalues and n orthogonal eigenvectors.

» Note that these can be written all at once

| | | |
A¢1 e A(Dn = 2’1(01 o /ln ?,
| | | |

or, using the tricks that we reviewed in the 15t week

| | | || A 0
A ¢1 ¢n — ¢1 ¢n e

> |.e. — - -

AD = OA| |D=|g - o, A=
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Symmetric Matrix Eigendecomposition

» The n real orthogonal eigenvectors of real A = AT can be
taken to have unit norm, in which case @ is orthogonal

D' =0'D = |

&S O t=0!

so that

AD =0OA <

A=0DOAD'

» This is called the eigenvector decomposition, or
eigendecomposition, of the matrix A. Because A Is
real and symmetric, it is a special case of the SVD

» This factorization of A allows an alternative geometric
Interpretation to the matrix operation:

y = AX = DAD' X
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Eigenvector Decomposition

» This can be seen as a sequence of three steps
e 1) Apply the inverse orthogonal transformation ®T
X'=®'X

* This is a transformation to a rotated coordinate system
(plus a possible reflection)

» 2) Apply the diagonal operator A
* This is just component-wise scaling in the rotated coordinate system:

(A, ] [ A,X; |
X"=AX"= X'=|
A A X

n n-n

« 3) Apply the orthogonal transformation ®
* This is a rotation back to the initial coordinate system

y=®x"
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Orthogonal Matrices

» Remember that orthogonal matrices are best understood by
considering how the matrix operates on the vectors of the
canonical basis (equivalently, on the unit hypersphere)

e Note that ® sends e, to ¢,

D, =

@,...0,

1

0

[Ny

A

sin 0

« Since @7 is the inverse rotation (ignoring reflections), it sends ¢, to e,

» Hence, the sequence of operations is

e 1) Rotate (ignoring reflections) ¢ to e; (the canonical basis)

« 2) Scale e; by the eigenvalue 4,

« 3) Rotate scaled e, back to the initial direction along ¢
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Eigenvector Decomposition

» Graphically, these three steps are:

-
(1) " (2)
(DT
0 o,

W
Yo

(3) .
AY:

A€

D

This means that:

A) ¢; are the axes of the ellipse

B) The width of the ellipse
depends on the amount of
“stretching” by 4,
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Eigendecomposition
» Note that the stretching is done in Step (2):

A X,

A%

for X’ = e;, the length of X Is 4,

» Hence, the overall picture is:

e The axes are given by the ¢
e These have length /4,

» This decomposition can
be used to find optimal”
lower dimensional subspaces
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Multivariate Gaussian Review

» The equiprobability contours (level sets) of a
Gaussian are the points such that

(z—p)'= M o-—p) =K

» Let’s consider the change of variable z = x-x, which
only moves the origin by . The equation

Ayl =K
IS the equation of an ellipse (a hyperellipse).
» This is easy to see when X is diagonal:

52

Z:/\:diag(a%,.. O‘d)iz ZU_’LQ
1 1
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Gaussian Review

» This is the equation of an ellipse with principal lengths o,

 E.g.whend=2
2 2

“1 | <D — 1
02 ' 02
1 2
IS the ellipse
Z)
.
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Gaussian Review

» Introduce a transformationy = @z
» Then y has covariance >, = o5 >l = dADT
» If ® is proper orthogonal this is just a rotation and we have

Y Zy

9
(o) ) < —

O/ 3;1 \ o1 Z>1

» We obtain a rotated ellipse with principal components ¢,
and ¢, which are the columns of ®

» Note that >, = dAd ! is the eigendecomposition of X,
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Principal Component Analysis (PCA)

» If y Is Gaussian with covariance %, the eqmprobablllty

contours are the ellipses whose

* Principal Components ¢ are

the eigenvectors of

* Principal Values (lengths) & are the
square roots of the eigenvalues A, of

L >> o, flat

Yo

A

%y

Y1

Yo
9

e

>d v

» By computing the eigenvalues we know if the data is flat

Yo

ﬂ

o, = o, : hot flat

N
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Learning-based PCA

» Given sample D = {x1,...,Xn}, z; € RY
e compute sample mean: i =1 3(x;)
e compute sample covariance: ¥ =15 (x; — @) (x; — )T

e compute eigenvalues and eigenvectors of

> = dAPL, A =diag(o?,...,02) dlTd =1

e order eigenvalues 0% > ... > 02

e if, for a certain k, o, << o7 eliminate the eigenvalues and
eigenvectors above k.
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Learning-based PCA

* Given principal compoenents ¢;,7 € 1,...,k and a test sample
T ={t1,....tn}, tiERd

e subtract mean to each point tg =t;,— I

e project onto eigenvector space y; = At/ where
T
1|
la
T
Pk

e use 7' = {yq1,...yn} to estimate class conditional densities
and do all further processing on y.
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