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Motivation
Recall, in Bayesian decision theory we have:
• World: States Y in {1, ..., M} and observations of X
• Class conditional densities PX|Y(x|y)
• Class probabilities PY(i)

B d i i l (BDR)• Bayes decision rule (BDR)

We have seen that this procedure is truly optimal only if all 
b biliti i l d tl ti t dprobabilities involved are correctly estimated

One of the most problematic factors in accurately estimating 
probabilities is the dimension of the feature space
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probabilities is the dimension of the feature space



Example
Cheetah Gaussian classifier, DCT space

8 first DCT features all 64 DCT features

Prob. of error: 4% 8%
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Interesting observation: more features = higher error !



Comments on the Example
The first reason why this happens is that things are not 
what we think they are in high dimensionsy g
one could say that high dimensional spaces are 
STRANGE!!!
In practice, we invariably have to do some form of
dimensionality reduction
Ei l l j l i thiEigenvalues play a major role in this
One of the major dimensionality reduction techniques is
Principal Component Analysis (PCA)Principal Component Analysis (PCA)
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The Curse of Dimensionality
Typical observation in Bayes decision theory:

• Error increases when number of features is large

This is unintuitive since theoretically:
• If I have a problem in n-D I can always generate a problem in (n+1)-

D without increasing the probability of error and even oftenD without increasing the probability of error, and even often 
decreasing the  probability of error

E.g. two uniform classes in 1D 
A BA B

can be transformed into a 2D problem with the same error
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• Just add a non-informative variable (extra feature dimensions) y



Curse of Dimensionality
x x

y y

On the left, even with the new feature (dimension) y, there 
is no decision boundary that will achieve zero erroris no decision boundary that will achieve zero error
On the right, the addition of the new feature (dimension) y 
allows a detection with has zero error
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allows a detection with has zero error



Curse of Dimensionality
So why do we observe this curse of dimensionality?
The problem is the quality of the density estimatesp q y y
BDR optimality assumes perfect estimation of the PDFs
This is not easy:y
• Most densities are not simple

(Gaussian, exponential, etc.)
but a mixture of several factorsbut a mixture of several factors

• Many unknowns (# of 
components, what type), 
Th lik lih d h lti l• The likelihood has multiple 
local minima, etc.

• Even with algorithms like EM, it is 
diffi lt t t thi i ht
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difficult to get this right



Curse of dimensionality
Th bl h d h hiThe problem goes much deeper than this:

Even for simple models (e.g. Gaussian) we need 
a large number of examples n to have good estimatesa large number of examples n to have good estimates
Q: what does “large” mean? This depends on the 
dimension of the space
The best way to see this is to think of an histogram
• suppose you have 100 points and you need at least 10 bins per 

axis in order to get a reasonable quantization

for uniform data you get, on average,
dimension 1 2 3

hi h i d t i 1D b d i 2D t ibl i 3D

dimension 1 2 3

points/bin 10 1 0.1
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which is decent in1D, bad in 2D, terrible in 3D
(9 out of each10 bins are empty!)



Curse of Dimensionality
This is the curse of dimensionality:
• For a given classifier the number of examples required to maintain 

classification accuracy increases exponentially with the dimension 
of the feature space

In higher dimensions the classifier has more parametersg p
• Therefore: Higher complexity & Harder to learn
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Dimensionality Reduction
What do we do about this? Avoid unnecessary dimensions
“Unnecessary” features arise in two ways:Unnecessary  features arise in two ways:
1.features are not discriminant
2.features are not independentp

Non-discriminant means that they do not separate the 
classes well

discriminant non-discriminant

10



Dimensionality Reduction
Highly dependent features, even if very discriminant, are 
not needed - one is enough!g
E.g. data-mining company studying consumer credit card 
ratings:
X = {salary, mortgage, car loan, # of kids, profession, ...}
The first three features tend to be highly correlated: 

• “the more you make, the higher the mortgage, the more 
expensive the car you drive”

• from one of these variables I can predict the others very wellp y

Including features 2 and 3 does not increase the   
discrimination, but increases the dimension and leads 
t d it ti t
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to poor density estimates



Dimensionality Reduction
Q: How do we detect the presence of these correlations?
A: The data “lives” in a low dimensional subspace (up toA: The data lives  in a low dimensional subspace (up to  

some amounts of noise). E.g.
new feature y

o o
oo o

oo o
o

o

o

oo
oo o

o

salary

projection onto
oo

o
o

ooo
o

o
o oo

salary

In the example above we have a 3D hyper plane in 5D

o o

car loan
1D subspace: y = a x

oo

car loan

In the example above we have a 3D hyper-plane in 5D
If we can find this hyper-plane we can: 
• Project the data onto it
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Project the data onto it
• Get rid of two dimensions without introducing significant error



Principal Components
Basic idea:
• If the data lives in a (lower dimensional) subspace, it is going to 

look very flat when viewed from the full space, e.g.

1D subspace in 2D 2D subspace in 3D

This means that:This means that: 
• If we fit a Gaussian to the data the iso-probability contours are 

going to be highly skewed ellipsoids
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• The directions that explain most of the variance in the fitted data 
give the Principal Components of the data.



Principal Components
How do we find these ellipsoids?
When we talked about metrics we said that the
• Mahalanobis distance

measures the “natural” 
units for the problemu ts o t e p ob e
because it is “adapted” to 
the covariance of the data

We also know thatWe also know that 
• What is special about it

is that it uses Σ-1

Hence, information about 
possible subspace structure
must be in the covariance

12 T

14

matrix Σ
12( , ) ( ) ( )Td x x xµ µ µ−= − Σ −



Principal Components & Eigenvectors
It turns out that all relevant information is stored in the 
eigenvalue/vector decomposition of the covariance matrix
So, let’s start with a brief review of eigenvectors
• Recall: a n x n (square) matrix can represent a linear operator 

that maps a vector from the space Rn back into the same space p p p
(when the domain and codomain of a mapping are the same, the 
mapping is an automorphism).

• E.g. the equation y = Ax 1 11 1 1ny a a x⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
M M O M M

g q y
represents a linear mapping 
that sends x in Rn to y also in Rn 1n n nn ny a a x

⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M M O M M

en en

x A
n
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e1

e2

e1

e2
y



Eigenvectors and Eigenvalues
What is amazing is that there exist special (“eigen”)What is amazing is that there exist special ( eigen ) 
vectors which are simply scaled by the mapping:

en en

x

A

y = λ x 

These are the eigenvectors of the n x n matrix A

e1

e2

e1

e2

These are the eigenvectors of the n x n matrix A
• They are the solutions φi to the equation

Aϕ λ ϕ=
where the scalars λi are the n eigenvalues of A

For a general matrix A there is NOT a full set of n

i i iAϕ λ ϕ=
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For a general matrix A, there is NOT a full set of n 
eigenvectors 



Eigenvector Decomposition
However, If A is n x n, real  and symmetric, it has 
n real eigenvalues and n orthogonal eigenvectors.
Note that these can be written all at onceNote that these can be written all at once

1 1 1

| | | |
A Aϕ ϕ λ ϕ λ ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥L L

or, using the tricks that we reviewed in the 1st week

1 1 1

| | | |
n n nA Aϕ ϕ λ ϕ λ ϕ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1

1 1

| | | | 0

| | | | 0
n nA

λ
ϕ ϕ ϕ ϕ

λ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L O

I.e.
| | | | 0 nλ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

AΦ ΦΛ
1| | 0λ⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥Φ Λ O
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AΦ = ΦΛ 1        
| | 0

n

n

ϕ ϕ
λ

⎢ ⎥⎢ ⎥Φ = Λ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

L O



Symmetric Matrix Eigendecomposition
Th l h l i f l A AT bThe n real orthogonal eigenvectors of real A = AT can be 
taken to have unit norm, in which case Φ is orthogonal

1T TT I −ΦΦΦ Φ Φ Φ⇔
so that

1T TT I ΦΦΦ = Φ Φ = = Φ⇔

T

This is called the eigenvector decomposition, or 
i d iti f th t i A B A i

TA AΦ = ΦΛ ⇔ = ΦΛΦ

eigendecomposition, of the matrix A. Because A is 
real and symmetric, it is a special case of the SVD
This factorization of A allows an alternative geometricThis factorization of A allows an alternative geometric 
interpretation to the matrix operation:

Ty Ax x= = ΦΛΦ
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y Ax x= = ΦΛΦ



Eigenvector Decomposition
This can be seen as a sequence of three steps
• 1) Apply the inverse orthogonal transformation ΦT

T

• This is a transformation to a rotated coordinate system  
(plus a possible reflection)

' Tx x= Φ

(p p )

• 2) Apply the diagonal operator Λ
• This is just component-wise scaling in the rotated coordinate system:

,
1 1 1

,

'' ' '

n n n

x
x x x

x

λ λ

λ λ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= Λ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

O M

• 3) Apply the orthogonal transformation  Φ
• This is a rotation back to the initial coordinate system

⎣ ⎦

19

''y x= Φ



Orthogonal Matrices
Remember that orthogonal matrices are best understood by 
considering how the matrix operates on the vectors of the 
canonical basis (equivalently, on the unit hypersphere)canonical basis (equivalently, on the unit hypersphere)
• Note that Φ sends e1 to φ1

| | 1⎡ ⎤ ⎡ ⎤

e2

sin θ
ΦΤ

1 1

| | 1

| | 0
nϕ ϕ ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

K M

e1

θ

cos θ

Φ

ΦΤ

• Since ΦT is the inverse rotation (ignoring reflections), it sends φ1 to e1

Hence the sequence of operations is

| | 0⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ e1cos θ

Hence, the sequence of operations is
• 1) Rotate (ignoring reflections) φi to ei (the canonical basis)
• 2) Scale ei by the eigenvalue λi
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) i y g i

• 3) Rotate scaled ei back to the initial direction along φi



Eigenvector Decomposition
Graphically, these three steps are:

e2
e2 Λ

e1
θ

ΦΤ

(1)

e1 λ1e1

λ2e2

(2)

This means that:
A) φi are the axes of the ellipseλ2e2 Φ

(3)
A) φi are the axes of the ellipse
B) The width of the ellipse           

depends on the amount of
“stretching” by λi 

λ1e1

θ
Φ
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Eigendecomposition
Note that the stretching is done in Step (2):

λ⎡ ⎤
2)

,
1 1

'' '
x

x x
λ

λ

⎡ ⎤
⎢ ⎥= Λ = ⎢ ⎥
⎢ ⎥

M λ1

for x’ = ei, the length of x’’ is λi

,
n nxλ⎢ ⎥⎣ ⎦

i g i

Hence, the overall picture is:
• The axes are given by the φi λ2e2

• These have length λi

This decomposition can 
be used to find ``optimal’’

λ1e1

λ2e2

θ
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be used to find optimal   
lower dimensional subspaces



Multivariate Gaussian Review
The equiprobability contours (level sets) of a 
Gaussian are the points such thatp

L t’ id th h f i bl hi hLet’s consider the change of variable z = x-µ, which 
only moves the origin by µ. The equation

is the equation of an ellipse (a hyperellipse).
This is easy to see when Σ is diagonal:This is easy to see when Σ is diagonal:
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Gaussian Review

This is the equation of an ellipse with principal lengths σi

• E.g. when d = 2

is the ellipseis the ellipse
z2

σ1

σ2

z1
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Gaussian Review
Introduce a transformation y = Φ z
Then y has covariance y
If Φ is proper orthogonal this is just a rotation and we have

z2y2

σ2

z2

y = Φ zσ1σ2

y2

φ1φ2

σ1 z1

σ2
y1

We obtain a rotated ellipse with principal components φ1
and φ2 which are the columns of Φ
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Note that is the eigendecomposition of Σy



Principal Component Analysis (PCA)
If y is Gaussian with covariance Σ, the equiprobability 
contours are the ellipses whose y2

φ• Principal Components φi are 
the eigenvectors of Σ

• Principal Values (lengths) σi are the 
σ1σ2

y

φ1φ2

p ( g ) i
square roots of the eigenvalues λi  of Σ

By computing the eigenvalues we know if the data is flat

y1

By computing the eigenvalues we know if the data is flat
σ1 >> σ2 : flat                             σ1 = σ2 : not flat

y2 y2

σ1σ2
y1

σ1

σ2

y1
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y1 y1



Learning-based PCA
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Learning-based PCA
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ENDEND
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