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Curse of dimensionality
» Typical observation in Bayes decision theory:

 Errorincreases when number of features is large

» Even for simple models (e.g. Gaussian) we need
a large number of examples n to have good estimates

» Q: what does “large” mean? This depends on the
dimension of the space

» The best way to see this is to think of an histogram

» suppose you have 100 points and you need at least 10 bins per
axis in order to get a reasonable quantization

for uniform data you get, on average,

dimension| 1 [2| 3
points/bin| 10 (1| 0.1

which is decent in1D, bad in 2D, terrible in 3D
(9 out of each10 bins are empty!)



Curse of Dimensionality

» This Is the curse of dimensionality:

* For agiven classifier the number of examples required to
maintain classification accuracy increases exponentially with
the dimension of the feature space

» In higher dimensions the classifier has more parameters

e Therefore: Higher complexity & Harder to learn

error

classifier complexity — sample size  —pp-



Dimensionality Reduction

» What do we do about this? Avoid unnecessary dimensions

» “Unnecessary” features arise in two ways:

1.features are not discriminant

2.features are not independent (are highly correlated)

» Non-discriminant means that they do not separate the

classes well
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Dimensionality Reduction

» Q: How do we detect the presence of feature correlations?

» A: The data “lives” in a low dimensional subspace (up to

some amounts of noise). E.g.
new feature y

salaryl] = salary| S
..... ..,’ /
projection onto
1D subspace:y = a x »
car loan car loan

» In the example above we have a 3D hyper-plane in 5D
» If we can find this hyper-plane we can:

* Project the data onto it

« Getrid of two dimensions without introducing significant error



Principal Components

» Basic idea:

 If the data lives in a (lower dimensional) subspace, it is going to
look very flat when viewed from the full space, e.g.

1D subspace in 2D 2D subspace in 3D

» This means that:

 |f we fit a Gaussian to the data the iso-probability contours
are going to be highly skewed ellipsoids

 The directions that explain most of the variance in the fitted
data give the Principle Components of the data.




Principal Components

» How do we find these ellipsoids?
» When we talked about metrics we said that the

« Mahalanobis distance X2
measures the “natural’ ]
units for the problem
because it is “adapted” to
the covariance of the data

1

» We also know that

« What is special about it
s that it uses X1

-1

» Hence, information about
possible subspace structure

must be in the covariance - —
matrix X d(X, ) =(X—p) T~ (X— )

T S T T T
-2 -1 8] 1 2 Xl




Multivariate Gaussian Review

» The equiprobability contours (level sets) of a
Gaussian are the points such that

(- M oz—p) =K

» Let’'s consider the change of variable z = x-u, which
only moves the origin by . The equation

Ayl =K
Is the equation of an ellipse (a hyperellipse).

» This is easy to see when X is diagonal:
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Gaussian Review

» This is the equation of an ellipse with principal lengths o;

- E.g.whend=2
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Gaussian Review

» Introduce a transformation y = @z
» Theny has covariance 2, = o bl = dAPT
» If @ is proper orthogonal this is just a rotation and we have
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» We obtain a rotated ellipse with principal components ¢,

and ¢, which are the columns of @

» Note that >, = dAD T is the eigendecomposition of X,
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Principal Component Analysis (PCA)

» If y Is Gaussian with covariance %, the eqU|probab|I|ty

contours are the ellipses whose Yo
* Principal Components ¢ are é, &
the eigenvectors of Q
(0 15)

* Principal Values (lengths) o are the i / ’
square roots of the eigenvalues A; of X O Y1

» By computing the eigenvalues we know if the data is flat
c, >> o, : flat o, = 0, : hot flat

Yo Yo
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Learning-based PCA

» Given sample D = {x1,...,xp}, z; € R?
e compute sample mean: ji = 1%;(x;)
e compute sample covariance: ¥ = 1 3 (x; — @) (x; — )T

e compute eigenvalues and eigenvectors of >

> = dADPL, A =diag(o?,...,02) dld =1

e order eigenvalues 0% > ... > 02

e if, for a certain k, o, << o1 eliminate the eigenvalues and
eigenvectors above k.
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Learning-based PCA

* Given principal compoenents ¢;,i € 1,...,k and a test sample
T ={t1,...,tn}, tf,;ERd

e subtract mean to each point tg =t;, — i

e project onto eigenvector space y; = Atg where
T
1|
A = { ; J
T
Pk

e use 7' = {y1,...yn} to estimate class conditional densities
and do all further processing on y.
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Principal Component Analysis

» How to determine the number of eigenvectors to keep?
One possibility is to plot eigenvalue magnitudes

. Thisis called a Scree Plot

« Usually there is a fast decrease in the eigenvalue magnitude
followed by a flat area

* One good choice is the knee of this curve
/
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Principal Component Analysis

» Another possibility: Percentage of Explained Variance

« Remember that eigenvalues are a measure of variance
along the principle directions (eigenvectors)

Y- Z,

¢
(Y e

» Ratio ', measures % of total variance K
contained in the top K eigenvalues Zo-iz
i=1

* Measure of the fraction of data variability |F, = —
along the associated eigenvectors zo_z
=1
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Principal Component Analysis

» Given r, a natural measure is to pick the eigenvectors
that explain p % of the data variability

This can be done by plotting the ratio I, as a function of k
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E.g. we need 3 eigenvectors to cover 70% of the variability of
this dataset
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PCA by SVD

» There is an alternative way to compute the principal
components, based on the singular value decomposition

» (“Condensed”) Sinqular Value Decomposition (SVD):

« Any full-rank n x m matrix (n >m) can be decomposed as

A=MIIN'

* Mis an xm (nonsquare) column orthogonal matrix of left
singular vectors (columns of M)

« II isan m x m (square) diagonal matrix containing the m
singular values (which are nonzero and strictly positive)

« N an m x m row orthogonal matrix of right singular vectors
(columns of N = rows of NT)

MM=1__ N'N=NN"=1_

xXm




PCA by SVD

» TO relate this to PCA, we construct the d x n Data Matrix

X =

» The sample mean iIs

1« 1
ﬂ—ﬁéxi ~

— X1
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PCA by SVD

» We center the data by subtracting the mean from each
column of X

» This yields the d x n Centered Data Matrix

X=X o X |[=lp ... u

=X — ' =X—£X11T=X(I—111T)
n N




PCA by SVD

» The Sample Covariance is the d x d matrix

2= 2300 -w)(x ) =K ()

N

where x;¢ is the it" column of X,
» This can be written as
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PCA by SVD

» The centered data matrix

X! =

C

—_— X —_—

ISn xd. Assuming it has rank =d, it has the SVD:

X, =MIIN' MM=I N'N=|

» This yields:

1
s=1 X X! = L NIIM™MIINT = 2 NIT2NT
N n N




PCA by SVD

2=N(1H2)NT

n

» Noting that N is d x d and orthonormal, and I1? diagonal,
shows that this is just the eigenvalue decomposition of

» |t follows that

e The eigenvectors of X are the columns of N

e The eigenvalues of X are

» This gives an alternative algorithm for PCA
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PCA by SVD

Summary of Computation of PCA by SVD:

» Given X with one example per column

« 1) Create the (transposed) Centered Data-Matrix:

XCT=(I—111T)XT
n

« 2) Compute its SVD:

X, =MIIN'

« 3) Principal Components are columns of N; Principle Values are:

oA =T
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Principal Component Analysis

» Principal
components are
often quite
Informative about
the structure of
the data

» Example:

» Eigenfaces,
the principal
components for
the space of
images of faces

The figure only
show the first 16
eigenvectors
(eigenfaces)

Note lighting,
structure, etc




Principal Components Analysis

» PCA has been applied to virtually all learning problems
» E.g. eigenshapes for face morphing
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Principal Component Analysis
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Principal Component Analysis

» Turbulence Eigenflames
Flames




Principal Component Analysis
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Principal Component Analysis

» Text: Latent Semantic Indexing

* Represent each document by a word histogram
* Perform SVD on the document x word matrix

terms concepts terms

———
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1|
documents

documents
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o P_rinci_pal components as the & _j.:';_ . " F 3§ 7 f'gé :
directions of semantic concepts : 5 3 8 tE3: g §32
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Latent Semantic Analysis

» Applications:
« document classification, information
» Goal: solve two fundamental problems in language

« Synonymy: different writers use different words to describe the
same idea.

« Polysemy: the same word can have multiple meanings

» Reasons:

« Original term-document matrix is too large for the computing
resources

« Original term-document matrix is noisy: for instance,
anecdotal instances of terms are to be eliminated.

« Original term-document matrix overly sparse relative to "true"
term-document matrix. E.g. lists only words actually in each
document, whereas we might be interested in all words related to
each document-- much larger set due to synonymy
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Latent Semantic Analysis

» After PCA some dimensions get "merged":
* {(car), (truck), (flower)} --> {(1.3452 * car + 0.2828 * truck), (flower)}

» This mitigates synonymy,

* Merges the dimensions associated with terms that have similar
meanings.

» And mitigates polysemy,

« Components of polysemous words that point in the "right"
direction are added to the components of words that share this
sense.

« Conversely, components that point in other directions tend to
either simply cancel out, or, at worst, to be smaller than
components in the directions corresponding to the intended
sense.
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Extensions

» Soon we will talk about kernels

It turns out that any algorithm which depends on the data
through dot-products only, i.e. the matrix of elements

=
X, Xj

can be kernelized
« This is usually beneficial, we will see why later

* For now we look at the question of whether PCA can be written in
the inner product form mentioned above

» Recall the data matrixis | X=X, ... X
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Extensions

» Recall the centered data matrix, covariance, and SVD:

X, = X(I —%11T) zzlxcxj‘ X, =MIIN'
n

» This yields:

X! X, =MII’'M", ®=N=X_MII", A=21r
n

» Hence, solving for the d positive (nonzero) eigenvalues
of the inner product matrix X_."X., and for their
associated eigenvectors, provides an alternative way to
compute the eigendecomposition of the sample
covariance matrix needed to perform an SVD.
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Extensions
» In summary, we have

S =@AD' | |[@=XMIT™"

Ixrx = M(EHZ)MT =MAM
n N

» This means that we can obtain PCA by
« 1) Assembling the inner-product matrix X "X,
« 2) Computing its eigendecomposition (IT?, M)
» PCA

- The principal components are then given by ® = X M IT-!

« The eigenvalues are given by A =(1/n) IT?




Extensions
» What is interesting here is that we only need the matrix

» This is the inner product matrix of “dot-products” of the
centered data-points

» Notice that you don’t need the points themselves, only
their dot-products (similarities)
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Extensions

» In summary, to get PCA
« 1) Compute the dot-product matrix K, = X_."X,
« 2) Compute its eigendecomposition (IT2, M)
» PCA: For a covariance matrix £ = ®AD’
« Principal Components are given by ® = X M IT-!
- Eigenvalues are given by A =(1/n)II?

* Projection of the centered data-points onto the principal
components is given by

X ®=X"XMII"=KMIIT™"

» This allows the computation of the eigenvalues and PCA
coefficients when we only have access to the dot-product
(inner product) matrix K.
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