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Curse of dimensionality 
Typical observation in Bayes decision theory: 

• Error increases when number of features is large 

Even for simple models (e.g. Gaussian) we need  
a large number of examples n to have good estimates 

Q: what does “large” mean? This depends on the 
dimension of the space 

The best way to see this is to think of an histogram 

• suppose you have 100 points and you need at least 10 bins per 
axis in order to get a reasonable quantization 

    for uniform data you get, on average, 

 

 

    which is decent in1D, bad in 2D, terrible in 3D 
    (9 out of each10 bins are empty!) 

dimension 1 2 3 

points/bin 10 1 0.1 
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Curse of Dimensionality 

This is the curse of dimensionality: 

• For a given classifier the number of examples required to 
maintain classification accuracy increases exponentially with 
the dimension of the feature space 

In higher dimensions the classifier has more parameters 

• Therefore: Higher complexity & Harder to learn 
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Dimensionality Reduction  

What do we do about this? Avoid unnecessary dimensions 

“Unnecessary” features arise in two ways: 

1.features are not discriminant  

2.features are not independent (are highly correlated) 

Non-discriminant means that they do not separate the 
classes well 

discriminant non-discriminant 
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Q: How do we detect the presence of feature correlations? 

A: The data “lives” in a low dimensional subspace (up to   
     some amounts of noise). E.g. 
 
 
 
 
 
 

In the example above we have a 3D hyper-plane in 5D 

If we can find this hyper-plane we can:  

• Project the data onto it 

• Get rid of two dimensions without introducing significant error 

Dimensionality Reduction 
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Principal Components 

Basic idea: 

• If the data lives in a (lower dimensional) subspace, it is going to 
look very flat when viewed from the full space, e.g. 
 
 
 
 
 
 
 
 

This means that:  

• If we fit a Gaussian to the data the iso-probability contours 
are going to be highly skewed ellipsoids 

• The directions that explain most of the variance in the fitted 
data give the Principle Components of the data. 

1D subspace in 2D 2D subspace in 3D 
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Principal Components 

How do we find these ellipsoids? 

When we talked about metrics we said that the 

• Mahalanobis distance 
measures the “natural”  
units for the problem 
because it is “adapted” to  
the covariance of the data 

We also know that  

• What is special about it 
is that it uses S-1 

Hence, information about  
possible subspace structure 
must be in the covariance 
matrix S  

12( , ) ( ) ( )Td x x x    S 
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Multivariate Gaussian Review 

The equiprobability contours (level sets) of a 
Gaussian are the points such that 
 
 

Let’s consider the change of variable z = x-, which 
only moves the origin by . The equation 
 
 
is the equation of an ellipse  (a hyperellipse). 

This is easy to see when S  is diagonal: 
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Gaussian Review 

This is the equation of an ellipse with principal lengths si 

 

• E.g. when d = 2 
 
 
 
 

        is the ellipse 
 
 
 
 
 
 

 

s1 

s2 

z2 

z1 
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Introduce a transformation y = F z 

Then y has covariance  

If F is proper orthogonal this is just a rotation and we have 
 
 
 
 
 
 
 

We obtain a rotated ellipse with principal components f1 
and f2 which are the columns of F 

Note that                            is the eigendecomposition of Sy 

Gaussian Review 

s1 

s2 

z2 

z1 

y = F z s1 s2 

y2 

y1 

f1 f2 
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Principal Component Analysis (PCA) 

If y is Gaussian with covariance S, the equiprobability 
contours are the ellipses whose 

• Principal Components fi  are  
the eigenvectors of S 

• Principal Values (lengths) si  are the  
square roots of the eigenvalues li  of S 

 

By computing the eigenvalues we know if the data is flat  
 s1 >> s2 : flat                             s1 = s2 : not flat 
 

s1 s2 
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Learning-based PCA 
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Learning-based PCA 
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Principal Component Analysis 

How to determine the number of eigenvectors to keep? 
One possibility is to plot eigenvalue magnitudes 

• This is called a Scree Plot 

• Usually there is a fast decrease in the eigenvalue magnitude 
followed by a flat area 

• One good choice is the knee of this curve 
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Principal Component Analysis 

Another possibility:  Percentage of Explained Variance 

• Remember that eigenvalues are a measure of variance 
along the principle directions (eigenvectors) 
 
 
 
 
 
 
 
 

• Ratio rk measures % of total variance  

contained in the top k eigenvalues 

• Measure of the fraction of data variability 
along the associated eigenvectors 
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Principal Component Analysis 

Given rk a natural measure is to pick the eigenvectors 
that explain p % of the data variability 

• This can be done by plotting the ratio rk as a function of k 

 
 
 
 
 
 
 
 
 
 

• E.g. we need 3 eigenvectors to cover 70% of the variability of 
this dataset 
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PCA by SVD 

There is an alternative way to compute the principal 
components, based on the singular value decomposition 

(“Condensed”) Singular Value Decomposition (SVD): 

• Any full-rank n x m matrix (n >m) can be decomposed as 
 
 
 

• M is a n x m (nonsquare) column orthogonal matrix of left 
singular vectors (columns of M) 

•  P  is an m x m (square) diagonal matrix containing the m 
singular values (which are nonzero and strictly positive)  

• N an m x m row orthogonal matrix of right singular vectors 
(columns of N = rows of NT) 

 

 

TA   P 
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I I
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PCA by SVD 

To relate this to PCA, we construct the d x n Data Matrix 
 
 
 
 
 
 

The sample mean is 
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PCA by SVD 

We center the data by subtracting the mean from each 
column of X 

This yields the d x n Centered Data Matrix 
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PCA by SVD 

The Sample Covariance is the d x d matrix 
 
 
 
 
where xi

c is the i th column of Xc 

This can be written as 
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PCA by SVD 

The centered data matrix 
 
 
 
 
 
is n x d.  Assuming it has rank = d, it has the SVD: 

 
 

This yields:  
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PCA by SVD 

 

 

Noting that N is d x d and orthonormal, and P2 diagonal, 
shows that this is just the eigenvalue decomposition of S 

It follows that  

• The eigenvectors of S are the columns of N 

• The eigenvalues of S are   
 
 
 
 

This gives an alternative algorithm for PCA 
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PCA by SVD 

 Summary of Computation of PCA by SVD: 

Given X with one example per column 

• 1) Create the (transposed) Centered Data-Matrix: 
 
 
 
 

• 2) Compute its SVD: 
 
 
 

• 3) Principal Components are columns of N;  Principle Values are: 
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Principal Component Analysis 

Principal 
components are 
often quite 
informative about 
the structure of 
the data 

Example: 

• Eigenfaces,  
the principal 
components for 
the   space of 
images of faces 

• The figure only 
show the first 16 
eigenvectors 
(eigenfaces) 

• Note lighting, 
structure, etc 
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Principal Components Analysis 

PCA has been applied to virtually all learning problems 

E.g. eigenshapes for face morphing 

morphed faces 
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Principal Component Analysis 

Sound  

average 

sound images 

Eigensounds corresponding to the three  

highest eigenvalues 
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Principal Component Analysis 

Turbulence 
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Principal Component Analysis 
Video 

Eigenrings reconstruction 
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Principal Component Analysis 

Text: Latent Semantic Indexing 

• Represent each document by a word histogram 

• Perform SVD on the document x word matrix 
 
 
 
 
 
 
 
 
 

• Principal components as the 
directions of semantic concepts 
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Latent Semantic Analysis 

Applications: 

• document classification, information  

Goal: solve two fundamental problems in language 

• Synonymy: different writers use different words to describe the 
same idea.  

• Polysemy: the same word can have multiple meanings 
 

Reasons: 

• Original term-document matrix is too large for the computing 
resources 

• Original term-document matrix is noisy: for instance, 
anecdotal instances of terms are to be eliminated.  

• Original term-document matrix overly sparse relative to "true" 
term-document matrix. E.g.  lists only words actually in each 
document, whereas we might be interested in all words related to 
each document-- much larger set due to synonymy 
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Latent Semantic Analysis 

After PCA some dimensions get "merged": 

• {(car), (truck), (flower)} --> {(1.3452 * car + 0.2828 * truck), (flower)}  

This mitigates synonymy,  

• Merges the dimensions associated with terms that have similar 
meanings.  

And mitigates polysemy,  

• Components of polysemous words that point in the "right" 
direction are added to the components of words that share this 
sense.  

• Conversely, components that point in other directions tend to 
either simply cancel out, or, at worst, to be smaller than 
components in the directions corresponding to the intended 
sense. 
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Extensions 

Soon we will talk about kernels 

• It turns out that any algorithm which depends on the data  
through dot-products only, i.e. the matrix of elements 
 
 
 
 
can be kernelized 

• This is usually beneficial, we will see why later 

• For now we look at the question of whether PCA can be written in 
the inner product form mentioned above 
 
 

Recall the data matrix is 
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Extensions 
Recall the centered data matrix, covariance, and SVD: 
 
 
 
 

This yields: 
 
 
 

Hence, solving for the d positive (nonzero) eigenvalues 
of the inner product matrix Xc

TXc, and for their 
associated eigenvectors, provides an alternative way to 
compute the eigendecomposition of the sample 
covariance matrix needed to perform an SVD.  
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Extensions 
In summary, we have 
 
 
 
 
 

This means that we can obtain PCA by 

• 1) Assembling the inner-product matrix  Xc
TXc 

• 2) Computing its eigendecomposition P 2, ) 

PCA 

• The principal components are then given by F = Xc P 1 

• The eigenvalues are given by   1 / n) P 2 
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Extensions 
What is interesting here is that we only need the matrix  
 
 
 
 
 
 
 
 
 

This is the inner product matrix of “dot-products” of the 
centered data-points 

Notice that you don’t need the points themselves, only 
their  dot-products (similarities) 

 

1

1

| |

| |

    

c

T c c

c c c n

c

n

T
c c

n n

x

K X X x x

x

x x

    
   

     
       

 
 

  
 
  



36 

Extensions 
In summary, to get PCA 

• 1) Compute the dot-product matrix Kc = Xc
TXc 

• 2) Compute its eigendecomposition  P  2,  ) 

PCA: For a covariance matrix S = FFT 

• Principal Components are given by F = Xc P 1 

• Eigenvalues are given by   1 / n ) P 2 

• Projection of the centered data-points onto the principal 
components is given by 
 
 
 

This allows the computation of the eigenvalues and PCA 
coefficients when we only have access to the dot-product 
(inner product) matrix Kc 
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END 


