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Classification
a Classification Problem has two types of variables

• X - vector of observations (features) in the world
• Y - state (class) of the world

E.g. 
X X  2 X (f bl d )• X ∈ X ⊂ R2 ,   X = (fever, blood pressure)

• Y ∈ Y = {disease, no disease}  

X Y are stochastically related and thisX, Y are stochastically related and this 
relationship can be well approximated
by an “optimal” classifier function

ˆ̂ ( )y y f x=≈x
( )·f
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Goal: Design a “good” classifier  h ≈ f ≈ y,  h: X → Y 



Loss Functions and Risk
Usually h(.) is a parametric function, h(x,α)
Generally it cannot estimate the value y arbitrarily wellGenerally it cannot estimate the value y arbitrarily well
• Indeed, the best we can (optimistically) hope for is that h will well 

approximate the unknown optimal classifier f, h ≈ f 

We define a loss function: 
Goal: Find the parameter values (equivalently, find the 
l ifi ) th t i i i th t d l f th l

[ , ( , )]L y h x α

classifier) that minimize the expected value of the loss:

Risk = Average Loss = { },( ) [ , ( , )]X YR E L y h xα α=

In particular, under the “0-1” loss the optimal solution is the 
Bayes Decision Rule (BDR):

{ },
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[ ]|* ( ) argmax |Y X
i

h x P i x=



Bayes Decision Rule
The BDR carves up the 
observation space X, assigning 
a label to each regiona label to each region
Clearly, h* depends on the
class densities

Problematic! Usually we don’t know these densities!!

[ ] [ ]{ }|
i

* ( )  argmax log | logX Y Yh x P x i P i= +

Problematic!  Usually we don t know these densities!!
Key idea of discriminant learning:
• First estimating the densities followed by deriving the decision• First estimating the densities, followed by deriving the decision 

boundaries is a computationally intractable (hence bad) strategy
• Vapnik’s Rule: “When solving a problem avoid solving a 

more general (and thus usually much harder) problem as
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more general (and thus usually much harder) problem as 
an intermediate step!” 



Discriminant Learning
Work directly with the decision function
1. Postulate a (parametric) family of decision boundaries
2 Pi k th l t i thi f il th t d th b t l ifi2. Pick the element in this family that produces the best classifier

Q: What is a good family of decision boundaries?
Consider two equal probability Gaussian class conditionalConsider two equal probability Gaussian class conditional 
densities of equal covariance:

1*( ) l ( ) lh G⎧ ⎫Σ⎨ ⎬

{ }
i

1

* ( )  argmax log ( , , ) log
2

argmin ( ) ( )

i i
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i i
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5

1, otherwise
⎨
⎩



The Linear Discriminant Function
The decision boundary is the set of points

)()()()( 11 µµµµ ΣΣ −− xxxx TT

which, after some algebra, becomes
111 TTT

)()()()( 1100 µµµµ −Σ−=−Σ− xxxx

This is the equation of the hyperplane
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This is a linear discriminant



Linear Discriminants
The hyperplane equation can also
be written as

20 0T T ww x b w x b
w

⎛ ⎞
⎜ ⎟+ = ⇔ + = ⇔
⎜ ⎟
⎝ ⎠

ith

w⎜ ⎟
⎝ ⎠

( ) 0T wbx 1

w
x0

with

Geometric interpretation

( )0 0Tw x x− = 0 2x b
w

= −1

x2

x n

x

Geometric interpretation
• Hyperplane of normal w
• Hyperplane passes through x0

x 3
x2
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0

• Hyperplane point x0 is the  
point closest to the origin 



Linear Discriminants
For the given model, the quadratic discriminant function

1 1
0 0 1 10, if    ( ) ( ) ( ) ( ) 

*( )
T Tx x x x

h
µ µ µ µ− −⎧ − Σ − < − Σ −

⎨

is equivalent to the linear discriminant function

0 0 1 1
1 1

0 0 1 1

, ( ) ( ) ( ) ( )
*( )  

1, if    ( ) ( ) ( ) ( )
           

T Th x
x x x x

µ µ µ µ
µ µ µ µ− −= ⎨

− Σ − > − Σ −⎩

is equivalent to the linear discriminant function
0 if ( ) 0

*( )    
1 if ( ) 0

g x
h x

g x
>⎧

= ⎨ <⎩ x-x0

x

where
( )g⎩

( )0( ) Tg x w x x= −
w

x0

x x0

θ

g(x) > 0 if x is on the side w points to

( )0

0

( )

         w cos· ·

g

x x θ= − x n

x 1
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g(x) > 0 if x is on the side w points to 
(“w points to the positive side”)

x 3
x2



Linear Discriminants
Finally, note that

( ) Tg x w w

x

is:

( )0
( )g x w x x
w w

= −

x 1

w

x0

x-x0 θ

( )g x
is: 

• The projection of x-x0 onto the unit
vector in the direction of w

x n

1

x2

w

b
w

• The length of the component of x-x0
orthogonal to the plane

I e g(x)/||w|| = perpendicular distance from x to the plane

x 3
x2

I.e. g(x)/||w|| perpendicular distance from x to the plane
Similarly, |b|/||w|| is the distance from the plane to the origin,
since: w
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0 2

wx b
w

= −



Geometric Interpretation
Summarizing, the linear discriminant decision rule

0 if ( ) 0g x >⎧ with 

has the following properties

( ) Tg x w x b= +
0 if ( ) 0

*( )    
1 if ( ) 0

g x
h x

g x
>⎧

= ⎨ <⎩

has the following properties
• It divides X into two “half-spaces”

• The boundary is the hyperplane with:

w

The boundary is the hyperplane with:
• normal w
• distance to the origin b/||w|| | |b

w

x
( )g x
w

• g(x)/||w|| gives the signed distance 
from point x to the boundary

• g(x) = 0 for points on the plane
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• g(x) > 0 for points on the side w points to (“positive side”)
• g(x) < 0 for points on the “negative side”



The Linear Discriminant Function
When is it a good decision function?
We’ve just seen that it is optimal for 
• Gaussian classes having equal class 

probabilities and covariances

But, this sounds too much like anBut, this sounds too much like an
artificial, toy problem
However, it is also optimal if the 
data is linearly separable
• I.e., if there is a hyperplane which has

• all “class 0” data on one side• all class 0  data on one side
• all “class 1” data on the other

Note: this holding on the training set only guarantees 
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optimality in the minimum training error sense, not in the 
sense of minimizing the true risk



Linear Discriminants
For now, our goal is to explore the 
simplicity of the linear discriminant y =1p y
let’s assume linear separability 
of the training data

w

y

One handy trick is to use class labels
y∈ {-1,1} instead of y∈ {0,1} , where

y 1 for points on the positive side• y =  1 for points on the positive side
• y = -1 for points on the negative side

The decision function then becomes

y =-1
The decision function then becomes

[ ]1 if ( ) 0
*( )    * ( ) sgn ( )

1 if ( ) 0
g x

h x h x g x
g x

>⎧
= ⇔ =⎨ <⎩
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1 if ( ) 0g x− <⎩



Linear Discriminants & Separable Data
We have a classification error ifWe have a classification error if
• y = 1 and  g(x) < 0 or          y = -1 and  g(x) > 0

• i e if y g(x) < 0• i.e., if    y g(x) < 0
We have a correct classification if
• y = 1 and g(x) > 0 or y = -1 and g(x) < 0y  1 and  g(x) > 0 or          y  1 and  g(x) < 0

• i.e., if    y g(x) > 0

Note that if the data is linearly separable given a training setNote that, if the data is linearly separable, given a training set

D = {(x1,y1), ... , (xn,yn)}

we can have zero training error. 

The necessary & sufficient condition for this is that 
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( ) 0,    · · · ,1,T
i iy w x b i n+ > ∀ =



The Margin
The margin is the distance from the 
boundary to the closest point w

y=1

min
T

i

i

w x b
w

γ
+

=

There will be no error on the training 
set if it is strictly greater than zero: y=-1set if it is strictly greater than zero:

Note that this is ill-defined in the sense
( ) 0,         0T

i iy w x b i γ+ > ∀ ⇔ >

y 1

w

Note that this is ill-defined in the sense 
that γ does not change if both w and b
are scaled by a common scalar λ | |b

w

x

w
xg )(
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We need a normalization



Support Vector Machine (SVM)
A convenient normalization is to make 
|g(x)| = 1 for the closest point, i.e.

w

y=1

under which

min 1T
i

i
w x b+ ≡

under which 

y=-1
1
w

γ =

The Support Vector Machine (SVM) is 
the linear discriminant classifier that 

y 1

w

maximizes the margin subject to 
these constraints: | |b

w

x

w
xg )(

2
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( )2

,
min    subject to 1  T

i iw b
w y w x b i+ ≥ ∀



Maximizing the Margin
Intuition 1:
• Think of each point in the training 

set as a sample from a 
probability density centered on it

γ

p y y
• If we draw another sample, we 

will not get the same points 
• Thus each point is represents a• Thus each point is represents a 

pdf with a certain variance
• The sum of all such “point-centerd 

pdfs” provides a density estimatepdfs  provides a density estimate 
(a so-called “kernel estimate”)

• If we leave a margin of γ on the 
training set we are safe againsttraining set, we are safe against 
this “resampling” uncertainty (as 
long as the radius of support 
of a point pdf is smaller than γ)
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p p γ)
• Thus, the larger the value of γ, the more robust 

is the classifier when applied to new data!



Maximizing the Margin
I i i 2Intuition 2:
• Think of the hyper plane as an 

uncertain estimate because it is 
learned from random data samples

• Since the sample changes from
draw to draw, the hyperplane , yp p
parameters are random variables 
of non-zero variance

• Instead of a single hyperplane we g yp p
have a probability distribution over
possible hyperplanes

• The larger the margin, the largere a ge t e a g , t e a ge
the number of hyperplanes that will
not originate errors on the data

• The larger the value of γ, the larger the variance
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The larger the value of γ, the larger the variance 
allowed on the plane parameter estimates!



Duality
We must solve an optimization problem with constraints
There is a rich theory on how to solve such problems
• We will not get into it here (take 271B if interested)
• The main result is that we can often formulate a 

dual problem which is easier to solvedual problem which is easier to solve
• In the dual formulation we introduce a vector of Lagrange 

multipliers αi > 0, one for each constraint, and solve

• where
{ }w0 0

max  ( )  max  min ( , , )q L w b
α α

α α
≥ ≥

=

( )[ ]1
2
1),,( 2 −+−= ∑ bxwywbwL i

T
i

i
iαα
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is the Lagrangian



The Dual Optimization Problem
For the SVM, the dual problem can be simplified into

1 T⎧ ⎫
⎨ ⎬∑ ∑0 i

1max    
2

subject to  0

T
i j i j i j i

ij

i i

y y x x

y

α
α α α

α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
=

∑ ∑

∑
Once this is solved, the vector

i
j i iy∑

is the normal to the maximum margin hyperplane

* i i i
i

w y xα= ∑

is the normal to the maximum margin hyperplane
Note: the dual solution does not determine the optimal b*,
since b drops out when we solve
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w
min ( , , )L w b α



The Dual Problem
There are various possibilities for determining b*There are various possibilities for determining b .
For example:
• Pick one point x+ on the margin on the y = 1 side and 

i t i th 1 idone point x- on margin on the y = -1 side
• Then use the margin constraint

T T+ +⎫1 ( )     *
21

T T

T

w x b w x xb
w x b

+ + −

−

⎫+ = +
⇔ = −⎬

+ = − ⎭
1/||w||

xNote:
• The maximum margin solution guarantees that

there is always at least one point “on the margin”
1/|| *||

x

y p g
on each side

• If not, we could move the hyperplane and get 
an even  larger margin (see figure on the right)

1/||w*||

1/||w*||

x
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a e e a ge a g (see gu e o t e g t)



Support Vectors
αi=0It turns out that:

An inactive constraint always 

αi>0

has zero Lagrange multiplier αi

That is, 
T i

• i) αi > 0 and   yi(w*Txi + b*) = 1
or

• ii) αi = 0 and   yi(w*Txi + b*) > 1

αi=0Hence αi > 0 only for points
|w*Txi + b*| = 1 

which are those that lie at a 
distance equal to the margin
(i e those that are “on the margin”)
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(i.e., those that are on the margin ).
These points are the “Support Vectors”



Support Vectors
The points with αi > 0 “support”
the optimal hyperplane (w*,b*).

αi=0
This why they are called
“Support Vectors”
Note that the decision rule is

αi>0

Note that the decision rule is

( ) sgn * *Tf x w x b⎡ ⎤= +⎣ ⎦
⎡ ⎤⎛ ⎞

i

*         sgn
2

T
i i i

i
y x x x xα

+ −⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

+∑

αi=0*

SV
         sgn

2
T

i i i
i

y x x x xα
+ −

∈

⎡ ⎤⎛ ⎞
= −

+
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑
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where SV = {i | α*i  >  0} indexes 
the set of support vectors



Support Vectors and the SVM
Si h d i i l i

αi=0

Since the decision rule is

*( ) sgn
2

T
i i if x y x x xxα

+ −+⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑

where x+ and x- are support 
vectors, we see that we only 

SV 2i ∈ ⎝ ⎠⎣ ⎦
∑

αi>0
, y

need the support vectors to 
completely define the classifier!
W lit ll th

αi=0

We can literally throw away
all other points!!
The Lagrange multipliers canThe Lagrange multipliers can
also be seen as a measure
of importance of each point
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Points with αi = 0 have no influence—a 
small perturbation does not change the solution



The Robustness of SVMs
W lk d l b h “ f di i li ”We talked a lot about the “curse of dimensionality”
• In general, the number of examples required to achieve certain 

precision of pdf estimation, and pdf-based classification, is exponential p p , p , p
in the number of dimensions

It turns out that SVMs are remarkably robust to the 
dimensionality of the feature spacedimensionality of the feature space
• Not uncommon to see successful applications on 1,000D+ spaces

Two main reasons for this:Two main reasons for this:
• 1) All that the SVM has to do is to learn a hyperplane.

Although the number of dimensions may be xAlthough the number of dimensions may be
large, the number of parameters is relatively
small and there is not much room for overfitting x
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In fact, d+1 points are enough to specify the
decision rule in Rd !!



Robustness: SVMs as Feature Selectors
The second reason for robustness is that the 
data/feature space effectively is not really that largep y y g
• 2) This is because the SVM is a feature selector

To see this let’s look at the decision functionTo see this let s look at the decision function

*

SV
( ) sgn *T

i i i
i

f x y x x bα
∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

This is a thresholding of the quantity 

SVi ∈⎣ ⎦

* Ty x xα∑

Note that each of the terms xi
Tx is the projection (actually,      

inner product) of the vector which we wish to classify x

SV
i i i

i
y x xα

∈
∑
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inner product) of the vector which we wish to classify, x, 
onto the training (support) vector xi



SVMs as Feature Selectors
Define z to be the vector of the projection of x
onto all of the support vectors

( )1
( ) ,· · · ,

k

TT T
i iz x x x x x=

The decision function is a hyperplane in the z-space

* *( ) sgn * sgn ( ) *Tf x y x x b w z x bα
⎡ ⎤ ⎡ ⎤

= + = +⎢ ⎥ ⎢ ⎥∑ ∑
with

SV
( ) sgn * sgn ( ) *i i i k k

i k
f x y x x b w z x bα

∈

= + = +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∑ ∑

( )* *·* , ,· ·
T

w y yα α=

This means that
• The classifier operates only on the span of the support vectors!

( )1 1
, ,

k ki i i iw y yα α
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• The classifier operates only on the span of the support vectors!
• The SVM performs feature selection automatically.



SVMs as Feature Selectors
Geometrically, we have:
• 1) Projection of new data point x on the 

span of the support vectors
• 2) Classification on this (sub)space

xix

( )* *·* ··
T

w y yα α=
z(x)

(w* b*) ( )1 1
·* , ,· ·

k ki i i iw y yα α=(w ,b )
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• The effective dimension is |SV| and, typically, |SV| << n !!  



Summary of the SVM
SVM training:SVM training:
• 1) Solve the optimization problem:

1⎧ ⎫
0 i

1max    
2

subject to 0

T
i j i j i j i

ij
y y x x

y

α
α α α

α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
=

∑ ∑

∑

• 2) Then compute the parameters of the 
“large margin” linear discriminant function:

i
subject   to  0i iy α∑

large margin  linear discriminant function:
*

SV
* i i i

i
w y xα

∈

= ∑ ( )*1*
2

T T
i i i i

i SV
b y x x x xα + −

∈

= − +∑

SVM Linear Discriminant Decision Function:

*( ) *Tf b
⎡ ⎤
⎢ ⎥∑
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SV
( ) sgn *T

i i i
i

f x y x x bα
∈

= +⎢ ⎥
⎣ ⎦

∑



Non-Separable Problems
So far we have assumed linearly separable classes
This is rarely the case in practiceThis is rarely the case in practice
A separable problem is “easy”
most classifiers will do well
We need to be able to extend
the SVM to the non-separable
case
Basic idea:

With l l t f (“h d”) i• With class overlap we cannot enforce a (“hard”) margin.
• But we can enforce a “soft margin”
• For most points there is a margin. But  there are a few outliers 
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p g
that cross-over, or are closer to the boundary than the margin. So 
how do we handle the latter set of points?



Soft Margin Optimization
Mathematically this is done by introducing slack variables
Rather than solving the “hard margin” problem

( )2

,
min   subject to 1  T

i iw b
w y w x b i+ ≥ ∀

1/||w*||

1/||w*||

instead we solve the “soft margin” problem

( )2min subject to 1Tw y w x b iξ+ ≥ ∀ 1/|| *||

|| ||
x

( )
, ,

min    subject to  1   

                                 0,

i i iw b

i

w y w x b i

i
ξ

ξ

ξ

+ ≥ − ∀

≥ ∀ 1/||w*||

1/||w*||

x

The ξi are called slack variables
Basically, the same optimization as before but 

ξi / ||w*||
xi
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points with ξi > 0 are allowed to violate the margin



Soft Margin Optimization
Note that, as it stands, the problem is not well defined
By making ξi arbitrarily large, w ≈ 0 is a solution!
Therefore, we need to penalize large values of ξi

Thus, instead we solve the penalized, 
or regularized, optimization problem:

2min iw C ξ+ ∑ 1/||w*||

1/||w*||

( )
, ,

min   

subject to   1   

iw b i

T
i i i

w C

y w x b i

ξ
ξ

ξ

+

+ ≥ − ∀

∑ 1/||w ||
x

ξi / ||w*||
xi

                  0,i iξ ≥ ∀

C ξ∑
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The quantity            is the penalty, or regularization, term. 
The positive parameter C controls how harsh it is.

i
i

C ξ∑



The Soft Margin Dual Problem

αi = 0

The dual optimization problem:
αi = 0

0 i

1max
2

T
i j i j i j i

ij
y y x x

α
α α α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
∑ ∑

0 < αi < C i
subject   to  0,       

                   0

i i

i

y

C

α

α

=

≤ ≤

∑

αi = 0
*

*
The only difference with respect 
to the hard margin case is the 

i

*
αi = C 

g
“box constraint” on the Lagrange 
multipliers αi

Geometricall e ha e this
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Geometrically we have this



Support Vectors
Th h i i h 0They are the points with αi > 0
As before, the decision rule is

⎡ ⎤

where SV = { i | α* > 0 }

*( ) sgn *T
i i i

i SV
f x y x x bα

∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

where SV = { i | α*i > 0 }
and b* is chosen s.t.

y g(x ) = 1 f ll x t 0 < < C• yi g(xi) = 1, for all xi s.t. 0 < αi < C

The box constraint on the 
Lagrange multipliers:Lagrange multipliers:
• makes intuitive sense as it prevents 

any single support vector outlier from 
having an unduly large impact in the
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having an unduly large impact in the
decision rule.



Kernelization of the SVM
Note that all SVM equations depend only on xi

Txj

The kernel trick is trivial: replace by K(xi ,xj) x
x2

• 1) Training:

( )1max ,i j i j i j iy y k x xα α α
⎧ ⎫

− +⎨ ⎬∑ ∑

x
x

x

x

x

xx
x

xx

x
x

o
o

o

o

oo

oo
o
o

( )
0 i

i

max ,    
2

subject to   0,    0

i j i j i j i
ij

i i i

y y k x x

y C

α
α α α

α α

≥
+⎨ ⎬

⎩ ⎭
= ≤ ≤

∑ ∑

∑

ooo
x1

φ

( ) ( )( )*

SV

1* , ,
2 i i i i

i
b y K x x K x xα + −

∈

= − +∑
x

x
x

x

x

xx
x

xx

x
x

oo

• 2) Decision function:

( )*⎡ ⎤
⎢ ⎥∑

x
o

o
o

o
oo

o

oo
o
o

x1

x2

xn
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( )*

SV
( ) sgn , *i i i

i
f x y K x x bα

∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ x3

x2



Kernelization of the SVM
Notes:Notes:
• As usual, nothing we did really requires us to be in Rd.

We could have simply used <xi,xj> to denote for the inner productWe could have simply used xi,xj to denote for the inner product 
on a infinite dimensional space and all the equations would still 
hold

• The only difference is that we can no longer recover w* explicitlyThe only difference is that we can no longer recover w  explicitly 
without determining the feature transformationφ , since

( )** i i iw y xφα= ∑
• This can be an infinite dimensional object. E.g., it is a sum of 

Gaussians (“lives” in an infinite dimensional  function space) when we 

( )
SV

i i i
i

y φ
∈
∑

( p )
use the Gaussian kernel

• Luckily, we don’t need w*, only the SVM decision function

⎡ ⎤
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( )*

SV
( ) sgn , *i i i

i
f x y K x x bα

∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑



Limitations of the SVM
The SVM is appealing, but 
there are some limitations:
• A major problem is the selection• A major problem is the selection

of  an appropriate kernel. There
is no generic “optimal” procedure 
to find the kernel or its parametersp
• Usually we pick an arbitrary

kernel, e.g. Gaussian
• Then determine kernel parametersThen, determine kernel parameters, 

e.g. variance, by trial and error

• C controls the importance of 
outliers (larger C = less influence)( g )
• Not really intuitive how to choose C

SVM is usually tuned and performance-tested using 
lid ti Th i d t lid t ith
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cross-validation.  There is a need to cross-validate with 
respect to both C and kernel parameters



Practical Implementation of the SVM
In practice, we need an algorithm for solving the 
optimization problem of the training stagep p g g
• This is a complex problem
• There has been a large amount of research in this area

Therefore, writing “your own” algorithm 
is not going to be competitive

• Luckily there are various packages available, e.g.:
• libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
• SVM light: http://www.cs.cornell.edu/People/tj/svm_light/
• SVM fu: http://five-percent-nation mit edu/SvmFu/SVM fu: http://five-percent-nation.mit.edu/SvmFu/
• various others (see http://www.support-vector.net/software.html)

• There are also many papers and books on algorithms (see 
e g B S hölk f d A S l L i ith K l MIT P
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e.g. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 
2002)



ENDEND
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