
The Support Vector Machine

Nuno Vasconcelos
(Ken Kreutz-Delgado) (g)

UC San Diego

Geometric Interpretation
Summarizing, the linear discriminant decision rule

0 if () 0g x >⎧ with

has the following properties

() Tg x w x b= +
0 if () 0

*()
1 if () 0

g x
h x

g x
>⎧

= ⎨ <⎩

has the following properties
• It divides X into two “half-spaces”

• The boundary is the hyperplane with:

w

The boundary is the hyperplane with:
• normal w
• distance to the origin b/||w|| | |b

w

x
()g x
w

• g(x)/||w|| gives the signed distance
from point x to the boundary

• g(x) = 0 for points on the plane

2

• g(x) > 0 for points on the side w points to (“positive side”)
• g(x) < 0 for points on the “negative side”

Linear Discriminants
For now, our goal is to explore the
simplicity of the linear discriminant y =1p y
let’s assume linear separability
of the training data

w

y

One handy trick is to use class labels
y∈ {-1,1} instead of y∈ {0,1} , where

y 1 for points on the positive side• y = 1 for points on the positive side
• y = -1 for points on the negative side

The decision function then becomes

y =-1
The decision function then becomes

[]1 if () 0
*() * () sgn ()

1 if () 0
g x

h x h x g x
g x

>⎧
= ⇔ =⎨ <⎩

3

1 if () 0g x− <⎩

Linear Discriminants & Separable Data
We have a classification error ifWe have a classification error if
• y = 1 and g(x) < 0 or y = -1 and g(x) > 0

• i e if y g(x) < 0• i.e., if y g(x) < 0
We have a correct classification if
• y = 1 and g(x) > 0 or y = -1 and g(x) < 0y 1 and g(x) > 0 or y 1 and g(x) < 0

• i.e., if y g(x) > 0

Note that if the data is linearly separable given a training setNote that, if the data is linearly separable, given a training set

D = {(x1,y1), ... , (xn,yn)}

we can have zero training error.

The necessary & sufficient condition for this is that

4

() 0, · · · ,1,T
i iy w x b i n+ > ∀ =

The Margin
The margin is the distance from the
boundary to the closest point w

y=1

min
T

i

i

w x b
w

γ
+

=

There will be no error on the training
set if it is strictly greater than zero: y=-1set if it is strictly greater than zero:

Note that this is ill-defined in the sense
() 0, 0T

i iy w x b i γ+ > ∀ ⇔ >

y 1

w

Note that this is ill-defined in the sense
that γ does not change if both w and b
are scaled by a common scalar λ | |b

w

x

w
xg)(

5

We need a normalization

Support Vector Machine (SVM)
A convenient normalization is to make
|g(x)| = 1 for the closest point, i.e.

w

y=1

under which

min 1T
i

i
w x b+ ≡

under which

y=-1
1
w

γ =

The Support Vector Machine (SVM) is
the linear discriminant classifier that

y 1

w

maximizes the margin subject to
these constraints: | |b

w

x

w
xg)(

2

6

()2

,
min subject to 1 T

i iw b
w y w x b i+ ≥ ∀

Duality
We must solve an optimization problem with constraints
There is a rich theory on how to solve such problems
• We will not get into it here (take 271B if interested)
• The main result is that we can often formulate a

dual problem which is easier to solvedual problem which is easier to solve
• In the dual formulation we introduce a vector of Lagrange

multipliers αi > 0, one for each constraint, and solve

• where
{ }w0 0

max () max min (, ,)q L w b
α α

α α
≥ ≥

=

()[]1
2
1),,(2 −+−= ∑ bxwywbwL i

T
i

i
iαα

7

is the Lagrangian

The Dual Optimization Problem
For the SVM, the dual problem can be simplified into

1 T⎧ ⎫
⎨ ⎬∑ ∑0 i

1max
2

subject to 0

T
i j i j i j i

ij

i i

y y x x

y

α
α α α

α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
=

∑ ∑

∑
Once this is solved, the vector

i
j i iy∑

is the normal to the maximum margin hyperplane

* i i i
i

w y xα= ∑

is the normal to the maximum margin hyperplane
Note: the dual solution does not determine the optimal b*,
since b drops out when we solve

8

w
min (, ,)L w b α

The Dual Problem
There are various possibilities for determining b*There are various possibilities for determining b .
For example:
• Pick one point x+ on the margin on the y = 1 side and

i t i th 1 idone point x- on margin on the y = -1 side
• Then use the margin constraint

T T+ +⎫1 () *
21

T T

T

w x b w x xb
w x b

+ + −

−

⎫+ = +
⇔ = −⎬

+ = − ⎭
1/||w||

xNote:
• The maximum margin solution guarantees that

there is always at least one point “on the margin”
1/|| *||

x

y p g
on each side

• If not, we could move the hyperplane and get
an even larger margin (see figure on the right)

1/||w*||

1/||w*||

x

9

a e e a ge a g (see gu e o t e g t)

Support Vectors
αi=0It turns out that:

An inactive constraint always

αi>0

has zero Lagrange multiplier αi

That is,
T i

• i) αi > 0 and yi(w*Txi + b*) = 1
or

• ii) αi = 0 and yi(w*Txi + b*) > 1

αi=0Hence αi > 0 only for points
|w*Txi + b*| = 1

which are those that lie at a
distance equal to the margin
(i e those that are “on the margin”)

10

(i.e., those that are on the margin).
These points are the “Support Vectors”

Support Vectors
The points with αi > 0 “support”
the optimal hyperplane (w*,b*).

αi=0This why they are called
“Support Vectors”
Note that the decision rule is

αi>0

Note that the decision rule is

() sgn * *Tf x w x b⎡ ⎤= +⎣ ⎦
⎡ ⎤⎛ ⎞

αi=0

* sgn
2

T
i i i

i
y x x x xα

+ −⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

+∑
αi=0

*

SV
 sgn

2
T

i i i
i

y x x x xα
+ −

∈

⎡ ⎤⎛ ⎞
= −

+
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑

11

where SV = {i | α*i > 0} indexes
the set of support vectors

Support Vectors and the SVM
Si h d i i l i

αi=0

Since the decision rule is

*() sgn
2

T
i i if x y x x xxα

+ −+⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑

where x+ and x- are support
vectors, we see that we only

SV 2i ∈ ⎝ ⎠⎣ ⎦
∑

αi>0
, y

need the support vectors to
completely define the classifier!
W lit ll th

αi=0

We can literally throw away
all other points!!
The Lagrange multipliers canThe Lagrange multipliers can
also be seen as a measure
of importance of each point

12

Points with αi = 0 have no influence—a
small perturbation does not change the solution

The Robustness of SVMs
W lk d l b h “ f di i li ”We talked a lot about the “curse of dimensionality”
• In general, the number of examples required to achieve certain

precision of pdf estimation, and pdf-based classification, is exponential p p , p , p
in the number of dimensions

It turns out that SVMs are remarkably robust to the
dimensionality of the feature spacedimensionality of the feature space
• Not uncommon to see successful applications on 1,000D+ spaces

Two main reasons for this:Two main reasons for this:
• 1) All that the SVM has to do is to learn a hyperplane.

Although the number of dimensions may be xAlthough the number of dimensions may be
large, the number of parameters is relatively
small and there is not much room for overfitting x

13

In fact, d+1 points are enough to specify the
decision rule in Rd !!

Robustness: SVMs as Feature Selectors
The second reason for robustness is that the
data/feature space effectively is not really that largep y y g
• 2) This is because the SVM is a feature selector

To see this let’s look at the decision functionTo see this let s look at the decision function

*

SV
() sgn *T

i i i
i

f x y x x bα
∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

This is a thresholding of the quantity

SVi ∈⎣ ⎦

* Ty x xα∑

Note that each of the terms xi
Tx is the projection (actually,

inner product) of the vector which we wish to classify x

SV
i i i

i
y x xα

∈
∑

14

inner product) of the vector which we wish to classify, x,
onto the training (support) vector xi

SVMs as Feature Selectors
Define z to be the vector of the projection of x
onto all of the support vectors

()1
() ,· · · ,

k

TT T
i iz x x x x x=

The decision function is a hyperplane in the z-space

* *() sgn * sgn () *Tf x y x x b w z x bα
⎡ ⎤ ⎡ ⎤

= + = +⎢ ⎥ ⎢ ⎥∑ ∑
with

SV
() sgn * sgn () *i i i k k

i k
f x y x x b w z x bα

∈

= + = +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∑ ∑

()* *·* , ,· ·
T

w y yα α=

This means that
• The classifier operates only on the span of the support vectors!

()1 1
, ,

k ki i i iw y yα α

15

• The classifier operates only on the span of the support vectors!
• The SVM performs feature selection automatically.

SVMs as Feature Selectors
Geometrically, we have:
• 1) Projection of new data point x on the

span of the support vectors
• 2) Classification on this (sub)space

xix

()* *·* ··
T

w y yα α=
z(x)

(w* b*) ()1 1
·* , ,· ·

k ki i i iw y yα α=(w ,b)

16

• The effective dimension is |SV| and, typically, |SV| << n !!

Summary of the SVM
SVM training:SVM training:
• 1) Solve the optimization problem:

1⎧ ⎫
0 i

1max
2

subject to 0

T
i j i j i j i

ij
y y x x

y

α
α α α

α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
=

∑ ∑

∑

• 2) Then compute the parameters of the
“large margin” linear discriminant function:

i
subject to 0i iy α∑

large margin linear discriminant function:
*

SV
* i i i

i
w y xα

∈

= ∑ ()*1*
2

T T
i i i i

i SV
b y x x x xα + −

∈

= − +∑

SVM Linear Discriminant Decision Function:

*() *Tf b
⎡ ⎤
⎢ ⎥∑

17

SV
() sgn *T

i i i
i

f x y x x bα
∈

= +⎢ ⎥
⎣ ⎦

∑

Non-Separable Problems
So far we have assumed linearly separable classes
This is rarely the case in practiceThis is rarely the case in practice
A separable problem is “easy”
most classifiers will do well
We need to be able to extend
the SVM to the non-separable
case
Basic idea:

With l l t f (“h d”) i• With class overlap we cannot enforce a (“hard”) margin.
• But we can enforce a “soft margin”
• For most points there is a margin. But there are a few outliers

18

p g
that cross-over, or are closer to the boundary than the margin. So
how do we handle the latter set of points?

Soft Margin Optimization
Mathematically this is done by introducing slack variables
Rather than solving the “hard margin” problem

()2

,
min subject to 1 T

i iw b
w y w x b i+ ≥ ∀

1/||w*||

1/||w*||

instead we solve the “soft margin” problem

()2min subject to 1Tw y w x b iξ+ ≥ ∀ 1/|| *||

|| ||
x

()
, ,

min subject to 1

 0,

i i iw b

i

w y w x b i

i
ξ

ξ

ξ

+ ≥ − ∀

≥ ∀ 1/||w*||

1/||w*||

x

The ξi are called slack variables
Basically, the same optimization as before but

ξi / ||w*||
xi

19

points with ξi > 0 are allowed to violate the margin

Soft Margin Optimization
Note that, as it stands, the problem is not well defined
By making ξi arbitrarily large, w ≈ 0 is a solution!
Therefore, we need to penalize large values of ξi

Thus, instead we solve the penalized,
or regularized, optimization problem:

2min iw C ξ+ ∑ 1/||w*||

1/||w*||

()
, ,

min

subject to 1

iw b i

T
i i i

w C

y w x b i

ξ
ξ

ξ

+

+ ≥ − ∀

∑ 1/||w ||
x

ξi / ||w*||
xi

 0,i iξ ≥ ∀

C ξ∑

20

The quantity is the penalty, or regularization, term.
The positive parameter C controls how harsh it is.

i
i

C ξ∑

The Soft Margin Dual Problem

αi = 0

The dual optimization problem:
αi = 0

0 i

1max
2

T
i j i j i j i

ij
y y x x

α
α α α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
∑ ∑

0 < αi < C i
subject to 0,

 0

i i

i

y

C

α

α

=

≤ ≤

∑

αi = 0
*

*
The only difference with respect
to the hard margin case is the

i

*
αi = C

g
“box constraint” on the Lagrange
multipliers αi

Geometricall e ha e this

21

Geometrically we have this

Support Vectors
Th h i i h 0They are the points with αi > 0
As before, the decision rule is

⎡ ⎤

where SV = { i | α* > 0 }

*() sgn *T
i i i

i SV
f x y x x bα

∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

where SV = { i | α*i > 0 }
and b* is chosen s.t.

y g(x) = 1 f ll x t 0 < < C• yi g(xi) = 1, for all xi s.t. 0 < αi < C

The box constraint on the
Lagrange multipliers:Lagrange multipliers:
• makes intuitive sense as it prevents

any single support vector outlier from
having an unduly large impact in the

22

having an unduly large impact in the
decision rule.

Summary of the soft-margin SVM
SVM training:SVM training:
• 1) Solve the optimization problem:

1 T⎧ ⎫
⎨ ⎬∑ ∑0 i

i

1max
2

subject to 0,

T
i j i j i j i

ij

i i

y y x x

y

α
α α α

α

≥

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
=

∑ ∑

∑

• 2) Then compute the parameters of the
“large margin” linear discriminant function:

i

 0 i Cα≤ ≤

large margin linear discriminant function:
*

SV
* i i i

i
w y xα

∈

= ∑ ()*1*
2

T T
i i i i

i SV
b y x x x xα + −

∈

= − +∑

SVM Linear Discriminant Decision Function:

*() *Tf b
⎡ ⎤
⎢ ⎥∑

23

SV
() sgn *T

i i i
i

f x y x x bα
∈

= +⎢ ⎥
⎣ ⎦

∑

“The Kernel Trick”
What if we want a non-linear boundary?
Consider the following transformation

x
x

x

xx

x

x

x2

Consider the following transformation
of the feature space:
• Introduce a mapping to a “better”

x
x

x

xx

x
o

o
o

o

o

oo
o

oo
o

o

x1
pp g

(i.e., linearly separable) feature space
φ:X → Z

where generally dim(Z) > dim(X)

x1

Φ

where, generally, dim(Z) > dim(X).

• If a classification algorithm only depends on
the data through inner products then, in the

x
x

x

x

x

xx

x

xx

x

x

o o

transformed space, it depends on
x

o
o

o
o

o o
o

o o
o

o
x1

xn() () () (), T
i j i jx x x xφ φ φ φ〈 〉 =

24

x3
x2

() () () (),i j i jx x x xφ φ φ φ〈 〉

The Inner Product Implementation
In the transformed space, the learning algorithms
only requires inner productsy q p

〈φ (xi),φ (xj)〉 = φ (xj)Tφ (xi)

Note that we do not need to store the φ (xj), but onlyNote that we do not need to store the φ (xj), but only
the n2 (scalar) component values of the inner product
matrix
Interestingly, this holds even if φ (x) takes its value in an
infinite dimensional space.
• We get a reduction from infinity to n2!We get a reduction from infinity to n !
• There is, however, still one problem:

• When φ (xj) is infinite dimensional the computation of

25

j
the inner product 〈φ (xi),φ (xj)〉 looks impossible.

“The Kernel Trick”
“Instead of defining φ (x), then computing φ (xi) for each i,
and then computing 〈φ (xi),φ (xj)〉 for each pair (i,j), simply
define a kernel f nctiondefine a kernel function

def
(,) (), ()K x z x zφ φ= 〈 〉

and work with it directly.”
K(x z) is called an inner product or dot-product kernel

() () ()φ φ

K(x,z) is called an inner product or dot-product kernel
Since we only use the kernel, why bother to define φ (x)?
Just define the kernel K(x z) directly!Just define the kernel K(x,z) directly!
Then we never have to deal with the complexity of φ (x).
This is usually called “the kernel trick”

26

This is usually called the kernel trick

Kernel Summary
1. D not easy to deal with in X, apply feature transformation φ :X → Z ,

such that dim(Z) >> dim(X)

2. Constructing and computing φ (x) directly is too expensive:
• Write your learning algorithm in inner product form
• Then instead of φ(x) we only need 〈φ (x) φ (x)〉 for all i and j• Then, instead of φ(x), we only need 〈φ (xi),φ (xj)〉 for all i and j,

which we can compute by defining an “inner product kernel”
(,) (), ()K x z x zφ φ〈= 〉

and computing K(xi,xj) ∀i,j directly
• Note: the matrix

()K K
⎡ ⎤
⎢ ⎥
⎢ ⎥

M

is called the “Kernel matrix” or Gram matrix

3 M l F t b t φ() d i t d K() f th t t!

(,)i jK K x z= ⎢ ⎥
⎢ ⎥⎣ ⎦

L L

M

27

3. Moral: Forget about φ(x) and instead use K(x,z) from the start!

Question?
What is a good inner product kernel?
• This is a difficult question (see Prof Lenckriet’s work)This is a difficult question (see Prof. Lenckriet s work)

In practice, the usual recipe is:
• Pick a kernel from a library of known kernelsy
• some examples

• the linear kernel K(x,z) = xTz
• the Gaussian family

2

(,)
x z

K x z e σ
−

−
=

• the polynomial family

() { }(,) 1 , 1, 2,
kTK x z x z k= + ∈ L

28

() { }(,) , , ,z z

Kernelization of the SVM
Note that all SVM equations depend only on xi

Txj

The kernel trick is trivial: replace by K(xi ,xj) x
x2

• 1) Training:

()1max ,i j i j i j iy y k x xα α α
⎧ ⎫

− +⎨ ⎬∑ ∑

x
x

x

x

x

xx
x

xx

x
x

o
o

o

o

oo

oo
o
o

()
0 i

i

max ,
2

subject to 0, 0

i j i j i j i
ij

i i i

y y k x x

y C

α
α α α

α α

≥
+⎨ ⎬

⎩ ⎭
= ≤ ≤

∑ ∑

∑

ooo
x1

φ

() ()()*

SV

1* , ,
2 i i i i

i
b y K x x K x xα + −

∈

= − +∑
x

x
x

x

x

xx
x

xx

x
x

oo

• 2) Decision function:

()*⎡ ⎤
⎢ ⎥∑

x
o

o
o

o
oo

o

oo
o
o

x1

x2

xn

29

()*

SV
() sgn , *i i i

i
f x y K x x bα

∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ x3

x2

Kernelization of the SVM
Notes:Notes:
• As usual, nothing we did really requires us to be in Rd.

We could have simply used <xi,xj> to denote for the inner productWe could have simply used xi,xj to denote for the inner product
on a infinite dimensional space and all the equations would still
hold

• The only difference is that we can no longer recover w* explicitlyThe only difference is that we can no longer recover w explicitly
without determining the feature transformationφ , since

()** i i iw y xφα= ∑
• This can be an infinite dimensional object. E.g., it is a sum of

Gaussians (“lives” in an infinite dimensional function space) when we

()
SV

i i i
i

y φ
∈
∑

(p)
use the Gaussian kernel

• Luckily, we don’t need w*, only the SVM decision function

⎡ ⎤

30

()*

SV
() sgn , *i i i

i
f x y K x x bα

∈

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑

Limitations of the SVM
The SVM is appealing, but
there are some limitations:
• A major problem is the selection• A major problem is the selection

of an appropriate kernel. There
is no generic “optimal” procedure
to find the kernel or its parametersp
• Usually we pick an arbitrary

kernel, e.g. Gaussian
• Then determine kernel parametersThen, determine kernel parameters,

e.g. variance, by trial and error

• C controls the importance of
outliers (larger C = less influence)(g)
• Not really intuitive how to choose C

SVM is usually tuned and performance-tested using
lid ti Th i d t lid t ith

31

cross-validation. There is a need to cross-validate with
respect to both C and kernel parameters

Practical Implementation of the SVM
In practice, we need an algorithm for solving the
optimization problem of the training stagep p g g
• This is a complex problem
• There has been a large amount of research in this area

Therefore, writing “your own” algorithm
is not going to be competitive

• Luckily there are various packages available, e.g.:
• libSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
• SVM light: http://www.cs.cornell.edu/People/tj/svm_light/
• SVM fu: http://five-percent-nation mit edu/SvmFu/SVM fu: http://five percent nation.mit.edu/SvmFu/
• various others (see http://www.support-vector.net/software.html)

• There are also many papers and books on algorithms (see e.g. B.
S hölk f d A S l L i ith K l MIT P 2002)

32

Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002)

ENDEND

33

