The Support Vector Machine

Nuno Vasconcelos
(Ken Kreutz-Delgado)

UC San Diego

Geometric Interpretation

» Summarizing, the linear discriminant decision rule
0 ifg(x)>0
1 ifg(x)<0

with [g(x)=w'x+b

h*(x) = {

has the following properties

e Itdivides X into two “half-spaces”

 The boundary is the hyperplane with:
e normal w
« distance to the origin b/||w||

o g(x)/||w]|| gives the signed distance
from point x to the boundary

* g(x) = O for points on the plane
e g(x) > O for points on the side w points to (“positive side”)
* g(x) <0 for points on the “negative side”

Linear Discriminants

» For now, our goal is to explore the
simplicity of the linear discriminant

» let’'s assume linear separability
of the training data

» One handy trick is to use class labels
ye {-1,1} instead of ye {0,1} , where

 y = 1 for points on the positive side - T

e y =-1 for points on the negative side _ o y :'1
» The decision function then becomes

1 ifg(x)>0

™00 = {—1 if g(x) <0

h*(x)=sgn[g(x)]

Linear Discriminants & Separable Data
» We have a classification error if

e« y=1 and g(x)<0 or y=-1 and g(x)>0

- ie,if ygx) <O
» \We have a correct classification if

e« y=1 and g(x)>0 or y=-1 and g(x) <0

e ie,if ygx)>0

» Note that, Iif the data is linearly separable, given a training set

D ={(X1y1), ™+ (Xn.Yn)}
we can have zero training error.

» The necessary & sufficient condition for this is that

yi(WTxi+b)>O, Vi=1,,n

The Margin

» The margin is the distance from the
boundary to the closest point \:

» There will be no error on the training
set If it Is strictly greater than zero:

yi(WTxi+b)>O, Vi & |y>0

» Note that this is ill-defined in the sense
that y does not change if both w and b
are scaled by a common scalar 4

» \We need a normalization

Support Vector Machine (SVI\/I)

» A convenient normalization is to make
lg(x)| = 1 for the closest point, i.e.

min ‘WT X, + b‘ =
I

under which

& o o
L o a
1 CIu::- fa o
y =1 | :
wi R

» The Support Vector Machine (SVM) is
the linear discriminant classifier that
maximizes the margin subject to
these constraints:

min |w|* subject to yi(WTxi+b)21 Vi

Duality

» We must solve an optimization problem with constraints

» There iIs a rich theory on how to solve such problems

 We will not get into it here (take 271B if interested)

e The main result is that we can often formulate a
dual problem which is easier to solve

* In the dual formulation we introduce a vector of Lagrange
multipliers ¢; > 0, one for each constraint, and solve

max q(a) = max {min L(W,b,a)}
* where i i

L(w,b,a) = 2wl = 3 e [y, (wx, +b)-1]

IS the Lagrangian

The Dual Optimization Problem

» For the SVM, the dual problem can be simplified into

1 T
T%{_Ezaiaj Yi¥iXi %, "‘Zai}

i

subjectto)y =0

» Once this is solved, the vector

W* =) a,y;X,

IS the normal to the maximum margin hyperplane

» Note: the dual solution does not determine the optimal b*
since b drops out when we solve

min L(w,b,a)

The Dual Problem

» There are various possibilities for determining b*.
For example:

* Pick one point x* on the margin on the y = 1 side and
one point X on margin on the y = -1 side

 Then use the margin constraint

W' X" +b=1 b*z_WT(X++X_)
W X +b=-1 2
» Note: .
 The maximum margin solution guarantees that l

there is always at least one point “on the margin”

: 1/ W’:.
on each side . 1w

" \$1<-{,|.|.w*“......

 If not, we could move the hyperplane and get
an even larger margin (see figure on the right)

Support Vectors -

It turns out that:

» An inactive constraint always
has zero Lagrange multiplier ¢

» That is,

e)a>0 and y(w*Tx +b*) =1
or

e i)ax=0 and y(w*x +b*)>1
» Hence ¢; > 0 only for points
|lW*Tx, + b*| = 1
which are those that lie at a N]
distance equal to the margin oot s s

(l.e., those that are “on the margin”).
These points are the “Support Vectors”

10

Support Vectors

» The points with & > 0 “support” ' - - : - o
the optimal hyperplane (w*,b*). |

» This why they are called
“Support Vectors”

» Note that the decision rule iIs

f(x)=sgn| w*" x+Db*|

RC—

son| 3 vaixx-

_ieSV

where SV ={i | o*; > 0} Indexes————=——<+———————==
the set of support vectors

11

Support Vectors and the SVM

» Since the decision rule is

f(x)=sgn|). yiai*xiT(X—X +X_)_

I € SV

where x* and x are support
vectors, we see that we only
need the support vectors to
completely define the classifier!

» We can literally throw away
all other points!!

» The Lagrange multipliers can
also be seen as a measure
of Importance of each point

o z - = - o G

» Points with ¢ = 0 have no influence—a
small perturbation does not change the solution

12

The Robustness of SVMs

» We talked a lot about the “curse of dimensionality”

* In general, the number of examples required to achieve certain

precision of pdf estimation, and pdf-based classification, is exponential
In the number of dimensions

» It turns out that SVMs are remarkably robust to the
dimensionality of the feature space

* Not uncommon to see successful applications on 1,000D+ spaces
» Two main reasons for this:

« 1) All that the SVM has to do is to learn a hyperplane.

Although the number of dimensions may be
large, the number of parameters is relatively
small and there is not much room for overfitting

In fact, d+1 points are enough to specify the
decision rule in R4 !l

13

Robustness: SVMs as Feature Selectors

» The second reason for robustness is that the
data/feature space effectively is not really that large

e 2) This is because the SVM is a feature selector

To see this let’s look at the decision function

f(x)=sgn{ > yiai*xiTx+b*}

i e SV
This is a thresholding of the quantity
Z yiai*XiT X

i e SV

Note that each of the terms x"x is the projection (actually,
iInner product) of the vector which we wish to classify, X,
onto the training (support) vector Xx;

14

SVMs as Feature Selectors

» Define z to be the vector of the projection of x
onto all of the support vectors

z(x)=(xTxi1,---,xTxik)T

» The decision function is a hyperplane in the z-space

f(x) =sgn{ D Vi X x+ b*} =sgn[2wzzk(x)+ b*}

i e SV

with

w* (a Vi » -,a;yik)T

» This means that

* The classifier operates only on the span of the support vectors!
 The SVM performs feature selection automatically.

15

SVMs as Feature Selectors

» Geometrically, we have:

« 1) Projection of new data point x on the
span of the support vectors

» 2) Classification on this (sub)space

W*z(ai’; Vi Y,)T

« The effective dimension is |[SV| and, typically, |SV| << n !l

16

Summary of the SVM

» SVM training:

« 1) Solve the optimization problem:

mag{—%zmaj ViV X! X, +Zai}
@ = i i

subject to) vy,a, =0

e 2) Then compute the parameters of the
“large margin” linear discriminant function:

W* = Z ai*yixi b*z_% Z yiai*(XiTX++XiTX_)

iESV i e SV

» SVM Linear Discriminant Decision Function:

f(x)=sgn[> yia:x?x+b*}
I e SV

Non-Separable Problems

» So far we have assumed linearly separable classes

» This Is rarely the case In practice

» A separable problem is “easy”
most classifiers will do well

» We need to be able to extend
the SVM to the non-separable
case

» Basic idea:

0B
05

04r

oF
—01F

-0.2
—0.5

0
‘eature 1

* With class overlap we cannot enforce a (*hard”) margin.

e But we can enforce a “soft margin”

* For most points there is a margin. But there are a few outliers
that cross-over, or are closer to the boundary than the margin. So

how do we handle the latter set of points?

18

Soft Margin Optimization

» Mathematically this is done by introducing slack variables

» Rather than solving the “hard margin” problem

min |w|* subjecttoy, (WT X, + b) >1 Vi A

1/||w|

Instead we solve the “soft margin” problem

rvp"!g wl subject oy, (WT X; + b) >1-¢ Vi ,.1/||w§|°lf

& 20,V - Auel

» The & are called slack variables 1)

» Basically, the same optimization as before but
points with & > 0 are allowed to violate the margin

19

Soft Margin Optimization

» Note that, as it stands, the problem is not well defined
» By making & arbitrarily large, w = O is a solution!
» Therefore, we need to penalize large values of &

» Thus, instead we solve the penalized,
or regularized, optimization problem:

min HWH2 +CY &

w,&,b

1/[|w|

1w

subject to yi(WTxi+b)21—§i vi| /1IN
£ >0,Vi

» The quantity CZé‘i IS the penalty, or regularization, term.
The positive parameter C controls how harsh it is.

20

The Soft Margin Dual Problem

» The dual optimization problem:

1
ma>0<{—52aiaj Vi Y X X +Zai}
@2 i i

subject to) y.e =0,

0<¢g, <C

» The only difference with respect
to the hard margin case is the
“box constraint” on the Lagrange
multipliers o

b
3

» Geometrically we have this g £

21

Support Vectors

» They are the points with & > 0
» As before, the decision rule is

f(x) =sgn[> yiai*xiTx+b*]

i € SV
where SV ={i| o> 0}
and b* is chosen s.t.
e yig(x) =1, forallX;st.0<eg<C

» The box constraint on the
Lagrange multipliers:

* makes intuitive sense as it prevents
any single support vector outlier from
having an unduly large impact in the
decision rule.

22

Summary of the soft-margin SVM
» SVM training:

« 1) Solve the optimization problem:

mag{—%Zaiaj Vi Y X! X, +Zai}
* = i i

subject to)y, =0,

0<qg,<C

e 2) Then compute the parameters of the
“large margin” linear discriminant function:

W* = Z ai*yixi b*z_% Z yiai*(XiTX++XiTX_)

IESV i e SV

» SVM Linear Discriminant Decision Function:

f(x)=sgn[> yia:x?x+b*}
I e SV

“The Kernel Trick”

s
X

» What if we want a non-linear boundary?

» Consider the following transformation
of the feature space:

* Introduce a mapping to a “better”
(i.e., linearly separable) feature space

gX > Z
where, generally, dim(2) > dim(X). L x

X1

 If a classification algorithm only depends on
the data through inner products then, in the
transformed space, it depends on

B(x).8(x;) =4"(x)8(x) %

24

The Inner Product Implementation

» In the transformed space, the learning algorithms
only requires inner products

(P (X),8(%)) = (X)' P (%)

» Note that we do not need to store the ¢ (x;), but only
the n? (scalar) component values of the inner product
matrix

» Interestingly, this holds even if ¢ (x) takes its value in an
Infinite dimensional space.

« We get a reduction from infinity to n?!
* There is, however, still one problem:

« When ¢ (x)) is infinite dimensional the computation of
the inner product (¢ (X;),¢ (X)) looks impossible.

25

“The Kernel Trick”

» “Instead of defining ¢ (x), then computing ¢ (X;) for each |,
and then computing (¢ (x;),¢ (X;)) for each pair (i,}), simply
define a kernel function

K(x,2) = ($(X), 4(2))

and work with it directly.”

» K(X,z) Is called an inner product or dot-product kernel

» Since we only use the kernel, why bother to define ¢ (x)?
» Just define the kernel K(x,z) directly!

» Then we never have to deal with the complexity of ¢ (x).
» This is usually called “the kernel trick”

26

Kernel Summary

1. D not easy to deal with in x; apply feature transformation ¢: X — Z,
such that dim(2) >> dim(X)

2. Constructing and computing ¢(x) directly is too expensive:
« Write your learning algorithm in inner product form

« Then, instead of ¢(x), we only need (¢ (x;),¢ (X)) foralliand],
which we can compute by defining an “inner product kernel”

K(x,z) =(¢(x),#(2))
and computing K(x;,x;) Vi,j directly
* Note: the matrix - : 7

K=|-... K(Xi’zj)'“

IS called the “Kernel matrix” or Gram matrix

3. Moral: Forget about ¢(x) and instead use K(x,z) from the start!

27

Question?

» What is a good inner product kernel?

« This is a difficult question (see Prof. Lenckriet’s work)

» In practice, the usual recipe Is:

* Pick a kernel from a library of known kernels

e some examples
e the linear kernel K(x,z) = x'z
e the Gaussian family

K(x,z)=e ©°

» the polynomial family

K(x,z)=(1+ xTz)k . ke{1,2,--}

Kernelization of the SVM

» Note that all SVM equations depend only on x;'x;

» The kernel trick is trivial: replace by K(x;,x;)]
e 1) Training: K

T%{—%Zij)a Yk (X)+ Za}

subjectto Yy, =0, 0<e, <C

=_— z Y.a.((+)+ K(xi,x‘))

IeSV

« 2) Decision function: X

f(X)=sgn|: 2 yia:K(Xi,X)+b*:| .

I € SV

29

Kernelization of the SVM

» Notes:

« As usual, nothing we did really requires us to be in RY,

» We could have simply used <x;,x;> to denote for the inner product

on a infinite dimensional space and all the equations would still
hold

* The only difference is that we can no longer recover w* explicitly
without determining the feature transformation ¢, since

W* = Z ai*yi ¢(Xi)

I € SV

« This can be an infinite dimensional object. E.g., itis a sum of

Gaussians (“lives” in an infinite dimensional function space) when we
use the Gaussian kernel

* Luckily, we don’'t need w*, only the SVM decision function

f(x)=sgn| Y yiai*K(xi,x)+b*}

i e SV

30

Limitations of the SVM

» The SVM is appealing, but
there are some limitations:

* A major problem is the selection
of an appropriate kernel. There
IS no generic “optimal” procedure
to find the kernel or its parameters

« Usually we pick an arbitrary
kernel, e.g. Gaussian

* Then, determine kernel parameters,
e.g. variance, by trial and error ? a

e C controls the importance of - & ki
outliers (larger C = less influence)

* Not really intuitive how to choose C

» SVM is usually tuned and performance-tested using
cross-validation. There is a need to cross-validate with
respect to both C and kernel parameters

31

Practical Implementation of the SVM

» In practice, we need an algorithm for solving the
optimization problem of the training stage
e This is a complex problem
 There has been a large amount of research in this area

» Therefore, writing “your own” algorithm
IS not going to be competitive

» Luckily there are various packages available, e.g.:

e |[iIbSVM: http://lwww.csie.ntu.edu.tw/~cjlin/libsvm/
e SVM light: http://www.cs.cornell.edu/People/tj/svm_light/

« SVM fu: http://five-percent-nation.mit.edu/SvmFEu/
 various others (see http://www.support-vector.net/software.html)

* There are also many papers and books on algorithms (see e.g. B.
Schélkopf and A. Smola. Learning with Kernels. MIT Press, 2002)

32

END

