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Vector spaces

* Definition: a vector space is a set # where
— addition and scalar multiplication are defined and satisfy:

1) X+(X’+x”) = (X+X’)+X” S5)\ X e H

2) XX =X+X € H 6) 1x = X

30eH 0+x=X 7) AM(A x) = (AL)X
4)—X e H,-Xx+x=0 8) A(X+X') = AX + AX’
(A =scalar; x, X', X" € H) 9) (A+A)x = AX + A'X

« the canonical example is R? with standard
vector addition and scalar multiplication
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Vector spaces

« But there are much more interesting examples
* E.g., the space of functions f: X — R with

(f + 9)(x) = f(x) + g(x) (AF)(x) = Af(x)

- R%is a vector space of | —

finite dimension, e.qg. Fosl

= (fy, )T N
- When d goes to infinity —+—— —— %

we have a function :/ ‘

— f=f(t) ;o? | | | | | | /
* The space of all functions ., .~~~ = " 7

Is an infinite dimensional ¢ -/

vector space %%
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Data Vector Spaces

* In this course we will talk a lot about “data”

« Data will always be represented in a vector space:
— an example is just a point (“datapoint”) on such a space
— from above we know how to perform basic operations on datapoints
— this is nice, because datapoints can be quite abstract
— e.g. iImages:
= an image is a function
on the image plane

= |t assigns a color f(x,y) to
each image
location (X,y)

= the space ¥ of images
IS a vector space (note: assumes
that images can be negative)

= this image is a pointin ¥
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Images

« Because of this we can manipulate images by
manipulating their vector representations

* E.g., Suppose one wants to “morph” a(x,y) into b(x,y):
— One way to do this is via the path along the line from a to b.

c(a) =a + a(b-a) A
=(1l-a)a+ ab

. b-a
— for ¢ = 0 we have a
— for @ =1 we have b "~ a(b-a)
— for ain (0,1) we have a point
on the line between a and b

* To morph images we can simply

v

apply this rule to their vector
representations!



Images A
 When we make “b-a
C(X’y) = (1'&) a(va) ta b(X1y) h a(b-a)

we get “image morphing™:
a=0.2 a=0.4 a

v

* The point is that this is possible because the images are
points in a vector space.



Images

« Images are usually represented as points in R
— Sample (discretize) an image on a finite grid to get an array of pixels
a(x,y) = a(i,))
— Images are always stored like this on digital computers

— stack all the rows into a vector. E.g. a 3 x 3 image is converted into
a 9 x 1 vector as follows:

-

— In general a n x m image vector is transformed into a nm x 1 vector
— Note that this is yet another vector space

* The point is that there are generally multiple different, but
Isomorphic, vector spaces in which the data can be
represented



Text

* Another common type
of data Is text

e Documents are
represented by
word counts:

— associate a counter
with each word

— slide a window through
the text

— whenever the word
occurs increment
Its counter
* This is the way search
engines represent
web pages
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Text

ANNRNAR [/

« E.g. word counts for three 1l — W
. . I

documents in a certain corpus I SEN
(only 12 words shown for clarity) " Ll & xR 8
3 e e o B ED

* Note that: . ,535;%1;;
) S 2 £ & 5 § & %

— Each document isad =12 SRR EERE

“_‘I

|

—

dimensional vector

If | add two word-count vectors (documents), | get a new word-
count vector (document)

If | multiply a word-count vector (document) by a scalar, | get a
word-count vector

Note: once again we assume word counts could be negative (to
make this happen we can simply subtract the average value)

 This means:

— We are once again in a vector space (positive subset of R9)
— A document is a point in this space

8.0

Normalized values



Bananas

» Any object can be mapped into a vector space.
* E.g. bananas: | can measure

Ripeness r BANANA RIPENESS CHART
Weight w ‘;'
Length | ( « (
Diameter d
Color c

and represent a banana by the vector v = (r,w, [, d, ¢)”
The five measurements are called features.



Bilinear forms

 Inner product vector spaces are popular because they
allow us to measure distances between data points

« We will see that this is crucial for classification
* The main tool for this is the inner product (“dot-product”).

« We can define the dot-product using the notion of a
bilinear form.

e [Definition: a bilinear form on a real vector space # Is a
bilinear mapping
Q. HXH—->R
(X%,x°) > Q(x,x’)

‘Bi-linear” means that Vx,x’,x" € H

) Q[(AX+AX),X"] = AQ(X,X") + A’'Q(x’,x”)
i) Q[x”,(AX+AX)] = AQ(x”,x) + ’Q(x”,x)




Inner Products

| Definition: an inner product on a real vector space # Is
a bilinear form

<> HXH—>R
(X,X’) > <x,x’>

such that

) <X,x>2>0, VXeH
) <x,x>=0 ifandonly if x=0
i) <x,y>=<y,x>forall xand y

* The positive-definiteness conditions 1) and ii) make the
Inner product a natural measure of similarity

» This becomes more precise with introduction of a norm




Inner Products and Norms
« Any inner product induces a norm via

IXII2 = <xx>

» By definition, any norm must obey the following properties

— Positive-definiteness:
— Homogeneity:
— Triangle Inequality:

x|| >0, & ||| = 0 iff x = 0
AX[| = 1] x|
x+y|| < ||x]| + [|y]

* A norm defines a corresponding metric

d(x,y) = [x-yll

which is a measure of the distance between x and y

« Always remember that the induced norm changes with a
different choice of inner product!



Inner Product

« Back to our examples:
— In R9the standard inner product is

d
(X,y)= XTy:ZXiyi
i1

— Which leads to the standard Euclidean norm in R¢

W= = S

— The distance between two vectors is the standard Euclidean
distance in Rd

d

d(x,y) =[x - y| =/ (x=y)" (x=y) =\/Z(Xi -y,)°

=1




Inner Products and Norms

* Note, e.g., that this iImmediately gives
a measure of similarity B
between web pages Ll

— compute word count vector x;
from page i, for all i
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— distance between page i and s o 343382 S
page j can be simply defined as: 5 g f s g i &£
E§ 3T E 2§59 %

= - - O [V

d(xi,xj):Hxi —xj.Hz\/(xi — ;)" (% —X;)

J

— This allows us to find, in the web, the most similar page i to any given
page |.

* In fact, this is very close to the measure of similarity used by
most search engines!

« What about images and other continuous valued signals?

Normalized valuss



Inner Products and Norms
« And since any object can be mapped to a vector space
| can measure the similarity between any objects
* By measuring the similarity between their feature vectors

-~
— compute feature vector x; ' A% -
from banana i, for all i ‘

— distance between banana i and /

banana j can be simply defined as:
d(%, %) =[x —x;[ = {6 =x)7 (x —x;)

— This allows us to find the most similar banana i to any given banana
J.
« What about images and other continuous valued signals?




Inner Products on Function Spaces

« Recall that the space of functions is an infinite
dimensional vector space

— The standard inner product is the natural extension of that in Rd
(Just replace summations by integrals)

CF(),900) = [ f(x)g(x)dx

— The norm becomes the “energy” of the function

[£ O =] £2(0dx

— The distance between functions the energy of the difference
between them

d(f(x),909) =] f)—g()| = [[f () - g dx




Basis Vectors

* We know how to measure distances in a vector space

« Another interesting property is that we can fully
characterize the vector space by one of its bases

A set of vectors X, ..., X, IS a basis of a vector space # If
and only if (iff)

— they are linearly independent

Y cx =0<¢ =0,Vi

— and they span #: for any v in %, v can be written as

V=) CX
|

« These two conditions mean that any Vv € H can be
uniquely represented in this form.



Basis

* Note that

— By making the vectors x; the columns of a matrix X, these two
conditions can be compactly written as

— Condition 1. The vectors x; are linear independent:

Xc=0<c=0

— Condition 2. The vectors x; span #

YV =0, 3¢ # 0 such that v= Xc

e Also, all bases of # have the same number of vectors,
which is called the dimension of #

— This is valid for any vector space!



Basis

« example

— A basis
of the vector
space of images
of faces

— The figure
only shows the
first 16 basis
vectors but
there actually
more

— These vectors are
orthonormal




Orthogonality
* Two vectors are orthogonal iff their inner product is zero
— 0. 2, - 2

sin® ax

j sin(ax) cos(ax)dx = =0
0 2a 0

27

In the space of functions defined on [0,2r], cos(ax) and sin(ax)
are orthogonal

e Two subspaces V and W are orthogonal, V] W, If
every vector in V is orthogonal to every vector in W

* a set of vectors Xy, ..., X, Is called
— orthogonal if all pairs of vectors are orthogonal.
— orthonormal if all vectors also have unit norm.

0, if i # |
<Xi’xj>:{1, i = |




Matrix

e an m x n matrix represents a linear operator that maps a vector
from the domain ¥ = R" to a vector in the codomain 4 = R™

* E.g. the equationy = Ax S —
sends x in R"toy in R™M A a; A, || X
according to L=t ||

ym am1 amn_ Xn
% A en A em QQJ

€,

note that there is nothing magical about this, it follows rather
mechanically from the definition of matrix-vector multiplication



Matrix-Vector Multiplication |

« Considery = Ax, l.e. y; = ij1” X i=1,..m
« We can think of this as _

Yil=|@& - @& || ¢ | = Zaijxj = (_ai _)X (M rows)

n . | * _

- where ‘(- a, —)” means the it row of A. Hence
— the i component of y is the inner product of (— a, —) and x.
— Yy is the projection of x on the subspace (of the domain space) spanned
by the rows of A

A e, %:Rr

« A’s action in &

[
»

€1




Matrix-Vector Multiplication Il

* Butthere is more. Lety = Ax, i.e. y; = 2,," a;%; , now be written as

_yl_ 0 : _311X1+"'+a1nxn_ _|_ _|_
L= Zaijxi — =g X et a, (X,
j=1
_ym_ J . _am1X1+'”+aman_ L | _ | | B
- where a; with “|” above and below means the i'" column of A.

* hence
— X is the i'" component of y in the subspace (of the co-domain) spanned
by the columns of A
— Yy is a linear combination of the columns of A

‘en %:R?’

X

A maps from % to %

»
|

€4




Matrix-Vector Multiplication

 two alternative (dual) pictures of y = Ax:
— y = coordinates of x in row space of A (The ¥ =R" viewpoint)

-a,,- Domain ¥ = R" viewpoint

Domain % = R"

A
n

— X = coordinates of y in column space of A (% = R™ viewpoint)




A cool trick

 the matrix multiplication formula
C=AB<c; =) ab,
K

also applies to “block matrices” when these are defined
properly
 for example, if A,B,C,D,E,F,G,H are matrices,

A B||E F| | AE+BG AF+BH
C D||G H| |CE+DG CF+DH
 only but important caveat: the sizes of A,B,C,D,E,F,G,H

have to be such that the intermediate operations make
sense! (they have to be “conformal”)



Matrix-Vector Multiplication

* This makes it easy to derive the two alternative pictures

* The row space picture (or viewpoint):

Yi

X

X

n

(_ a; :_)1xn

de

-\ (-a )

IS Just like scalar multiplication, with blocks (—a;-) and x
* The column space picture (or viewpoint):

Yi

| mxi

mxL

| (Xl.)lxl ]
(e

|

a;

}X

IS Just a inner product, with (scalar) blocks x; and the
column blocks of A.



Matrix-Vector Multiplication

 two alternative (dual) pictures of y = Ax:
— y = coordinates of x in row space of A (The ¥ =R" viewpoint)

-a,,- Domain ¥ = R" viewpoint

Domain % = R"

A
n

— X = coordinates of y in column space of A (% = R™ viewpoint)




Sguare n x n matrices

* In this case m = n and the row and column subspaces are
both equal to (copies of) R"




Orthogonal matrices

« A matrix is called orthogonal if it is square and has
orthonormal columns.

* Important properties:

— 1) The inverse of an orthogonal matrix is its transpose
= this can be easily shown with the block matrix trick. (Also see later.)

B : a1r | . _1 O oo O_

0 1 0

AA=((-a] =) ... |a | ...|= .
- L s 00 ... 1]

— 2) A proper (det(A) = 1) orthogonal matrix is a rotation matrix

= this follows from the fact that it does not change the norms (“sizes”)
of the vectors on which it operates,

||Ax||2 = (AX)" (AX) =x" AT Ax =x"x=|| x|,

and does not induce a reflection.



Rotation matrices

« The combination of
1. “operator” interpretation
2. “block matrix trick”

IS useful In many situations

« Poll
—  “What is the matrix R that rotates the plane R? by ¢ degrees?”

A
€,

e




Rotation matrices

* The key Is to consider how the matrix operates on the

vectors e; of the canonical basis
— note that R sends e, to e’;

r21 r22 O

— using the column space picture

I I I
r21 r22 r21

e

e,

sin 0

— from which we have the first column of the matrix

Aol ha | _ cosé r,
'r,| |sing r,

cos0 e,



Rotation Matrices

» and we do the same for e,
— R sends e, to e’,

I r. |0 I I I
r21 r22 l r21 r22 r-22
— from which ©2 Acose
5 e sin 0
R=[e, ¢,]= cosd -—sind 0 KRN
L' 72 sing  coso <
0
— check _sin 6 cos 0 e=1

|

cosd sindg
—sin@ cosé

cosd
sin &

—sin @
cosd

|



Analysis/synthesis

* one interesting case is that of matrices with orthogonal
columns

 note that, in this case, the columns of A are
— a basis of the column space of A
— a basis of the row space of AT

* this leads to an interesting interpretation of the two
pictures
— consider the projection of x into the row space of AT
y = AT X
— due to orthonormality, x can then be synthesized by using the

column space picture
X =Ay



Analysis/synthesis

 note that this is your most common use of basis

* let the columns of A be the basis vectors a,
— the operation y = AT X projects the vector x into the basis, e.g.

Ya 10 - 0 X Y1 X
Y2 0 1 - 0fx Y2 X

= N = this is called
‘ ‘ ’ ' ' the canonical
Y, 0O 0 - 1]Xx, Y, X, basis of R"
RANENN < TP Lnd L
— The vector x can then be reconstructed by computing x' = Ay,
e.g. - e - - - - -4
J X', 1 0 0 A X
X' 0 1 0 X
K g T I A e A R L s
X' 0 0 1 Yol |X

— Q: is the synthesized x’ always equal to x?




Projections

* A: not necessarily! Recall
—y=ATx and x’=Ay
— x’=xifand only if AAT = !
— this means that A has to be orthonormal.
« what happens when this is not the case?
— we get the projection of x on the column space of A

— eg.let 47 then [ x|
10 100
A=|01 y= 010
00
and -
10 | X, 0
Xl
X'=|01 }: 0 |+| X,
X2 column space of A=
_OO_‘ 0 0 _O_ row space of AT




Null Space of a Matrix

« What happens to the part that is lost?
* This is the “null space” of AT

column space of A=

N(AT):{XlAT)(:O} row space of AT
— In the example, this is comprised of all vectors of the type [o} since
o 0
0
T 100 0 o
010 0
|

« FACT: N(A) is always orthogonal to the row space of A:
— X s in the null space iff it is orthogonal to all rows of A

 For the previous example this means that N(AT) is
orthogonal to the column space of A



Orthonormal matrices

* Q: why is the orthonormal case special?
* because here there is no null space of AT
* recall that for all x in N(AT)
- A'x=0<x=A0=0
 the only vector in the null space is O
e this makes sense: 1 0 0]
— A has n orthonormal columns,e.g. A=|{0 1 O
— these span all of R" 0 0 1
— there is no extra room for an orthogonal space

— the null space of AT has to be empty

— the projection into row space of AT (=column space of A) is the
vector x itself

* In this case, we say that the matrix has full rank




The Four Fundamental Subspaces

* These exist for any matrix:
— Column Space: space spanned by the columns
— Row Space: space spanned by the rows

— Nullspace: space of vectors orthogonal to all rows (also known as
the orthogonal complement of the row space)

— Left Nullspace: space of vectors orthogonal to all columns (also
known as the orthogonal complement of the column space)

* You can think of these in the following way
— Row and Nullspace characterize the domain space (inputs)

— Column and Left Nullspace characterize the codomain space
(outputs)



Domain viewpoint

« Domain ¥ = R" 5 5
— y = coordinates of x in row space of A yl[(ai )x} (M rows)
— Row space: space of “useful inputs”, : :
which A maps to non-zero output
— Null space: space of “useless inputs”, N(A) = {X | AX = 0}
mapped to zero
— Operation of a matrix on its domain ¥ = R"

Null
space

v

€,

— Q: what is the null space of a low-pass filter?



Codomain viewpoint

« Codomain 4 = R™ | |
— X = coordinates of y in column space of A y=|a | Xt a, | X,

— Column space: space of “possible outputs”, | |
which A can reach

.

— Left Null space: space of “impossible L(A) = {Y| y A= 0}
outputs”, cannot be reached

— Operation of a matrix on its codomain 4 = R™

Left Nu
space x| Column space

v

€,

— Q: what is the column space of a low-pass filter?



The Four Fundamental Subspaces

Assume Domain of A = Codomain of A. Then:

« Special Case I: Square Symmetric Matrices (A = AT):
— Column Space is equal to the Row Space

— Nullspace is equal to the Left Nullspace, and is therefore
orthogonal to the Column Space

» Special Case Il: nxn Orthogonal Matrices (ATA = AAT =)
— Column Space = Row Space = R"
— Nullspace = Left Nullspace = {0} = the Trivial Subspace



Linear systems as matrices

* A linear and time invariant system
— of impulse response h[n]
— responds to signal x[n] with output y[n]= > x[k]h[n—K]
— this is the convolution of x[n] with h[n]
* The system is characterized by a matrix
— note that
y[n]= > xIklg,[k], with g,[k]=h[n-k]

k
— the output is the projection of the input on the space spanned by

the functions g,[K]

oyl [-g,-| | hO] A= - h[=(n-D] ] x[2]
yi2l| | -9.- hil] ~ h[0] .- h[=(n=2)]} x[2]

yInl] [-9,—/ [h[n=1] h[n=2] -~ h[O] ] x[n]



Linear systems as matrices

e the matrix C h{O] -1 - h(n-D]
A h[1] h[0] -~ h[-(n-2)]
'h[n—-1] h[n-2] . h[0]

— characterizes the response of the system to any input

— the system projects the input into shifted and flipped copies of its
Impulse response h[n]

— note that the column space is the space spanned by the vectors
h[n], h[n-1], ...

— this is the reason why the impulse response determines the
output of the system

— e.g. a low-pass filter is a filter such that the column space of A
only contains low-pass low pass signals

— e.g. if h[n] is the delta function, A is the identity






