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Statistical Learning from Data

Goal: Given a relationship between
a feature vector x and a vector y,  
and iid data samples (xi,yi), find an 
approximating function  f (x)  y

This is called training or learning.

Two major types of learning:

• Unsupervised (aka Clustering) : only X is known.

• Supervised (Classification or Regression): both X and target 
value Y are known during training, only X is known at test 
time.

( )ŷ yf x= x
( )·f
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Supervised Learning

• Feature Vector X can be anything, 

but the type of Y dictates the type of 

supervised learning problem

– Y in {0,1} is referred to as detection

– Y in {0, ..., M-1} is referred to as 

(M-ary) classification

– Y continuous is referred to as 

regression

• Theories are quite similar, and  

algorithms similar most of the time

• We will emphasize classification, 

but will talk about regression when 

particularly insightful
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Example

• Classifying fish:

– fish roll down a conveyer belt

– camera takes a picture

– goal: is this a salmon or a sea-

bass?

• Q: what is X? What features

do I use to distinguish 

between the two fish?

• Feature Selection is 

somewhat of an art-form. 

Frequently, the best is to ask

“domain experts”. 

• E.g. use length and width of 

scales as features



Bananas

• Any object can be mapped into a vector space.

• E.g. bananas: I can measure

– Ripeness r

– Weight w

– Length l

– Diameter d

– Color c

– and represent a banana by the vector 𝑣 = (𝑟, 𝑤, 𝑙, 𝑑, 𝑐)𝑇

– The five measurements are called features.



6

Nearest Neighbor Classifier
• The simplest possible classifier that one could think of:

– It consists of assigning to a new, unclassified vector the same  

class label as that of the closest vector in the labeled training set

– E.g. to classify the unlabeled 

point “Red”:

▪ measure Red’s distance

to all other labeled 

training points

▪ If the closest point to Red is 

labeled  “A =  square”, assign

it to the class A

▪ otherwise assign Red to 

the “B = circle” class

• This works a lot better than what one might expect, 

particularly if there are a lot of labeled training points
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Nearest Neighbor Classifier

• To define this classification procedure rigorously, define:

– a Training SetD = {(x1,y1), …, (xn,yn)}

– xi is a vector of observations, yi is the class label

– a new vector x to classify

• The Decision Rule is 

– argmin means: “the i

that minimizes the

distance”
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k-Nearest Neighbor (k-NN) Classifier

• Instead of the single NN, assigns to the majority vote of 

the k nearest neighbors

• In this example

– NN = 1-NN rule says “A”

– but 3-NN rule says “B”

• Usually best performance

for k > 1, but there is 

no universal number

• When k is “too large,” the

performance degrades

(too many neighbors are 

no longer near)

• k should be odd, to prevent ties
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Nearest Neighbor Classifier

• We will use k = 1 for simplicity

• There are only two components required to design a NN 

classifier

– Which Features do we use, i.e. 

what is x?

– What Metric d(x,y)?

• Both can have great impact

on classification error

• Feature selection is a problem

for all classifiers

– will talk about this later

• A suitable metric can make

big difference
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Inner Product 
• Definition: an inner product on a vector space H is a 

bilinear form
<.,.>: H x H → 

(x,x’) → <x,x’>

such that

i)  <x,x>  0, " x H

ii) <x,x> = 0 if and only if x = 0

iii) <x,y> = <y,x> for all x and y

• Conditions i) and ii) make the inner product a natural 

measure of similarity

• This is made more precise with introduction of a norm
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Metrics

• Any inner product defines (induces) a norm via

||x||2 = <x,x>

• The norm has the following properties

– Positive-Definiteness: ||x||  0, " x, and ||x|| = 0 iff x = 0

– Homogeneity: ||l x|| = |l| ||x||

– Triangle Inequality: ||x + y||  ||x|| + ||y||

• This naturally defines a metric

d(x,y) = ||x-y||

which is a measure of the distance between x and y

• Always remember that the metric depends on the choice

of the inner product <x,x> !
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Metrics

• we have seen some examples:

– Rd -- Continuous functions

Inner Product :                                    Inner Product : 

Euclidean norm: norm2 = ‘energy’:

Euclidean distance:                             Distance2 = ‘energy’ of difference: 
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Metrics

• There is an infinity of possible metrics

– Sometimes it pays off to build one

for the specific problem

– E.g. how do I compare the shape

of two fish?

– example:

▪ find contour

▪ compute “skeleton”

▪ what is the “energy” that I

would need to transform one

into the other?

– This has an “evolutionary motivation” –

change requires “effort”.
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Nearest Neighbor Classification

• Finding appropriate features and a metric can be hard, but 

– Once you have the metric you have the classifier

– The right metric

can make a big

difference

• Example:

– Shape retrieval

system

– “What are the 

new shapes most 

similar to this 

class shapes?”

– Works fairly well
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Metrics

• Many useful metrics are based on this idea of “energy” 

(inner product induced norm) minimization

– The less I have to ‘work’

to transform A into

B, the closer they

are

– Sometimes you

can ignore 

transformations

that are irrelevant

– E.g. to understand

action, we don’t care

about relative position

or scale 

– We compensate for this and compute “energy” (the value of the 

square of the norm) between aligned images
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‘Energy-Based’ Metrics

• Note that these are just the energy metric in some 

suitably normalized vector space

• E.g. a metric invariant to rotation

can be implemented as an ‘energy’ metric after finding 

the rotation that aligns the images
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Euclidean Distance

• So, let’s consider the Euclidean distance

• What are equidistant points to x?

– e.g.

• The equidistant points to x (aka “level sets”) 

are located on spheres around x

– Set of points y such that d(x,y) = r is the sphere of radius r 

centered on x
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Euclidean Distance

• The same holds in the continuous case

where

• This is still the “sphere” of radius r centered on f(x)

but now, we are in an infinite dimensional space, so it is 

impossible to visualize

– If you think about it, we already couldn’t visualize the case of the 

Euclidean distance for d = 4

2( , ) [ ( ) ( )]d f g f x g x dx= −

22)]()([),( rdxxgxfrgfd =−= 

f(x)
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Euclidean Distance

• For intuition, we’ll continue with the Euclidean distance

– Seems like a natural distance

– We know it is a metric

– Why would we need something else?

• Remember that underlying the metric

there is

– A vector space

– An associate inner product, if the metric is induced

• The Euclidean distance works for “flat” spaces

– E.g. hyperplanes (e.g. the 3D world)

– “The shortest path between two points is a line”

• But there are many problems that involve non-flat spaces

f(x)
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Non-flat Spaces

• What if your space is a sphere?

– Clearly, the shortest distance is not a line

– The problem is the assumption that the

space has no curvature

• To deal with this you have to use

a different geometry

– Riemannian instead of Euclidean geometry

– Einstein realized this, and a lot

of his relativity work was the

development of this different

geometry

– Much of relativity followed easily once 

he got the geometry right

• We will certainly not go into this in any great depth
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Inner Products

• So, we will (mostly) work in flat spaces

• What about the inner product? What are potential problems?

• Fish example:

– Features are L = fish length, W = scale width

– Let’s say I measure L in meters and W in 

millimeters

▪ Typical L: 0.70m for salmon, 0.40m for sea-bass

▪ Typical W: 35mm for salmon, 40mm for sea-bass

– I have three fish

▪ F1 = (.7,35)        F2 = (.4, 40)        F3 = (.75, 37.8)

▪ F1 clearly salmon, F2 clearly sea-bass, F3 looks 

like salmon

▪ yet 

d(F1,F3) = 2.8    >      d(F2,F3) = 2.23

– There seems to be something wrong here!
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Inner Products

• Suppose the scale width is now also measured in meters:

– I have three fish

▪ F1 = (.7,.035)         F2 = (.4, .040)         F3 = (.75, .0378)

▪ and now

d(F1,F3) = .05    <<      d(F2,F3) = 0.35

which seems to be right

• The problem is that the Euclidean distance 

depends on the units (or scaling) of each axis

– e.g. if I multiply the second coordinate by 1,000

(say, by changing units from meters to millimeters)

its influence on the relative distance increases one thousand-fold!

• Often the “right” units are not clear (e.g. car speed vs weight)

2 2

1 1 2 2
( , ) [ ] [1,000( )]d x y x y x y= − + −

x

x
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Inner Products

• Perhaps one can transform the problem to a better posed form?

• Remember, an m x n matrix is an operator that 

maps a vector from Rn to a vector in Rm

• E.g. the equation y = Ax

sends x in Rn to y in Rm
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Inner Products

• Suppose I apply a transformation to the feature space

• Examples:

– We already saw that A = R, for R proper and

orthogonal, is equivalent to a rotation

– Another important case is

scaling, A = S with S diagonal:

– We can combine two such transformations

by taking A = SR
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(Weighted) Inner Products
• Thus, in general one can rotate and scale by applying 

some matrix A = SR , to form transformed vectors

• What is the inner product in the new space?

• The inner product in the new space is of 

weighted form in the old space

• Using a weighted inner product is equivalent 

to working in the transformed space

'x Ax=

( )' ' ( )
T T T T

M

x y Ax Ay x A yA= = x
R

x

S

SR

𝑥′, 𝑦′ = 𝑥𝑇𝑀𝑦
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(Weighted) Inner Products
• Can I use any weighting matrix M ? – NO!

• Recall: an inner product is a bilinear form such that

i)  <x,x>  0, " x H

ii) <x,x> = 0 if and only if x = 0

iii) <x,y> = <y,x> for all x and y

• From iii), M must be Symmetric since

• from i) and ii), M must be Positive Definite

𝑥, 𝑦 = 𝑥𝑇𝑀𝑦 = 𝑦𝑇𝑀𝑇𝑥 𝑇 = 𝑦𝑇𝑀𝑇𝑥
𝑦, 𝑥 = 𝑦𝑇𝑀𝑥
𝑥, 𝑦 = 𝑦, 𝑥 , if and only if 𝑀= 𝑀𝑇

, 0,  0  
T

x x x Mx x=  " 
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Positive Definite Matrices
• Fact: Each of the following is a necessary and sufficient 

condition for a real symmetric matrix A to be positive definite:

i) xTAx  0,  "x  0 

ii) All eigenvalues, li , of A are real and satisfy li  0

iii) All upper-left submatrices Ak have strictly positive determinant

iv) There is a matrix R with independent columns such that A = RTR

• Definition of upper left submatrices:

• Note: from property iv), using a positive definite A to weight 

an inner product is equal to working in a transformed space.

𝑥′, 𝑦′ = 𝑥𝑇𝐴𝑦 = 𝑥𝑇𝑅𝑇𝑅𝑦 = 𝑅𝑥, 𝑅𝑦
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Metrics

• What is a good 

weighting matrix M ?

– Let the data tell us!

– Use the inverse of the  

covariance matrix M = ∑-1

• Mahalanobis Distance:

• This distance is adapted to the 

covariance (“scatter”) of the data and thereby

provides a “natural” rotation and scaling for the data

1( , ) ( ) ( )Td x y x y x y−= −  −

 TxxE ))((  −−=

 xE=
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The Multivariate Gaussian

• In fact, for Gaussian data, the Mahalanobis distance tells us 

all we could statistically know about the data

– The pdf for a d-dimensional Gaussian of mean  and covariance  is

– Note that this can be written as

– I.e. a Gaussian is just the exponential of the negative of the square of 

the Mahalanobis distance

– The constant K is needed only to ensure the density integrates to 1

11 1
( ) exp ( ) ( )

2(2 ) | |
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The Multivariate Gaussian

• Using Mahalanobis = assuming Gaussian data

• Mahalanobis distance: Gaussian pdf:

– Points of high probability are those of small Mahalanobis distance 

to the center (mean) of a Gaussian density

– This can be interpreted as the right norm for a certain type of 

space 

11 1
( ) exp ( ) ( )

2(2 ) | |

T

X
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The Multivariate Gaussian

• Defined by two parameters

– Mean just shifts center

– Covariance controls shape

– in 2D, X = (X1, X2)
T

– si
2 is variance of Xi

– s12 = cov(X1,X2) controls 

how dependent X1 and 

X2 are

– Note that, when s12 = 0:

Xi are independent

2

1 12

2

12 2

s s

s s

 
 =  

 

1 2 1 2, 1 2 1 2
( , ) ( ) ( )

X X X X
P x x P x P x= 



The Multivariate Gaussian

• The best way to understand the role of the different 

parameters is by experimenting

• On MATLAB make a plot of the Mahalonabis distance

• Start with 𝜇 = 0 and Σ = 𝐼

• The consider different values of 𝜇 and see how the plot 

changes

• Finally consider different covariances

• Note that 𝜎1
2 and 𝜎2

2 “stretch” the covariance, while 𝜎12
changes the orientation.
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