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Statistical Learning from Data

» Goal: Given a relafionship between 7
a feature vector x and a vectory,
and iid data samples (x,y;). find an
approximating function f(x) =y

X §/>=f(X)zy

—  f()

» This is called training or learning.

» TWO major types of learning:

 Unsupervised (aka Clustering) : only X is known.

e Supervised (Classification or Regression): both X and target
value Y are known during fraining, only X is known aft test

time.



Supervised Learning I -

« Feature Vector X can be anything, AN
but the type of Y dictates the type of °;
supervised learning problem / N

— Y in {0,1}is referred to as detection

— Yin{0, ..., M-1} is referred to as o E%ﬁ
(M-ary) classification — e e

— Y continuous is referred to as
regression oL

* Theories are quite similar, and
algorithms similar most of the time

« We will emphasize classification, N
but will talk about regression when
particularly insightful
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Example
 Classifying fish:

— fish roll down a conveyer belt
— camera takes a picture

— goal: is this a salmon or a sea-
bass?

* Q: what is X? What features
do | use to distinguish
between the two fish?

* Feature Selection is
somewhat of an art-form.
Frequently, the best is to ask
“domain experts”.

* E.g. use length and width of
scales as features




Bananas

» Any object can be mapped into a vector space.
* E.g. bananas: | can measure

Ripeness r BANANA RIPENESS CHART
Weight w ‘;'
Length | ( « (
Diameter d
Color c

and represent a banana by the vector v = (r,w, [, d, ¢)”
The five measurements are called features.



Nearest Neighbor Classifier

* The simplest possible classifier that one could think of:

— It consists of assigning to a new, unclassified vector the same
class label as that of the closest vector in the labeled training set

— E.g. to classify the unlabeled
point “Red”:
* measure Red’s distance
to all other labeled
training points
= |f the closest point to Red is

labeled “A = square”, assign
it to the class A

= otherwise assign Red to
the “B = circle” class

» This works a lot better than what one might expect,

particularly if there are a lot of labeled training points
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Nearest Neighbor Classifier

» To define this classification procedure rigorously, define:
— a Training Set D ={(Xy,Y1)s ---» (XY}

— X; Is a vector of observations, y, is the class label

— anew vector x to classify
 The Decision Rule is

set y=VY.

where

I*=argmin d(X, X:)
ic{l,...n}

— argmin means: “the |
that minimizes the
distance”




k-Nearest Neighbor (k-NN) Classifier

* Instead of the single NN, assigns to the majority vote of

the k nearest neighbors
* In this example A
— NN = 1-NN rule says “A”
— but 3-NN rule says “B”
» Usually best performance

for k > 1, but there Is A
no universal number L

 When k is “too large,” the

performance degrades
(too many neighbors are
no longer near)

 k should be odd, to prevent ties



Nearest Neighbor Classifier

 We will use k = 1 for simplicity

* There are only two components required to design a NN
classifier

— Which Features do we use, I.e.
what Is x?

— What Metric d(X,y)? S e L. T A
. Research Trianale Park
* Both can have great impact ¥ |Reteign
on classification error

.

» Feature selection is a problem
for all classifiers
— will talk about this later

* A suitable metric can make
big difference




Inner Product

o/ Definition: an inner product on a vector space IS a

bilinear form
<,.>S!:HXH—>H

(X,X’) = <x,x’>
such that

) <X,x>2>0, VXeH
) <x,x>=01Ifand only if x =0
i) <x,y>=<y,x>for all xand y

« Conditions i) and ii) make the inner product a natural
measure of similarity

* This is made more precise with introduction of a norm



Metrics

« Any inner product defines (induces) a norm via
IX][7 = <x,x>

* The norm has the following properties

— Positive-Definiteness:
— Homogeneity:
— Triangle Inequality:

X|| 20, Vx,and ||x|| =0 iff x=0
AX[| = [AHIX]]
X +y|| <{Ix]] + Iyl

 This naturally defines a metric

d(x,y) = [x-yll

which is a measure of the distance between x and y

« Always remember that the metric depends on the choice
of the inner product <x,x> ! "



Metrics

« we have seen some examples:

— Rd .- Continuous functions
Inner Product : Inner Product :
d
(X y)=x"y=> %y, (£, 900) =] f(x)g(x)dx
i=1
Euclidean norm: norm? = ‘energy’.
d
W= Vxx = (35 17001= [ 1700
i=1
Euclidean distance: Distance? = ‘energy’ of difference:

d(x,y)=HX—yH=JZ(xi—yi)Z d(f,9) =/ [[f(9)-g()Fdx

1.0
Lo




Metrics

* There is an infinity of possible metrics

— Sometimes it pays off to build one
for the specific problem

— E.g. how do | compare the shape
of two fish?
— example:
= find contour
= compute “skeleton”

= what is the “energy” that |
would need to transform one
into the other? _

N
— This has an “evolutionary motivation” — v N
change requires “effort”.
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Nearest Neighbor Classification

* Finding appropriate features and a metric can be hard, but
— Once you have the metric you have the classifier

— The right metric
can make a big
difference

« Example:

— Shape retrieval
system

— “What are the
new shapes most
similar to this
class shapes?”

— Works fairly well
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Metrics

* Many useful metrics are based on this idea of “energy”
(inner product induced norm) minimization

The less | have to ‘work’

to transform A into < jH

B, the closer they
are

Sometimes you 2,
can ignore
transformations o
that are irrelevant

E.g. to understand

action, we don'’t care \5

about relative position
or scale

We compensate for this and compute “energy” (the value of the
square of the norm) between aligned images
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‘Energy-Based’ Metrics

* Note that these are just the energy metric in some
suitably normalized vector space

« E.g. a metric invariant to rotation

D @@
d(%ﬁ % )=0

can be implemented as an ‘energy’ metric after finding
the rotation that aligns the images

d(f(x),9(%))=mind (f(R(6)%)9(%))

cosd -sind
sin@d cosd@

where R(6) :{ } d’ =energy
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Euclidean Distance

* S0, let’s consider the Euclidean distance

d(x, Y)=\/Z(Xi—yi)2

 What are equidistant points to x?

d(6y)=r e (% -y) =1

—eg (X —-VY)+(X,—y,) =r?

* The equidistant points to x (aka “level sets”)
are located on spheres around X

— Set of points y such that d(x,y) = r is the sphere of radius r
centered on X
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Euclidean Distance

« The same holds in the continuous case

d(f,9)=/[[f(x) - g(x)Idx

where @

d(f,9)=r < [[f(x)-g(x)dx=r?

* This is still the “sphere” of radius r centered on f(x)
but now, we are in an infinite dimensional space, so it is
Impossible to visualize

— If you think about it, we already couldn’t visualize the case of the
Euclidean distance ford = 4
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Euclidean Distance

* For intuition, we’ll continue with the Euclidean distance
— Seems like a natural distance
— We know it is a metric

— Why would we need something else?
 Remember that underlying the metric @
there Is

— A vector space
— An associate inner product, if the metric is induced

* The Euclidean distance works for “flat” spaces

— E.g. hyperplanes (e.g. the 3D world)
— “The shortest path between two points is a line”

 But there are many problems that involve non-flat spaces
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Non-flat Spaces

« What if your space is a sphere?
— Clearly, the shortest distance is not a line
— The problem is the assumption that the
space has no curvature
* To deal with this you have to use
a different geometry
— Riemannian instead of Euclidean geometry

— Einstein realized this, and a lot
of his relativity work was the
development of this different
geometry

— Much of relativity followed easily once
he got the geometry right

« We will certainly not go into this in any great depth
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Inner Products

* So, we will (mostly) work in flat spaces
« What about the inner product? What are potential problems?

* Fish example:
— Features are L = fish length, W = scale width
— Let's say | measure L in meters and W in
millimeters
= Typical L: 0.70m for salmon, 0.40m for sea-bass
= Typical W: 35mm for salmon, 40mm for sea-bass

— | have three fish
= F,=(.7,39) F, = (.4, 40) F, = (.75, 37.8)
= F, clearly salmon, F, clearly sea-bass, F; looks
like salmon

= yet

d(F,F;) =28 > d(F,F;) =2.23
— There seems to be something wrong here!

21



Inner Products

e Suppose the scale width is now also measured in meters:

— | have three fish
= F;=(7.035)  F,=(4,.040)  F;=(.75,.0378)
= and now

d(F,,F;) =.05 << d(F,Fs)=0.35
which seems to be right
* The problem is that the Euclidean distance \
depends on the units (or scaling) of each axis

— e.g. if I multiply the second coordinate by 1,000
(say, by changing units from meters to millimeters)

d(x, y) = [X, — Y, +[L,000(x, — y,)I

Its influence on the relative distance increases one thousand-fold!
« Often the “right” units are not clear (e.g. car speed vs weigzr;t)



Inner Products

» Perhaps one can transform the problem to a better posed form?

« Remember, an m x n matrix is an operator that
maps a vector from R" to a vector in R™

« E.g. the equation y = AX - - _
sends x in R"to y in R™ Yi| | an | %
_ym_ _aml amn__Xn_
A en A em

X
>
,\




Inner Products

« Suppose | apply a transformation to the feature space

X'= AX

« Examples:
— We already saw that A = R, for R proper and R
orthogonal, is equivalent to a rotation e
— Another important case is
scaling, A = S with S diagonal: % SR

0| : |=

0 A, | X A X
— We can combine two such transformations

by taking A = SR

', 0 0]x A%
0 :
i 0
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(Weighted) Inner Products

* Thus, in general one can rotate and scale by applying
some matrix A = SR , to form transformed vectors X' = AX

* What is the inner product in the new space?

.
(x) y'=(Ax)' Ay=x" ATAy —
« The inner product in the new space Is of """-\SR
weighted form in the old space s

(x',y') = x"My

« Using a weighted inner product is equivalent

to working in the transformed space
25



(Weighted) Inner Products

« Can | use any weighting matrix M ? — NO!
« Recall: an inner product is a bilinear form such that
) <X,x>2>0, VXeH
) <x,x>=0Ifand only if x=0
) <x,y>=<y,x>forall xand y
* From iii), M must be Symmetric since
(x,y) =x"My = (y'M"'x)" = y"M"x
(v, x) = y"Mx
(x,y) = (y,x),if and only if M= MT

« from 1) and i), M must be Positive Definite

(X,X)=X"Mx>0, V¥x=0
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Positive Definite Matrices

« Fact: Each of the following is a necessary and sufficient
condition for a real symmetric matrix A to be positive definite:
) XTAX >0, Vx#0

i) All eigenvalues, A, of A are real and satisfy 4. >0
i) All upper-left submatrices A, have strictly positive determinant
IvV) There is a matrix R with independent columns such that A = RTR

 Definition of upper left submatrices:

a, a8, &)
A1:a1,1 Azz{ 1 2} A:a: d,; 8, a3

A1 Gy
| | |31 S35 Y33

* Note: from property iv), using a positive definite A to weight
an inner product is equal to working in a transformed space.

(x',y") = xTAy = xTRTRy = (Rx, Ry) ”




Metrics

X2

 What is a good
weighting matrix M ?
— Let the data tell us!
— Use the inverse of the

1

covariance matrix M = 2'1

2 = E|(x-u)(x— )" |
/U:E[X] IR : i : X1

-1

-2

« Mahalanobis Distance: |d (x, y) = \/(x — y)T 2‘1()( _ y)

e This distance is adapted to the
covariance (“scatter”) of the data and thereby
provides a “natural” rotation and scaling for the data 28



The Multivariate Gaussian

* In fact, for Gaussian data, the Mahalanobis distance tells us
all we could statistically know about the data
— The pdf for a d-dimensional Gaussian of mean g and covariance %' is

1 1
= ——(x=p)"TH(x -
X) \/(zn)d|z|eXp{ 2(X H#) L7 (X ,U)}

— Note that this can be written as

P, (X) =%exp{ L dz(X,,u)}

Py (

2

— l.e. a Gaussian is just the exponential of the negative of the square of
the Mahalanobis distance

— The constant K is needed only to ensure the density integrates to 1
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The Multivariate Gaussian

« Using Mahalanobis = assuming Gaussian data
Gaussian pdf:

« Mahalanobis distance:

d*(x, p) = (X = ) T (X — pt)

= exp{—i(x— Y2 (x— )}
Jeoy iz L2 g

035,

0-25~
015

0T

005,

Y 1
7 S

— Points of high probability are those of small Mahalanobis distance
to the center (mean) of a Gaussian density

— This can be interpreted as the right norm for a certain type of

space

30




The Multivariate Gaussian

° Deﬂned by tWO parameters Covix, X,)=0, Varix )=Var(x,) Cov{x, X, )=0, Var(x >Var(x,)
— Mean just shifts center

— Covariance controls shape @
—in 2D, X = (X4, X,)" ’* D

2
Z —_— O-l 0-12 _5(1
_ 2
0'12 0'2 Covfx, X,)>0 Covix, x,J<0

— o is variance of X;

— 04, = COV(X{,X,) controls @ @
how dependent X, and

X, are

— Note that, when o, = O:

le,x2 (Xl’ Xz) = le (Xl)F’X2 (XZ) < X; are independent
31



The Multivariate Gaussian

* The best way to understand the role of the different
parameters Is by experimenting

« On MATLAB make a plot of the Mahalonabis distance

d*(X, p) = (X = ) (X — p1)

e Startwithu=0and X =1

* The consider different values of u and see how the plot
changes

 Finally consider different covariances

2
101 012
X = 2
012 Oy

- Note that o and ¢4 “stretch” the covariance, while o,

changes the orientation. -






