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Statistical Learning from Data 
• Goal: Given a relationship between 

a feature vector x and a vector y,   
and iid data samples (xi,yi), find an  
approximating function  f (x) ≈ y  

 
 
• This is called training or learning. 
• Two major types of learning: 

– Unsupervised (aka Clustering) : only X is known. 
– Supervised (Classification or Regression): both X and target 

value Y are known during training, only X is known at test time. 
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Nearest Neighbor Classifier 
• The simplest possible classifier that one could think of: 

 

– It consists of assigning to a new, unclassified vector the same  
class label as that of the closest vector in the labeled training set 
 

– E.g. to classify the unlabeled  
point “Red”: 
 measure Red’s distance 

to all other labeled  
training points 

 If the closest point to Red is  
labeled  “A =  square”, assign 
it to the class A 

 otherwise assign Red to  
the “B = circle” class 
 

• This works a lot better than what one might expect, 
particularly if there are a lot of labeled training points 
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Nearest Neighbor Classifier 
• To define this classification procedure rigorously, define: 

– a Training Set D = {(x1,y1), …, (xn,yn)} 

– xi is a vector of observations, yi is the class label 
– a new vector x to classify 

• The Decision Rule is  
 
 
 
 
 
 
– argmin means: “the i 

that minimizes the 
distance” 
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Metrics 
• we have seen some examples: 

– Rd                                                    -- Continuous functions  

     Inner Product :                                    Inner Product :  
                         
   
 
 
    Euclidean norm:                                  norm2 = ‘energy’: 
 
 
 
 
    Euclidean distance:                             Distance2 = ‘energy’ of difference:  

i

d

i
i

T yxyxyx ∑
=

==
1

,

∑
=

==
d

i
i

T xxxx
1

2

∑
=

−=−=
d

i
ii yxyxyxd

1

2)(),(

∫= dxxgxfxgxf )()()(),(

dxxfxf ∫= )()( 2

∫ −= dxxgxfgfd 2)]()([),(



6 

Euclidean distance 
• We considered in detail the Euclidean distance 

 
 
 
 

• Equidistant points to x? 
 
 
 
– E.g. 

 

• The equidistant points to x are on spheres around x 
• Why would we need any other metric? 
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Inner Products 
• fish example: 

– features are L = fish length, W = scale width 
– measure L in meters and W in milimeters 

 typical L: 0.70m for salmon, 0.40m for sea-bass 
 typical W: 35mm for salmon, 40mm for sea-bass 

– I have three fish 
 F1 = (.7,35)        F2 = (.4, 40)        F3 = (.75, 37.8) 
 F1 clearly salmon, F2 clearly sea-bass, F3 looks  

like salmon 
 yet  

 d(F1,F3) = 2.8    >      d(F2,F3) = 2.23 
– there seems to be something wrong here 
– but if scale width is also measured in meters: 

 F1 = (.7,.035)      F2 = (.4, .040)   F3 = (.75, .0378) 
 and now 

 d(F1,F3) = .05    <      d(F2,F3) = 0.35 
– which seems to be right – the units are commensurate 
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• Suppose the scale width is also measured in meters: 
– I have three fish 

 F1 = (.7,.035)         F2 = (.4, .040)         F3 = (.75, .0378) 
 and now 

 d(F1,F3) = .05    <      d(F2,F3) = 0.35 
– which seems to be right 

• The problem is that the Euclidean distance  
depends on the units (or scaling) of each axis 
– e.g. if I multiply the second coordinate by 1,000 

 
 
 
The 2nd coordinates  influence on the distance increases 1,000-fold! 

• Often “right” units are not clear (e.g. car speed vs weight) 

' 2 2
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Inner Products 
• We need to work with the “right”, or at least “better”, units  
• Apply a transformation to get a “better” feature space 

 
 

• examples: 
– Taking A = R, R proper and orthogonal, is 

equivalent to a rotation 
– Another important special case is 

scaling (A = S, for S diagonal) 
 
 
 
 
 

– We can combine these two transformations 
 by making taking A = SR 
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(Weighted) Inner Products 
• Thus, in general one can rotate and scale by applying 

some matrix A = SR , to form transformed vectors 
 

• What is the inner product in the new space? 
 
 
 

• The inner product in the new space is of  
weighted form in the old space 
 
 
 

• Using a weighted inner product, is equivalent  
to working in the transformed space 
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(Weighted) Inner Products 
• Can I use any weighting matrix M ? – NO! 
• Recall: an inner product is a bilinear form such that 

 

  i)  <x,x> ≥ 0, ∀ x∈ H 
 ii) <x,x> = 0 if and only if x = 0 

  iii) <x,y> = <y,x> for all x and y 
• From iii), M must be Symmetric since 

 
 
 
 

• from i) and ii), M must be Positive Definite 
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Positive Definite Matrices 
• Fact: Each of the following is a necessary and sufficient 

condition for a real symmetric matrix A to be positive definite: 
   i)   xTAx > 0,  ∀x ≠ 0  
   ii)  All eigenvalues, λi , of A are real and satisfy λi > 0 
   iii) All upper-left submatrices Ak have strictly positive determinant 
   iv) There is a matrix R with independent columns such that A = RTR 
 

• Note: from property iv), we see that using a positive definite 
matrix A to weight an inner product is the same as working in 
a transformed space. 

• Definition of upper left submatrices:    
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Metrics 
• What is a good  

weighting matrix M ? 
– Let the data tell us! 
– Use the inverse of the   

covariance matrix M = ∑-1 
 
 
 
 
 

• Mahalanobis Distance: 
 

• This distance is adapted to the  
covariance (“scatter”) of the data and thereby 
provides a “natural” rotation and scaling for the data 

1( , ) ( ) ( )Td x y x y x y−= − Σ −
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The Multivariate Gaussian 
• In fact, for Gaussian data, the Mahalanobis distance tells us 

all we could statistically know about the data 
– The pdf for a d-dimensional Gaussian of mean µ and covariance Σ  is 

 
 
 
 

– Note that this can be written as 
 
 
 
 

– I.e. a Gaussian is just the exponential of the negative of the square of 
the Mahalanobis distance 

– The constant K is needed only to ensure the density integrates to 1 
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The Multivariate Gaussian 
• Using Mahalanobis = assuming Gaussian data 
• Mahalanobis distance:        Gaussian pdf: 

 
 
 
 
 
 
 
 

 
– Points of high probability are those of small Mahalanobis distance 

to the center (mean) of a Gaussian density 
– This can be interpreted as the right norm for a certain type of 

space  
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The Multivariate Gaussian 
• Defined by two parameters 

– Mean just shifts center 
– Covariance controls shape 

– in 2D, X = (X1, X2)T 
 
 
 
 

– σi
2 is variance of Xi 

– σ12 = cov(X1,X2) controls  
how dependent X1 and  
X2 are 

– Note that, when σ12 = 0: 
 
        Xi are independent 

2
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The multivariate Gaussian 
• this applet allows you to view the impact of the 

covariance parameters 
• http://www.sfu.ca/~vkyrylov/Java%20Applets/Distribution

3D/ThreeDSurface/classes/ThreeDSurface.htm 
• note: they show 

 
 
 

• but since you do not change σ1 and σ2 when you are 
changing ρ, this has the same impact as changing σ12  

21

12

σσ
σρ =

http://www.sfu.ca/~vkyrylov/Java Applets/Distribution3D/ThreeDSurface/classes/ThreeDSurface.htm
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“Optimal” Classifiers 
• Some metrics are “better” than others 
• The meaning of “better” is connected to how well adapted the 

metric is to the properties of the data 
• Can we be more rigorous? Can we have an “optimal” metric?  

What could we mean by “optimal”? 
• To talk about optimality we start by defining cost or loss 

 
 
 
– Cost is  a real-valued loss function that we want to minimize 
– It depends on the true y and the prediction  
– The value of the cost tells us how good our predictor       is  

)(ˆ xfy =x
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ŷ
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Loss Functions for Classification 
• Classification Problem: loss is function of classification errors 

– What types of  errors can we have? 
– Two Types: False Positives and False Negatives 

 Consider a face detection problem 
 If you see these two images and say  

 
 
 
 
          say = “face”                      say = “non-face” 

 you have a  
       false-positive        false-negative (miss) 

– Obviously, we have similar sub-classes for non-errors 
 true-positives and true-negatives 

– The positive/negative part reflects what we say 
– The true/false part reflects the real classes 
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Loss functions 
• are some errors more important than others? 

– depends on the problem 
– consider a snake looking for lunch 
– the snake likes frogs 
– but dart frogs are highly poisonous 
– the snake must classify each frog 

it sees 
 Y = {“dart”, “regular”} 

– the losses are clearly different  
snake 
prediction 

Frog
=dart 

Frog= 
regular 

“regular” 0 

“dart” 0 10 

∞



21 

Loss functions 
• but not all snakes are the same 

– this one is a dart frog predator 
– it can still classify each frog 

it sees 
 Y = {“dart”, “regular”} 

– it actually prefers dart frogs 
– but the other ones are good to 

eat too  

snake 
prediction 

Frog
=dart 

Frog= 
regular  

“regular” 10 0 

“dart” 0 10 
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(Conditional) Risk as Average Cost 
• Given a loss function, denote the cost of classifying a 

data vector x generated from class j as i by 
 
 

• Conditioned on an observed data vector x, to measure 
how good the classifier is, on average, use the 
(conditional) expected value of the loss, aka the 
(conditional) Risk, 
 
 
 

• This means that the risk of classifying x as i is equal to 
– the sum, over all classes j, of the cost of classifying x as i when 

the truth is j times the conditional probability that the true class is j 
(where the conditioning is on the observed value of x) 
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(Conditional) Risk 
• Note that: 

– This immediately allows us to define an optimal classifier as the 
one that minimizes the (conditional) risk 

– For a given observation x, the Optimal Decision is given by 
 
 
 
 
 
 
 

 
and it has optimal (minimal) risk given by  
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(Conditional) Risk 
• Back to our example 

– A snake sees this 
 
 
 
 
 
 
 

     and makes probability assessments 
 
 
 
 
      and computes the optimal decision  
 

X 

|

0 dart     
( | )

1 regularY X

j
P j x

j
= 

=  = 
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(Conditional) Risk 
• Info an ordinary snake is presumed to have 

 
 
 
 
 
 
 

• The risk of saying “regular” given the observation x is 

snake 
prediction 

dart 
frog 

regular 
frog 

“regular” 0 

“dart” 0 10 

∞

Ordinary Snake Losses 

|

0 dart     
( | )

1 regularY X

j
P j x

j
= 
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[ ]

[ ] [ ]

|

| |

reg ( | )

    reg reg (reg | ) dart reg (dart | )
    0 1 0 0 0 0

Y X
j

Y X Y X

L j P j x

L P x L P x
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= × + ∞× = + =

∑

Class probabilities conditioned on x 
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(Conditional) Risk 
• Info the ordinary snake has for the given observation x 

 
 
 
 
 

• Risk of saying “dart” given x is 
 
 
 
 
 
 

• Optimal decision = say “regular”.  Snake says “regular” given 
the observation x and has a good, safe lunch  (risk = 0) 

snake 
prediction 

dart 
frog 

regular 
frog 

“regular” 0 

“dart” 0 10 

∞
|
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j
P j x

j
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Y X
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(Conditional) Risk 
• The next time the ordinary snake goes foraging for food 

– It sees this image x 
 
 
 
 
 
 
 

– It “knows” that dart frogs can be colorful 
– So it assigns a nonzero probability to  

this image x showing a dart frog 

|

0.1 dart    
( | )

0.9 regularY X

j
P j x

j
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(Conditional) Risk 
• Info the ordinary snake has given the new measurement x 

 
 
 
 
 
 
 

• The risk of saying “regular” given the new observation x is 

snake 
prediction 

dart 
frog 

regular 
frog 

“regular” 0 

“dart” 0 10 

∞

Ordinary Snake Losses 

|
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( | )

0.9 regularY X

j
P j x

j
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(Conditional) Risk 
• Info the snake has given x 

 
 
 

• Risk of saying “dart” given x is 
 
 
 
 
 
 

• The snake decides “dart”  and looks for another frog  
– even though this is a regular frog with 0.9 probability 

• Note that this is always the case unless PY|X(dart|X) = 0 

Ordinary Snake Losses 
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(Conditional) Risk 
• What about the “dart-snake” that can safely eat dart frogs? 

– The dart-snake sees this 
 
 
 
 
 
 
 

     and makes probability assessments 
 
 
 
 
     and computes the optimal decision 

X 
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0 dart     
( | )

1 regularY X

j
P j x

j
= 
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(Conditional) Risk 
• Info the dart-snake has given x 

 
 
 
 
 

• Risk of saying “regular” given x is 

snake 
prediction 

dart 
frog 

regular 
frog 

“regular” 10 0 

“dart” 0 10 

Dart-Snake Losses 
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Y X
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∑
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(Conditional) Risk 
• Info the dart-snake has given x 

 
 
 
 
 

• Risk of dart-snake deciding “dart” given x is 
 
 
 
 
 
 

• Dart-snake optimally decides “regular”, which is 
consistent with the x-conditional class probabilities 

snake 
prediction 

dart 
frog 

regular 
frog 

regular 10 0 

dart 0 10 

Dart-Snake Losses 
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0 dart     
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1 regularY X

j
P j x

j
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    10 1 0 0 10

Y X
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(Conditional) Risk 
• Now the dart-snake sees this 

 
 
 
 
 
 
 
– Let’s assume that it makes 

the same probability assignments 
as the ordinary snake 
 

|

0.1 dart     
( | )

0.9 regularY X

j
P j x

j
= 
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X 



34 

(Conditional) Risk 
• Info dart-snake has given new x 

 
 
 
 
 
 

• Risk of deciding “regular” given new observation x is 

snake 
prediction 

dart 
frog 

regular 
frog 

“regular” 10 0 

“dart” 0 10 

Dart-Snake Losses 

|

0.1 dart     
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(Conditional) Risk 
• Info dart-snake has given new x 

 
 
 
 

• Risk of deciding “dart” given x is 
 
 
 
 
 
• The dart-snake optimally decides “regular” given x 
• Once again, this is consistent with the probabilities 

Dart-Snake Losses 

|
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( | )

0.9 regularY X

j
P j x

j
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[ ] [ ]
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Y X
j
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snake 
prediction 

dart 
frog 

regular 
frog 

regular 10 0 

dart 0 10 
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(Conditional) Risk 
• In summary, if both snakes have 

 
 
 

   then both say “regular” 
• However, if 

 
 
 
– the vulnerable snake decides “dart” 
– the predator snake decides “regular” 

• The infinite loss for saying regular when frog is dart, 
makes the vulnerable snake much more cautious! 

|

0.1 dart     
( | )

0.9 regularY X

j
P j x

j
= 

=  = 

|

0 dart     
( | )

1 regularY X

j
P j x

j
= 

=  = 



37 

(Conditional) Risk, Loss, & Probability 
• Note that the only factors involved in the Risk  

 
 
 
 
are 
– the Loss Function 

 
– and the Measurement-Conditional Probabilities 

 
 

• The risk is the expected loss of the decision (“on average, 
you will loose this much!”) 

• The risk is not necessarily zero! 
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(Conditional) Risk, Loss, & Probability 
• The best that the “vulnerable” ordinary snake can do when 

 
 
 

    is to always decide “dart” and accept the loss of 9 
• Clearly, because starvation will lead to death, a more realistic 

loss function for an ordinary snake would have to: 
– Account for how hungry the snake is. (If the snake is starving, it will have 

to be more risk preferring.) 
– Assign a finite cost to the choice of “regular” when the frog is a dart.  
    (Maybe dart frogs will only make the snake super sick sometimes.) 

• In general, the loss function is not “learned” 
– You know how much mistakes will cost you, or assess that in some way 
– What if I can’t do that? -- one reasonable default is the 0/1 loss function 
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0.9 regularY X

j
P j x

j
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0/1 Loss Function 
• This is the case where we assign  

– i) zero loss for no error and ii) equal loss for the two error types 

 
 
 
 
 

• Under the 0/1 loss: 

snake 
prediction 

dart 
frog 

regular 
frog 

“regular” 1 0 

“dart” 0 1 
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0/1 Loss Function 
• Equivalently: 

 
 
 
 
 
 
 

• Thus the Optimal Decision Rule is  
– Pick the class that has largest posterior probability  

given the observation x. (I.e., pick the most probable class) 

• This is the Bayes Decision Rule (BDR) for the 0/1 loss 
– We will simplify our discussion by assuming this loss, 
     but you should always be aware that other losses may be used 
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0/1 Loss Function 
• The risk of this optimal decision is 

 
 
 
 
 
 
 
 
 

• This is the probability that Y is different from i*(x) given x, 
    which is the x-conditional probability that the optimal      
    decision is wrong. 
• The expected Optimal Risk R = EX[ R(x,i*(x)) ] is the 

probability of error of the optimal decision 
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