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Nearest Neighbor Classifier
• We are considering supervised classification
• Nearest Neighbor (NN) Classifier

A t i i t {( ) ( )}– A training set D = {(x1,y1), …, (xn,yn)}
– xi is a vector of observations, yi is the corresponding class label
– a vector x to classify

• The “NN Decision Rule” is 

*Set    iy y=

{1 }

where
* arg min ( , )ii n

i d x x
∈

=

– argmin means: “the i
that minimizes the
di ”

{1,..., }i n∈

2

distance”



Optimal Classifiers
• We have seen that performance depends on metric
• Some metrics are “better” than others
• The meaning of “better” is connected to how well adapted 

the metric is to the properties of the data
But can we be more rigorous? what do we mean by• But can we be more rigorous? what do we mean by 
optimal?

• To talk about optimality we define cost or lossp y
ˆ ( )y f x=x

( )·f )ˆ,( yyL
– Loss is the function that we want to minimize
– Loss depends on true y and prediction ŷ
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– Loss tells us how good our predictor is 



Loss Functions
• Loss is a function of classification errors• Loss is a function of classification errors

– What errors can we have?
– Two types: false positives and false negatives

consider a face detection problem (decide “face” or “non-face”)
if you see this and say 

“face”                               “non-face”
you have a 

false – positive false-negative
(false alarm)                (miss, failure to detect)

– Obviously, we have corresponding sub-classes for non-errors
true-positives and true-negatives

– positive/negative part reflects what we say or decide, 
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– true/false part reflects the true class label (“true state of the world”)



(Conditional) Risk
• To weigh different errors differently

– We introduce a loss function
– Denote the cost of classifying X from class i as j by

[ ]L i j→

– One way to measure how good the classifier is to use the (data-
conditional) expected value of the loss, aka the (conditional) Risk,

[ ]j

[ ] |[ ] | }( , ) { ( | )Y X
j

R x i E LL Y i i P xx j j→= = →∑
• this means

– risk of classifying x as i is equal to
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– sum, over all classes, of the loss of classifying as i when truth is j
– times probability that true class is j (given x)



Loss Functions
• example: two snakes and eating poisonous dart frogs

– Regular snake will die
– Frogs are a good snack for the

predator dart-snake
– This leads to the losses

Regular
snake

dart 
frog

regular 
frog

regular 0∞

Predator
snake

dart 
frog

regular 
frog

regular 10 0

– What is optimal decision when snakes
find a frog like these?

g

dart 0 10

∞ g

dart 0 10

find a frog like these?
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Minimum Risk Classification
• We have seen that

– if both snakes have

then both say “regular”

|

0 dart     
( | )

1 regularY X

j
P j x

j
=⎧ ⎫

= ⎨ ⎬=⎩ ⎭
then both say “regular”

– However, if
0.1 dart     

( | )
j

P j x
=⎧ ⎫

⎨ ⎬

then the vulnerable snake says “dart”
“ ”

| ( | )
0.9 regularY XP j x

j
= ⎨ ⎬=⎩ ⎭

while the predator says “regular”

• Its infinite loss for saying regular when frog is dart, makes 
the vulnerable snake much more cautious!
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Bayes decision rule
N t th t th d fi iti f i k• Note that the definition of risk:
– Immediately defines the optimal classifier as the one that 

minimizes the conditional risk for a given observation x 
– The Optimal Decision is the Bayes Decision Rule (BDR) :

*( ) argmin ( , )i x R x i=

[ ] |

( ) argmin ( , )

         argmin ( | ).
i

Y X

i x R x i

L j i P j x= →∑

Th BDR i ld th ti l ( i i l) i k

[ ] |g ( | )Y Xi j
j j∑

– The BDR yields the optimal (minimal) risk :

[ ]**
|( ) ( , ) min ( | )Y XR x R x i L j i P j x= = →∑
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[ ] |( ) ( , ) ( | )Y Xi j
j j∑



The 0/1 Loss Function
• An important special case of interest: 

– zero loss for no error and equal loss for two error types

• This is equivalent to the 
“zero/one” loss :

snake 
prediction

dart 
frog

regular 
frog

⎧ regular 1 0

dart 0 1
[ ] 0

1
i j

L i j
i j

=⎧
→ = ⎨ ≠⎩

• Under this loss the optimal Bayes decision rule (BDR) is

[ ]* *( ) argmin ( | )( )d i x L j i P jx x→∑ [ ] |( ) argmin ( | )

arg min ( | )

( ) Y Xi j
d i x L j i P j

P

x x

j x

= →= ∑

∑
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|                    arg min ( | )Y Xi j i
P j x

≠

= ∑



N t th t
0/1 Loss yields MAP Decision Rule

• Note that : *
|( ) arg min ( | )Y Xi j i

i x P j x
≠

=

⎡ ⎤

∑

|

|

       arg min 1 ( | )

       arg max ( | )
Y Xi

Y Xi

P i x

P i x

⎡ ⎤= −⎣ ⎦
=

• Thus the Optimal Decision for the 0/1 loss is : 

|g |Y Xi

– Pick the class that is most probable given the observation x
– i*(x) is known as the Maximum a Posteriori Probability (MAP) 

solution

• This is also known as the Bayes Decision Rule (BDR) for 
the 0/1 loss

W ill ft i lif di i b i thi l
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– We will often simplify our discussion by assuming this loss
– But you should always be aware that other losses may be used



BDR for the 0/1 Loss
• Consider the evaluation of the BDR for 0/1 loss

*( ) argma ( | )i P i

– This is also called the Maximum a Posteriori Probability

|( ) argmax ( | )Y Xi
i x P i x=

This is also called the Maximum a Posteriori Probability 
(MAP) rule

– It is usually not trivial to evaluate the posterior probabilities 
PY|X( i | x )PY|X( i | x )

– This is due to the fact that we are trying to infer the cause 
(class i) from the consequence (observation x) – i.e. we 
are trying to solve a nontrivial inverse problemare trying to solve a nontrivial inverse problem 

E.g. imagine that I want to evaluate

PY|X( person | “has two eyes”)
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This strongly depends on what the other classes are



Posterior Probabilities and Detection
• If the two classes are “people” and “cars”

– then PY|X( person | “has two eyes” ) = 1

• But if the classes are “people” and “cats”
– then PY|X( person | “has two eyes” ) = ½Y|X( p | y )

if there are equal numbers of cats and people
to uniformly choose from [ this is additional info! ]

• How do we deal with this problem?• How do we deal with this problem?
– We note that it is much easier to infer consequence

from cause
– E.g., it is easy to infer that 

PX|Y( “has two eyes” | person ) = 1
– This does not depend on any other classes
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– We do not need any additional information
– Given a class, just count  the frequency of observation



Bayes Rule
• How do we go from PX|Y( x | j ) to PY|X( j | x ) ?
• We use Bayes rule:

|
|

( | ) ( )
( | )

( )
X Y Y

Y X
X

P x i P i
P i x

P x
=

• Consider the two-class problem, i.e. Y=0 or Y=1
– the BDR under 0/1 loss is

( )X

*
|( ) argmax ( | )Y Xi

i x P i x=

⎧ ⎫| |

| |

0, if (0 | ) (1 | )
         

1, if (0 | ) (1 | )
Y X Y X

Y X Y X

P x P x

P x P x

≥⎧ ⎫⎪ ⎪= ⎨ ⎬<⎪ ⎪⎩ ⎭
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| |Y X Y X⎪ ⎪⎩ ⎭



BDR for 0/1 Loss Binary Classification
• Pick “0” when  and “1” otherwise
• Using Bayes rule on both sides of this inequality yields

| |(0 | ) (1| )Y X Y XP x P x≥

| |

| |

(0 | ) (1 | )

( | 0) (0) ( | 1) (1)
Y X Y X

X Y Y X Y Y

P x P x

P x P P x P

≥ ⇔

N ti th t P ( ) i ti tit thi i th

| |( | 0) (0) ( | 1) (1)
    

( ) ( )
X Y Y X Y Y

X X

P x P P x P
P x P x

≥

– Noting that PX(x) is a non-negative quantity this is the same as 
the rule pick “0” when

| |( | 0) (0) ( | 1) (1)X Y Y X Y YP x P P x P≥

i.e. 

| |( | 0) (0) ( | 1) (1)X Y Y X Y YP x P P x P≥

*
|( ) argmax ( | ) ( )X Y Yi

i x P x i P i=
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The “Log Trick”
• Sometimes it’s not convenient to

work directly with pdf’s
log a

– One helpful trick is to take logs
– Note that the log is a monotonically 

increasing function

log b

from which we have

baba loglog >⇔>

ab ab

( )

*
|( ) arg max ( | ) ( )

arg max log ( | ) ( )

X Y Yi
i x P x i P i

P x i P i

=

= ( )
( )

|

|

         arg max log ( | ) ( )

         arg max log ( | ) log ( )

X Y Yi

X Y Yi

P x i P i

P x i P i

=

= +

15( )|         arg min log ( | ) log ( )
i

X Y Yi
P x i P i= − −



“Standard” (0/1) BDR
• In summary

– for the zero/one loss, the following three decision rules are
optimal and equivalent

1) )|(maxarg)( |
* xiPxi XY=

2)

|
i

*
|( ) arg max ( | ) ( )X Y Yi x P x i P i⎡ ⎤= ⎣ ⎦

3)

|( ) g ( | ) ( )X Y Y
i

⎡ ⎤⎣ ⎦

[ ])(log)|(logmaxarg)( |
* iPixPxi YYX +=

The form 1) is usually hardest to use, 3) is frequently easier than 2)

[ ])(og)|(ogaa g)( | YYX
i
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BDR - Example
• So far the BDR is an abstract rule• So far the BDR is an abstract rule

– How does one implement the optimal decision in 
practice?

– In addition to having a loss function, you need 
to know, model, or estimate the probabilities!

– Example
Suppose that you run a gas station
On Mondays you have a promotion to sell more gas
Q: is the promotion working?    I.e., is Y =  0 (no) or Y = 1 (yes) ?
A good observation to answer this question is the interarrival time (τ) 
between cars

high τ: not working (Y = 0) low τ: working well (Y = 1)
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BDR - Example
• What are the class-conditional and prior probabilities? 

– the probability of arrival of a car follows
a Poisson distribution

– Poisson inter-arrival times are exponentially
distributed

Hence ( | )P i λ τλ −Hence

where λi is the arrival rate (cars/s).

| ( | ) e i
X Y iP i λ ττ λ=

The expected value of the interarrival time is

[ ]|
1E |X Y

i
x y i λ= =

Consecutive times are assumed to be independent :

| 1 |( , , | ) ( | ) e i k

n n

X X Y X Y ikP i P i λ ττ τ τ λ −= =∏ ∏K
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1 , , | 1 |
1 1

( , , | ) ( | ) e
nX X Y n X Y ik

k k

P i P iτ τ τ λ
= =

∏ ∏K K



BDR - Example
L t’ th t• Let’s assume that we
– know λi and the (prior) class probabilities PY(i) = πi , i = 0,1
– Have measured a collection of times during the day, D = {τ1,...,τn}1 n

• The probabilities are of exponential form
– Therefore it is easier to use the log-based BDR

*
|( ) arg max log ( | ) log ( )

l l

X Y Yi

n

i P i P i

λ τλ −

⎡ ⎤= +⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟∏

D D

1

        arg max log e log

l l

i k
i ii k

n

λ τλ π

λ λ

−

=

⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤

∏

∑

( )
1

        arg max log log

l

i k i ii k

n

nλ τ λ π

λ λ

=

⎡ ⎤= − + +⎢ ⎥⎣ ⎦
⎡ ⎤

∑

∑
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( )
1

        arg max log n
i k i ii k

nλ τ λ π
=

⎡ ⎤
= − +⎢ ⎥⎣ ⎦

∑



BDR - Example
• This means we pick “0” when

( ) ( )l l
n n

nnλ λ λ λ+ ≥ +∑ ∑( ) ( )0 0 0 1 1 1
1 1

1 1

log log

( ) l

, ornn
k k

k k

n n

n nλ τ λ π λ τ λ π

λ π
λ λ

= =

− + ≥ − +

⎛ ⎞
≥ ⎜ ⎟

∑ ∑

∑ 1 1
1 0

1 0 0

( ) lo , or

1 1

g

n n

k nk

n

λ π

λ λ τ
λ π=

− ≥

⎛ ⎞
⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ 1 1

1 1 0 0 0

1 1 log
( )k nkn

λ π
τ

λ πλ λ=

⎛ ⎞
≥ ⎜ ⎟⎜ ⎟− ⎝ ⎠

∑ (reasonably taking λ1 > λ0)

and “1” otherwise
• Does this decision rule make sense?

Let’s assume for simplicity that π = π = 1/2

20

– Let s assume, for simplicity, that π1 = π2 = 1/2



BDR - Example
• For π1 = π2 = ½, we pick “promotion did not work” (Y=0) if

⎞
⎜⎜
⎛

≥∑ 1log11 λτ
n

The left hand side is the (sample) average interarrival time for the day
Thi th t th i ti l h i f “th h ld”

⎠
⎜⎜
⎝−

≥∑
= 0011

log
)( λλλ

τ
k

kn

– This means that there is an optimal choice of a “threshold”

⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= 1log
)(

1
λ
λ

λλ
T T

above which we say “promotion did not work”.
This makes sense!

⎠⎝− 001 )( λλλ

This  makes sense!

– What is the shape of this threshold?
Assuming λ 1 it looks like this
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Assuming λ0 = 1, it looks like this.
Higher the λ1 , the more likely to say “promotion did not work”. 

λ1



BDR - Example
• When π1 = π2 = ½, we pick “did not work” (Y=0) when

⎞⎛1 λ
T

n1

A i λ 1 T d ith λ

⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

1

01

log
)(

1
λ
λ

λλ
TT

n k
k ≥∑

=1

1 τ

– Assuming λ0 = 1, T decreases with λ1

– I.e. for a given daily average,
Larger λ1: easier to say “did not work”

λ– This means that 
As the expected rate of arrival for good days increases
we are going to impose a tougher standard on the average

d i t i l ti

λ1

measured interarrival times
The average has to be smaller for us to accept the day as a good 
one

Once again this makes sense!
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– Once again, this makes sense!
– usually the case with the BDR (a good way to check your math)



The Gaussian Classifier
• One important case is that of Multivariate Gaussian Classes

– The pdf of class i is a Gaussian of mean µi and covariance Σi

⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−

Σ
= − )()(

2
1exp

||)2(
1)|( 1

| ii
T

i

i
dYX xxixP µµ

π

• The BDR is

1⎡* 11( ) arg max ( ) ( )
2

T
i i ii

i x x xµ µ−⎡= − − Σ −⎢⎣
1                        log(2 ) log ( )
2

d
i YP iπ ⎤− Σ + ⎥⎦
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Implementation
• To design a Gaussian classifier (e.g. homework)

– Start from a collection of datasets, where the i-th class dataset
D(i) = {x1

(i) , ..., xn
(i)} is a set of n(i) examples from class iD  {x1 , ..., xn } is a set of n examples from class i

– For each class estimate the Gaussian parameters :

( ( ))ˆ 1 ( )ˆ ( )ˆi i Tx xµ µ− −Σ = ∑( )ˆ 1 ixµ = ∑
( )

ˆ ( )
i

i nP =

where  T  is the total number of examples over all c classes

( ) ( )( )i ii j j
j

i x x
n

µ µΣ = ∑( )i
j

i jx
n

µ = ∑ ( )Y T
iP =

• the BDR is approximated as

1* 1( ) arg max ( ) ( )ˆˆ ˆTi xx xµ µ−⎡= ⎢ Σ( ) arg max ( ) ( )
2

1 ˆˆ (l (2 ) l )

i i i

d

ii x

P

x x

i

µ µ= − − −⎢⎣
⎤

Σ

Σ ⎥
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                        (log(2 ) l g )o
2

d
i YP iπ ⎤− +Σ ⎥⎦



Gaussian Classifier
di i i t

• The Gaussian Classifier can be written as

2*( ) arg min ( )i d µ α⎡ ⎤+⎣ ⎦

discriminant:
PY|X(1|x ) = 0.5

with

( ) arg min ( , )i i ii
i x d x µ α⎡ ⎤= +⎣ ⎦

12 ( , ) ( ) ( )T
i id x y x y x y−= − Σ −

)(l2)2l ( iPd Σ

and can be seen as a nearest “class-neighbor” classifier   

)(log2)2log( iPYi
d

i −Σ= πα

with a “funny metric”
– Each class has its own “distance” measure:

Sum the Mahalanobis-squared for that class, then add the α constant.
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q ,
We effectively have different “metrics” in the data (feature) space that 
are class i dependent.



Gaussian Classifier
• A special case of interest is when

– All classes have the same covariance Σi = Σ

⎡ ⎤

discriminant:
PY|X(1|x ) = 0.5

with

2*( ) arg min ( , )i ii
i x d x µ α⎡ ⎤= +⎣ ⎦

with
12 ( , ) ( ) ( )Td x y x y x y−= − Σ −

)(log2 iPα

• Note that:

)(log2 iPYi −=α

– αi can be dropped when all classes have equal prior probability
– This is reminiscent of the NN classifier with Mahalanobis distance
– Instead of finding the nearest data point neighbor of x, it looks for the 

26

nearest class “prototype,” (or “archetype,” or “exemplar,” or “template,” or 

“representative”, or “ideal”, or “form”) , defined as the class mean µi



Binary Classifier – Special Case
Discriminant S rface

• Consider Σi = Σ with two classes
– One important property of this case 

is that the decision bo ndar is a

Discriminant Surface:
PY|X(1|x ) = 0.5

is that the decision boundary is a 
hyperplane (Homework)

– This can be shown by computing the 
set of points x such thatset of points x such that

and showing that they satisfy
0 0 1 1

2 2( , ) ( , )d x d xµ α µ α+ = +

and showing that they satisfy

0( ) 0Tw x x− =

This is the equation of a hyperplane
with normal w.  x0 can be any fixed point 
on the hyperplane, but it is standard to  
h it t h i i i

x 1

w
x0

x

x0
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choose it to have minimum norm, in 
which case w and x0 are then parallel

x 3
x2

x n

x



Gaussian Classifier
• If all the class covariances are the identity, Σi=Ι,   then

2*( ) arg min ( )i x d x µ α⎡ ⎤= +⎣ ⎦ *?

with

( ) arg min ( , )i i
i

i x d x µ α⎡ ⎤= +⎣ ⎦
?

22 ( , ) || ||d x y x y= −

)(log2 iPYi −=α
• This is called template matching

with class means as templates

)(log2 iPYi =α

– E.g. for digit classification

28Compare the complexity of this classifier to NN Classifier!



The Sigmoid Function
• We have derived much of the above from the log-based BDR

*( ) arg max log ( | ) log ( )i P i P i⎡ ⎤+⎣ ⎦

• When there are only two classes, i = 0,1, it is also interesting

|( ) arg max log ( | ) log ( )X Y Yi
i x P x i P i⎡ ⎤= +⎣ ⎦

When there are only two classes, i  0,1, it is also interesting 
to consider the original definition 

*( ) arg max ( )ii x g x=

where

i

)()|(
)|()( |

|
YYX

XYi

iPixP
xiPxg ==

)()|(
)(

)|()(

|

|

YYX

X
XYi

iPixP
xP

xiPxg

=
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The Sigmoid Function
• Note that this can be written as

*( ) arg max ( )i x g x 1( ) arg max ( )ii
i x g x=

0
|

1( )  ( |1) (1)
1

( | 0) (0)
X Y Y

g x P x P
P x P

=
+)(1)( 01 xgxg −=

• For Gaussian classes, the posterior probabilities are

| ( | 0) (0)X Y YP x P)(1)( 01 xgxg

{ }20
0 0 1 1

2
0 1

1( )  
1 exp ( , ) ( , )

g x
d x d xµ µ α α

=
+ − + −

where, as before, 12 ( , ) ( ) ( )T
i id x y x y x y−= − Σ −
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d
i −Σ= πα



The Sigmoid (“S-shaped”) Function
• The posterior pdf for class i = 0,

1( )g x

is a sigmoid and looks like this
{ }20

0 0 1 1
2

0 1

( )  
1 exp ( , ) ( , )

g x
d x d xµ µ α α

=
+ − + −

is a sigmoid and looks like this
discriminant:
P (C1|x ) = 0.5
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The Sigmoid
• The sigmoid appears in neural networks, where it can be 

interpreted as a posterior pdf for a Gaussian binary 
classification problem when the covariances are the sameclassification problem when  the covariances are the same

Equal variances

Single boundary Single boundary 
at
halfway 
between means
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The Sigmoid
• But not necessarily when the covariances are different

Variances are differentVa a ces a e d ffe e t

Yields two boundaries
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