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Nearest Neighbor Classifier

* WWe are considering supervised classification

* Nearest Neighbor (NN) Classifier
— Atraining set @ = {(X{,Y1), ---» X,¥1)}
— X; IS a vector of observations, y; is the corresponding class label
— avector x to classify

 The “NN Decision Rule” is 4
I
[]
Set y=Y. .. B ®
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that minimizes the

distance”



Optimal Classifiers

* \We have seen that performance depends on metric
¢ Some metrics are “better’ than others

 The meaning of “better”’ is connected to how well adapted
the metric Is to the properties of the data

e But can we be more rigorous? what do we mean by
optimal?
* To talk about optimality we define cost or loss
X y= f(x)

{ ) L(y, Y)

— Loss is the function that we want to minimize
— Loss depends on true y and prediction Y
— Loss tells us how good our predictor is




L. oss Functions

e Loss Is a function of classification errors
— What errors can we have?

— Two types: false positives and false negatives
= consider a face detection problem (decide “face” or “non-face”)
= if you see this and say

“face” “non-face”
* you have a
false — positive false-negative
(false alarm) (miss, failure to detect)

— Obviously, we have corresponding sub-classes for non-errors
= true-positives and true-negatives

— positive/negative part reflects what we say or decide,
— true/false part reflects the true class label (“true state of the world”)



(Conditional) Risk

* To weigh different errors differently
— We introduce a loss function
— Denote the cost of classifying X from class i as | by

L[i — j]

— One way to measure how good the classifier is to use the (data-
conditional) expected value of the loss, aka the (conditional) Risk,

R(x,1)= E{LLY = ilIx}= D L[i = i]Rx (il X)

 this means
— risk of classifying x as i is equal to
— sum, over all classes, of the loss of classifying as i when truth is |
— times probability that true class is | (given Xx) 5



L. oss Functions

e example: two snakes and eating poisonous dart frogs

— Regular snake will die

— Frogs are a good snack for the
predator dart-snake

— This leads to the losses

Regular dart | regular Predator dart | regular
shake frog frog shake frog frog
regular o0 0 regular 10 0
dart 0 10 dart 0 10

— What is optimal decision when snakes
find a frog like these?




Minimum Risk Classification

e We have seen that
— if both snakes have

Prx (J1 X)={O } =dart }

1 J=regular
then both say “regular”
— However, if

PY|X(j | X)={

then the vulnerable snake says “dart”
while the predator says “regular”

* Its infinite loss for saying regular when frog is dart, makes
the vulnerable snake much more cautious!

0.1 j=dart
0.9 J=regular




Bayes decision rule

e Note that the definition of risk:

— Immediately defines the optimal classifier as the one that
minimizes the conditional risk for a given observation x

— The Optimal Decision is the Bayes Decision Rule (BDR) :

i (x)=arg min R(x, i)

= arg miinz L[i—>i]P (i ]X).

— The BDR yields the optimal (minimal) risk :

R'(X) = R(x,i")=min Y L[ j > i] P, (i1 %)

o
o




The 0/1 Loss Function

« An important special case of interest:
— zero loss for no error and equal loss for two error types

e This is equivalent to the
“zero/one” loss :

shake dart | regular
prediction | frog frog

r

0O 1= J regular 1 0

\1 | # | dart 0 1

L[i—) j]=<

« Under this loss the optimal Bayes decision rule (BDR) is

d"(x)=i"(x)= arg miinz L[i—>i]P (ilx)

= argmin Y P, (j| %)

J#I




0/1 Loss yields MAP Decision Rule

e Note that : |(X) argmmz IX(J|X)
IEd
—argmln[ |x(||X):|
= argmax Y|X(i|X)

e Thus the Optimal Decision for the 0/1 loss Is :

— Pick the class that is most probable given the observation x
— 1*(x) I1s known as the Maximum a Posteriori Probability (MAP)

solution

e This is also known as the Bayes Decision Rule (BDR) for

the O/1 loss

— We will often simplify our discussion by assuming this loss
— But you should always be aware that other losses may be used

10



BDR for the O/1 Loss

e Consider the evaluation of the BDR for 0/1 loss

i"(x) =argmax P, , (i] x)

— This is also called the Maximum a Posteriori Probability
(MAP) rule

— It is usually not trivial to evaluate the posterior probabilities
Pyx(1]x)

— This is due to the fact that we are trying to infer the cause
(class i) from the conseguence (observation x) — I.e. we
are trying to solve a nontrivial inverse problem

= E.g. imagine that | want to evaluate

Pyx( person | “has two eyes”)

= This strongly depends on what the other classes are

11



Posterior Probabilities and Detection

o If the two classes are “people” and “cars”
— then Py ( person | “has two eyes™ ) = 1

* But if the classes are “people” and “cats”
— then Py ( person | “has two eyes™ ) =2 \
If there are equal numbers of cats and people
to uniformly choose from [ this is additional info! ]

 How do we deal with this problem?

— We note that it is much easier to infer conseguence
from cause

— E.g., it is easy to infer that —
Pyv( “has two eyes” | person ) = 1

— This does not depend on any other classes
— We do not need any additional information
— Given a class, just count the frequency of observation 12




Bayes Rule

* How do we go from Py (x| ]) to Pyy(] | X) ?

* \We use Bayes rule:

Py (X[1) P, (1)

PY|X (1 | X) =

Py (X)

e Consider the two-class problem, i.e. Y=0 or Y=1
— the BDR under 0/1 loss is

.

i"(x)=argmaxP, (i x)
0, ifR,(0]x)>PR,, (1
1, if P, (0] X)< P,y (1

13



BDR for O/1 Loss Binary Classification

* Pick“0”"when R, (0]x) >R, (1| x) and “1” otherwise

e Using Bayes rule on both sides of this inequality yields
PY|X (0] x) 2 PY|X (1] x) <

Py (X]0)R, (0) S Py (X]1)R, (1)
P (x) Py (X)

— Noting that P,(x) is a non-negative quantity this is the same as
the rule pick “0” when

Py (X]0)P, (0) 2 Py, (X 1R, (1)

i.e. i*(x)zarg miaX PX|Y(X|i)PY (')

14



The “Log Trick”

« Sometimes It's not convenientto ;- —
Work direCtIy W|th pdf’ S e ,,
_ One helpful trick is to take logs qub
— Note that the log is a monotonically ;.
Increasing function
a>b<loga>logb
from which we have | L
b
i (X) =arg miax Py (X]1) R, (i)
=arg max log (P, (x| i) R, (i)
I
= alrg maX(log Py (X]1)+1og R, (i))
|

=argmin ~log P, (x|i)~log P, (i))
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“Standard” (0/1) BDR

e In summary
— for the zero/one loss, the following three decision rules are
optimal and equivalent

y [77(x) =argmax B, (7] x)

2) i’ (x)=arg maX[wa (X[ R (I):|

3) |/ (x)=arg maX{log P (X |7)+10g A, (/')J

The form 1) is usually hardest to use, 3) is frequently easier than 2)

16



BDR - Example

« So far the BDR is an abstract rule
— How does one implement the optimal decision in
practice?
— In addition to having a loss function, you need
to know, model, or estimate the probabilities!
— Example
= Suppose that you run a gas station
= On Mondays you have a promotion to sell more gas
» Q:is the promotion working? l.e.,isY = 0(no)orY =1 (yes)?

= A good observation to answer this question is the interarrival time (1)
between cars

high t: not working (Y = 0) low t: working well (Y = 1)

A
T

e P AU T
2 LT
B &
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BDR - Example

* What are the class-conditional and prior probabilities?

— the probability of arrival of a car follows
a Poisson distribution

— Poisson inter-arrival times are exponentially
distributed

= Hence

Poy (7 11) = 467

where /, is the arrival rate (cars/s). A
= The expected value of the interarrival time is

EE><P( [)(l y = i] — /;7fi EERHH“

= Consecutive times are assumed to be independent :

le'“"xnw G DL H Py (7, [1) = Hﬂf. e
k=1 k=1
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BDR - Example

e Let's assume that we

— know A, and the (prior) class probabilities P (i) = z ,1=0,1
— Have measured a collection of times during the day, ® = {7

e The probabilities are of exponential form
— Therefore it is easier to use the log-based BDR

i"(D) =argmax| log P (D [i) +log P, (i)

= arg max
|

= arg max
|

= arg max
|

log (H Qe j +log
k=1

- Az +nlog 4 +Iog7zi}
k=1

_kzn;ﬂ,,fk +n|og(ﬂ«. Q/;.)}
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BDR - Example

e This means we pick “0” when

Zz 7, +nlog (4, Y7, ) 2 Zzlfk+n|og(zlf)

(ﬂl_ﬂ*o)zrilfk > nlog{ﬂng

13 1 Wym
&) mg{%%j

and “1” otherwise

(reasonably taking A, > )

 Does this decision rule make sense?

— Let’s assume, for simplicity, that z; =

7w, = 1/2

20



BDR - Example

e For ; = &, = %, we pick “promotion did not work” (Y=0) if

1¢ 1 A )
DAY

The left hand side is the (sample) average interarrival time for the day
— This means that there is an optimal choice of a “threshold”

_ 1 Iog(ﬂl) -

(L-4) (4 ) :
above which we say “promotion did not work”. 2:
This makes sense!

a

— What is the shape of this threshold? _—

= Assuming A, = 1, it looks like this.

= Higher the 4,, the more likely to say “promotion did not work”. )1



BDR - Example

« When 7, = =, = %, we pick “did not work” (Y=0) when

1 1 A )
_ZrkZT T_(A—EO)IOQ(AOJ

n %3

— Assuming 4, = 1, T decreases with 4,

— l.e. for a given daily average,
= Larger A,: easier to say “did not work”

— This means that

= As the expected rate of arrival for good days increases
we are going to impose a tougher standard on the average

measured interarrival times

» The average has to be smaller for us to accept the day as a good

one
— Once again, this makes sense!

5
T o

4

3

1.5

1k

0
0

— usually the case with the BDR (a good way to check your math) ,,




The Gaussian Classifier

* One important case is that of Multivariate Gaussian Classes

— The pdf of class i is a Gaussian of mean ; and covariance X

EXP{_ % (X — ,U/)T 2;1 (x — ﬂ/)}

Jen? |z

« The BDR Is

i (x) =arg max [—%(x — 1) S (X = )

1
2

log(27)" || +1log R, (i)}

23



Implementation

* To design a Gaussian classifier (e.g. homework)
— Start from a collection of datasets, where the i-th class dataset

o0 ={x,0, ..., x,0} is a set of nl) examples from class i
— For each class estimate the Gaussian parameters :
~ 1 Nl 1 A A ~ n®
_ _ ) (i) T -
H = n(i) ZXEI) Zi - n(i) Z(XEI _/ui)(le _:ui) PY (I) = T
j j

where T is the total number of examples over all ¢ classes
* the BDR Is approximated as

i (X)=arg miax[—%(x_/}i)T ii—l(x—[zi)

1
2

log(27)° \z \+ log P, (i)}

24




Gaussian Classifier

e The Gaussian Classifier can be written as

i"(x) =argmin (% )+ |

with
d’ (x,y) = (x=y) T (x~-y)
a, =log(27)° 2| - 2log A, (/)

discriminant:

\

O
U

and can be seen as a nearest “class-neighbor” classifier

with a “funny metric”

— Each class has its own “distance” measure:

= Sum the Mahalanobis-squared for that class, then add the « constant.
= We effectively have different “metrics” in the data (feature) space that

are class | dependent.

25



Gaussian Classifier

» A special case of interest is when discriminant:
— All classes have the same covariance %, =X PY/X(1|X )=0.5
i (X) =arg m_in[dz(x,yi)+ai] | \
|

with O
d*(x, V) =(x=-y'Z"(x=-y)| | 0
a, =-2logh, (/)

e Note that:

— ¢, can be dropped when all classes have equal prior probability
— This is reminiscent of the NN classifier with Mahalanobis distance

— Instead of finding the nearest data point neighbor of x, it looks for the
nearest class “prototype,” (or “archetype,” or “exemplar,” or “template,” or
“representative”, or “ideal”, or “form”) , defined as the class mean ys 26



Binary Classifier — Special Case

Discriminant Surface:
Py (1lx) = 0.5

« Consider %, = X with two classes

— One important property of this case
Is that the decision boundary is a
hyperplane (Homework)

— This can be shown by computing the
set of points x such that

dZ(X,,uO)+Ol0 = dZ(X,,ul)+0{1

and showing that they satisfy

w'(Xx=x,)=0

= This is the equation of a hyperplane
with normal w. X, can be any fixed point
on the hyperplane, but it is standard to
choose it to have minimum norm, in
which case w and X, are then parallel

Xn

(

\

27



Gaussian Classifier

e If all the class covariances are the identity, ~.=/ then

i"(x) =argmin| d?(x, 14) + ¢ |

with
d?(x,y) =l x—y|F

a;, =-2log~, (/)
* This is called template matching

with class means as templates
— E.g. for digit classification

Compare the complexity of this classifier to NN Classifier!




The Sigmoid Function

* We have derived much of the above from the log-based BDR

i (x) = argmax| log Py, (x| i) +log P, (i)

* \When there are only two classes, 1 = 0,1, it is also interesting
to consider the original definition

I"(x) =argmax g, (x)

Py (X11)B, (/)
Py (X)

Py INRW)
Py (X [0)A(0)+ Py, (X |1A, (1)

where

g/(X):PHX(/lX):

29



The Sigmoid Function

e Note that this can be written as

i (X) =arg max g (X)

9,(x) =1-g,(x)

go(x) —

1

N Py (X]D R, (1)

Py (X]0) R (0)

* For Gaussian classes, the posterior probabilities are

1

go(x) —

1+9Xp{d20(xiﬂo) —d®, (X, ) + a1, _al}

where, as before, |d Zi (X, y) =(X~- Y)T zi_l(x -Y)

a, =log(27)° |2, -2log A, (/)

30



The Sigmoid (“S-shaped”) Function

e The posterior pdf for class i = 0,

1

1+exp {d 2o (X, £4) —d 21(X’ )+ oty — 0‘1}
IS a sigmoid and looks like this

go(x) —

discriminant:

J‘Wf 'ty
AL
T BN
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The Sigmoid

 The sigmoid appears in neural networks, where it can be
Interpreted as a posterior pdf for a Gaussian binary
classification problem when the covariances are the same

plx (."].}

p(Cx)

Likelihoods
0.4

Posteriors with equal priors

Equal variances

Single boundary
at

halfway
between means
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The Sigmoid

« But not necessarily when the covariances are different

Likelihoods
0.4 T T T T T T T
03 e ______________________________________________________________________________________ -
2’_ O 2 ..o '_ ___________________________________________________________________________________________ —
- ; Variances are different
01k - ____________________________________________________________________________________ _|
| |
-10 —8 —6

10

p(C [x)

Yields two boundaries
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