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BDR (under 0/1 Loss) 
• For the zero/one loss, the following three decision rules 

are optimal and equivalent 
 

– 1) 
 
 

– 2) 
 
 

– 3) 
 
 

– Form 1) is usually hard to use, 3) is frequently easier than 2) 
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The Gaussian Classifier 
• One important case is that of Multivariate Gaussian Classes 

– The pdf of class i is a Gaussian of mean µi and covariance Σi   
 
 
 
 

• The BDR is 
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Implementation 
• To design a Gaussian classifier (e.g. homework) 

– Start from a collection of datasets, where the i-th class dataset  
     D(i) = {x1

(i) , ..., xn
(i)} is a set of  n(i) examples from class i 

– For each class estimate the Gaussian parameters : 
 
 
 
where  T  is the total number of examples over all c classes 

• the BDR is approximated as 
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Important  
• Warning: at this point all optimality claims for the BDR 

cease to be valid!! 
• The BDR is guaranteed  

to achieve the minimum 
loss only when we use the 
true probabilities 

• When we “plug in”  
probability estimates,  
we  could be implementing  
a classifier that is quite  
distant from the optimal 
– E.g. if the PX|Y(x|i) look like the example above 
    one could never approximate it well by using simple  
    parametric models (e.g. a single Gaussian). 
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Maximum likelihood Estimation (MLE) 
• Given a parameterized pdf how should one estimate the 

parameters which define the pdf? 
• There are many techniques of “parameter estimation.” 

We shall utilize the maximum likelihood (ML) principle. 
• This has three steps: 

– 1) We choose a parametric model for all probabilities. 
 To make this clear we denote the vector of parameters by θ  and the 

class-conditional distributions by 
 
 
 

 Note: This is a classical statistics approach, which means that θ  is 
NOT a random variable. It is a deterministic but unknown parameter, 
and the probabilities are a function of this unknown parameter. 

);|(| ΘixP YX
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Maximum Likelihood Estimation (MLE) 
• The three steps continued: 

 
– 2) Assemble a collection  of datasets:  

     D (i) = {x1
(i) , ... , xn

(i)} = set of examples from each class i 
 

– 3) Select the values of the  parameters of class i to be the ones 
    that maximize the probability of the data from that class 
 
 
 
 
 
 
 

         Note that it does not make any difference to 
         maximize probabilities or their logs. 
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Maximum Likelihood Estimation (MLE) 
• Since  

– Each sample D (i) is considered independently 

– Each parameter vector θ i  is estimated only from sample D (i)  

   we simply have to repeat  the procedure for all classes. 
• So, from now on we omit the class variable i : 

 
 
 
 
 

• The function L(θ ; D) = PX(D;θ ) is the likelihood of the 
parameter θ  given the data D, or simply the likelihood 
function.  
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The Likelihood Function 
• Given a parameterized family of pdf’s (aka known as a 

statistical model) for the data D , we define a  
Likelihood of the parameter vector θ  given D : 
 
 

    where α(D ) > 0 for all D, and α(D ) is independent  
    of the parameter θ . 
• The choice α(D ) = 1 yields the  

       Standard Likelihood:  L(θ ; D) = PD(D ;θ )  
which was shown on the previous slide. 
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The Likelihood Function  
• Note that the likelihood  

function is a function  
of the parameters θ 

• It does not have the  
same shape as the  
density itself 

• E.g. the likelihood  
function of a Gaussian  
is not bell-shaped 

• The likelihood is 
defined only after we  
have a data sample 
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Maximum Likelihood Estimation (MLE) 
• Given a sample, to obtain ML estimate we need to solve 

 
 
 

• When θ  is a scalar, this is high-school calculus: 
 
 
 
 
 
 

• We have a local maximum of f(x) at a point x when 
– The first derivative at x is zero. (x is a stationary point.) 
– The second derivative is negative at x. 
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MLE Example 
• Gaussian with unknown mean & standard deviation: 

 
 
 

• Given a data sample D = {T1, … , TN } of independent and 
identically distributed (iid) measurements, the (standard) 
likelihood is 

1( , ; , , )T NT TL Tσ 
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MLE Example 
• The log-likelihood is 

 
 
 
 

• The derivative with respect to the mean is zero when 
 
 

    yielding 
 
 
 
• Note that this is just the sample mean 

∧ 
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MLE Example 
• The log-likelihood is 

 
 
 
 

• The derivative wrt the standard deviation is zero when 
 
 

   or  
 
 
 
    Note that this is just the sample variance. 
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MLE Example 
• Numerical example: 

– If sample is {10,20,30,40,50} 
 
 
 
 

∧ 
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∇f 

The Gradient 
• In higher dimensions, the generalization of the derivative 

is the gradient 
• The (Cartesian) gradient of a function f(w) at z is  

 
 
 

• The gradient has a nice geometric 
interpretation  
– It points in the direction of maximum  

growth of the function. (Steepest Ascent Direction.) 
– Which makes it perpendicular to the  

contours where the function is constant. 
– The above is the gradient for the  

simple (unweighted) Euclidean Norm 
(aka the Cartesian Gradient). 
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max 

min 

saddle 

The Gradient 
• Note that if ∇f(x) = 0 

– There is no direction of growth at x 
– also –∇f(x)  = 0, and there is no direction of 

decrease at x 
– We are either at a local minimum or maximum 

or “saddle” point at x 
• Conversely, if there is a local min or max 

or saddle point at x 
– There is no direction of growth or decrease at x 
–  ∇f (x) = 0 

• This shows that we have a stationary point 
at x if and only if ∇f(x)  = 0 

• To determine which type holds we need 
second order conditions 
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The Hessian 
• The extension of the scalar second-order derivative is the 

Hessian matrix of second partial derivatives: 
 
 
 
 
 
 

 
Note that the Hessian is symmetric. 

• The Hessian gives us the quadratic function  
 
 
that best approximates f(x) at a stationary point x0. 
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Hessian as a Quadratic Approximation 
• E.g. this means that if the gradient is  

zero at x0, we have 
– a maximum when the function f(x) can be  

locally approximated by an “upwards pointing”  
quadratic bowl (H (x0 ) is neg-def) 

– a minimum when the function can be locally  
approximated by a “downwards pointing”  
quadratic bowl (H (x0 )is pos-def) 

– a saddle point otherwise (H (x0 ) is indefinite) 
 
 
 

saddle 

max 

min 
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saddle 

• This is something that we already saw: 
   For any matrix M, the quadratic function 
 
 

– is an upwards pointing quadratic bowl 
    at the point x = 0 when M is negative definite 
– is a downwards pointing quadratic bowl at x = 0  

when M is positive definite 
– is a saddle point at x = 0 otherwise 

• Hence, similarly, what  matters is the  
definiteness property of the Hessian at 
a stationary point x0 

• E.g., we have a maximum at a stationary point x0 
when the Hessian is negative definite at x0 

Hessian Gives Local Behavior max 

min 

Tx M x
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Optimality Conditions 
In summary: 
• w0 is a local minimum of f(w) if and only if 

– f has zero gradient at w0 
 
 

    and the Hessian of f at w0 is positive definite 
 
 
    where 
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max 

Maximum Likelihood Estimation (MLE) 
• Given a sample, to obtain an MLE we want to solve 

 
 
 

• Candidate solutions are the  
parameter values     such that 
 
 
 
 
 
 

• Note that you always have to check the second-order 
Hessian condition 
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MLE Example 
• Back to our Gaussian example 

 
 

 
 
• Given iid samples {T1 , … , TN } the likelihood is 

1( , ; , , )T NT TL Tσ 
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MLE Example 
• The log-likelihood is 

 
 
 

• The derivative of Λ with respect to the mean is  
 
 
 

    from which we compute the second-order derivatives 
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MLE Example 
• The derivative of Λ with respect to the standard deviation is  

 
 
 

   which yields the second-order derivatives  
 
 
 
• The stationary parameter values are, 
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MLE Example 
• The elements of the Hessian are: 

 
 
 
 
 
 

• Thus the Hessian is 
 
 
 
 
which is clearly negative definite at the stationary point.  
This we have determined the MLE of the parameters.  
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Combining the MLE Examples 
• For Gaussian Classes all of the above formulas can be 

generalized to the random vector case as follows: 
– D(i) = {x1

(i) , ..., xn
(i)} = set of iid vector examples from each class i , i = 

1, … , d . 
– The MLE estimates in the vector random data case are: 

 
 
 
 
 
 
 
 

– These are the sample estimates given earlier with no justification. 
– The ML solutions are intuitive, which is usually the case. 
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2nd MLE Example 
• To find the MLE’s of  the two prior class probabilities PY(i) 
   note that  
 
 
   can be written as 
 
 
 
   where x is the so-called indicator (or 0-1) function. 

• Given iid indicator samples D = {x1 , ... , xN}, we have 
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2nd MLE Example 
• Therefore 

 
 
 
 

• Setting the derivative of the log-likelihood with respect to 
π  equal to zero,  
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2nd MLE Example 
yields the MLE estimate 
 
 
 
 
Note that this is just the relative frequency of occurrence of 
the value “1” in the sample. I.e. the MLE is just the count of 
the number of 1’s over the total number of points!  
 
Again we see that the MLE yields an intuitively pleasing 
estimate of the unknown parameters. 
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2nd MLE Example 
• Check that the second derivative is negative:  

 
 
 
 
 
 
 
 
 

  for π < 1. 
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