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Statistical Learning from Data 
• Goal: Given a relationship between 

a feature vector x and a vector y,   
and iid data samples (xi,yi), find an  
approximating function  f (x) ≈ y  

 
 
• This is called training or learning. 
• Two major types of learning: 

– Unsupervised (aka Clustering) : only X is known. 
– Supervised (Classification or Regression): both X and target 

value Y are known during training, only X is known at test time. 

( )ŷ yf x= ≈x
( )·f
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Supervised Learning 
• Feature Vector X can be anything, 

but the type of Y dictates the type of 
supervised learning problem 

– Y in {0,1} is referred to as detection 
– Y in {0, ..., M-1} is referred to as  

(M-ary) classification 
– Y continuous is referred to as 

regression 

• We have been dealing mostly with 
classification, now we will 
emphasize regression 

• The regression problem provides a 
relatively easy setting to explain 
non-trivial MLE problems 
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The Standard Regression Model 
• The regression problem is usually modeled as follow: 

– The are two random vectors.  The independent (regressor) variable 
X and the dependent (regressed) variable Y. 

– An iid dataset of training examples D = {(x1,y1) , … , (xn,yn)} 

– An additive noise parametric model of the form 
 
 
 

    where θ ∈Θ ⊂ Rp is a deterministic parameter vector, and Ε  is an      
    iid additive random vector that accounts for noise and model error. 

• Two fundamental types of regression problems 
– Linear regression, where f(.) is linear in θ 
– Nonlinear regression, otherwise 
– What matters is linearity in the parameter θ, not in the data X! 

( ; )Y f X Eθ= +
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Example Regression Models 
• Linear Regression: 

– Line Fitting 
 
 

– Polynomial Fitting 
 
 
 
 

– Truncated Fourier Series 

1 0( ; )f x xθ θθ = +

0
( ; )

k
i

i
i

f x xθθ
=

= ∑

• Nonlinear Regression: 
– Neural Networks 

 
 
 
 

– Sinusoidal Decompositions 
 
 
 
 
 

– Etc. 
 
 

 

0
( ; ) cos( )
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i
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• We often assume that Ε  is additive white Gaussian noise (AWGN) 
• We always assume that Ε and X are independent 
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Probabilistic Model of Y Conditioned on X 
• A realization is X = x, E = ε, Y = y : 

 
 
 
– x is always known, the goal is to  

predict y given x 
– Thus, for each x, f(x,θ) is treated like a constant 
– The realization Ε = ε is added to f(x,θ) to form Y = y 
– Hence, Y is conditionally distributed as Ε but with a constant added 
– This only changes the mean of the distribution of E, PΕ (ε;θ ), yielding 

 
 
 

– The conditional probability model for Y|X is determined from the 
distribution of the noise, PΕ (ε;θ )!   

( ; )y f x εθ= +

x 

y 

( )| ( | ; ) ( ; );Y XP y x P y f xθ θ θΕ= −



The (Conditional) Likelihood Function 
•  Consider a collection of iid training points  

D = {(x1,y1), ... , (xn,yn)}.  If we define X = {x1 , ... , xn}  
Y = {y1  ,... , yn}, we have D = X ×Y .  

• Conditioned on X, the likelihood of θ  given D  is  
 
 
 
 
 

• This is also the X -conditional likelihood of θ given Y  
• Note: we have used the facts that yi is conditionally iid 

and depends only on xi (both facts being a consequence 
of our modeling assumptions).  7 
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Maximum Likelihood Estimation 
• This suggests that 

– Given a collection of iid training points D = {(x1,y1),..., (xn,yn)}, the 
    natural procedure to estimate the parameter θ is ML estimation: 
  

 
 
 
 
 
 
    Equivalently, 
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AWGN MLE 
• One frequently used model is the scalar AWGN case 

where the noise is zero-mean with variance σ2 
 
 
 
 

• In this case the conditional pdf for Y|X is a Gaussian of 
mean f(x;θ ) and variance σ2 
 
 
 
 
 
 

• If the variance σ2 is unknown, it is included in θ  
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AWGN MLE 
• Assume the variance σ  2 is known. Then the MLE is: 

 
 
 
 
 
 
 
 
 
– Since this minimizes the squared Euclidean distance of the 

estimation error (or prediction error),  it is also known as  
least squares curve fitting 
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MLE & Optimal Regression 
• The above development can be framed in our initial 

formulation of optimizing the loss of the learning system  
 
 
 
 

• For a regression problem this still applies 
–  the interpretation of f (.) as a predictor even 

 becomes more intuitive 

• Solving by ML is equivalent to  
picking a loss identical to the  
negative of the log of the noise  
probability density  

ˆ ( )y f x=x
( )·f ˆ( , )L y y

x 

y 
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Loss for Scalar Noise with Known PDF 
• Additive Error PDF: 

– Gaussian (AWGN case) 
 
 
 
 

– Laplacian 
 
 
 
 

– Rayleigh 

• Loss, ε = (y – f(x;θ )): 
– L2 Distance 

 
 
 
 

– L1 Distance 
 
 
 

– Rayleigh Distance 
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max 

Maximum Likelihood Estimation 
• How do we find the optimal parameters? 
• Recall that to obtain the MLE we need to solve 

 
 
 

• The unique local solutions are  
the parameter values such that 
 
 
 
 
 

• Note that you always have to check the second-order 
Hessian condition!  
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Maximum likelihood Estimation 
Recall some important results 
• FACT: each of the following is a necessary and sufficient 

condition for a real symmetric matrix A to be (strictly) 
positive definite: 
   i)   xTAx > 0, ∀ x ≠ 0  
   ii)  All eigenvalues of A are real and satisfy λi >0 
   iii) All upper-left submatrices Ak have strictly positive determinant. 
        (strictly positive leading principal minors). 
   iv) There exists a matrix R with independent rows such that 
        A = RRT.  Equivalently, there exists a matrix Q with    
        independent columns such that A = QTQ 

• Definition of upper left submatrices:    
1,1 1,2 1,3

1,1 1,2
1 1,1 2 3 2,1 2,2 2,3

2,1 2,2
3,1 3,2 3,3

                        
a a a

a a
A a A A a a a

a a
a a a

 
   = = =   
    


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Matrix derivatives 
• to compute the gradient and Hessian it is useful to rely on 

matrix derivatives 
• some examples that we will use 

 
 
 
 
 
 
 

• there are various lists of the most popular formulas 
• one example is 

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html  

( ) TAA =Θ∇Θ

( ) Θ+=ΘΘ∇Θ )( TT AAA

)(22 Θ−−=Θ−∇Θ AbAAb T
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max 

Maximum likelihood 
• returning to our problem 
• to obtain ML estimate we need to solve 

 
 
 

• the solutions are the parameters  
such that 
 
 
 
 
 

• note that you always have to check the second-order 
condition 

( )Θ=Θ
Θ

;maxarg* DPX
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n
X
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Maximum likelihood 
• for regression this becomes 

 
 
 
 
 

• and the solution is given by 
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Maximum likelihood 
• noting that the gradient and Hessian are linear operators 

(derivatives are linear) 
• these can be written as 

 
 
 
 

• and  
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Example 
• Consider the problem of 2-D line fitting 

– The model is 
 

 
     where is ε is scalar AWGN of known variance  
– The (effective) loss function is 

 
 
 

– We are looking for the line that makes the square of these  
vertical distances as small as possible in an averaged sense. 

– Our first step is to compute the zeros of the gradient 
 this amounts to solving a system of linear equations 

1 0( ; )y f x xε θ θ εθ= + = + +

( ) 2
1 0L i i

i
y xθ θ= − −∑
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Example 
•  

 
 
 
 
 
 
 
 
 
 

   
This can be written in matrix form as 

( )

( )

1 0
0

1 0
1

2 0

2 0

i i
i

i i i
i

L y x

L y x x

θ θ
θ

θ θ
θ

∂ = − − − = ∂


∂ = − − − =
∂

∑

∑

1 0

2
1 0

i i
i i

i i i i
i i i

y x n

y x x x

θ θ

θ θ

 = +



= +


∑ ∑
∑ ∑ ∑



21 

Example 
•  

 
 
 
 
 

    Defining the sample averaged quantities: 
 
 
 
  we get 
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Example 
• The solution is 
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1
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Example 
• or, in a form that may be more familiar 

 
 
 
 
 
 
 

• we also need to check that we have a minimum 
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Example 
• The Hessian 

 
 
 
 
has to be positive definite 

• Recall that one of the criteria 
is for the leading principal minors 
to be strictly positive 

• Check: 
–   1 > 0 
–   

0 1
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Least Squares in General 
• What if I have other models? 
• Can we solve this more generally? 

– Note that we can write the model  
 
 

– as  
 
 

• This can be generalized to any model if we exploit the 
assumption of linearity in the (k+1)-vectorθ  to form  

( ; ) ( )Tf x xγθ θ=
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Examples 
• Elements of γ(x) can be arbitrary non-linear functions of x 

– Line Fitting 
 
 

– Polynomial Fitting 
 
 
 
 

– Truncated Fourier Series 

1 0( ; )f x xθ θθ = +

0
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Least Squares Parameter Estimation 
• For scalar iid AWGN of known variance, we have the 

(unweighted) least squares loss function 
 
 

   which we can write as  
 
 
• or 
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Examples 
• The most important component is the matrix Γ(x) 

– Line Fitting             - Polynomial Fitting 
   
 
 
 
 
 
 

– Truncated Fourier Series 
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Least squares 
• in summary, we always have 

 
 
 

• to minimize this we simply have  
to find x such that 
 
or 
 
 
from which, as long as Γ(x)TΓ(X) is invertible, 

2)( ΘΓ−= xyL
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Least squares 
• we next check the Hessian 

 
 
 
 
 

• this is positive definite if the rows of Γ(x) are independent 
• which turns out to be  

– the condition for Γ(x)TΓ(X) to be invertible, 
– which is the necessary condition for the solution to be feasible 

• note that we design Γ(x), so we can always make this 
happen 

• usually we only have to make sure all the xi are different 
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(Unweighted) Least Squares 
• In summary 

– A problem of the type 
 
 
 

    has a least squares solution 
 
 

 
    iff   Γ(x) has full column rank.  
 
– The matrix   

 
 
 

     is called the (Moore-Penrose) pseudo-inverse of Γ(x)  

2min )L( ( )y xθ θ θ= − Γ
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(Unweighted) Least Squares 
• Here is a way of thinking about this 

– we have an inconsistent system of equations 
 
 

    This can’t be solved because although Γ(x) has full (column) rank,  
     it is “tall” (has more rows than columns) and thus is not invertible 
    E.g. consider the line 
 
 
 
 
 
 
– To make a consistent system, we multiply both sides by Γ(x)T  

( )y x θ≈ Γ

1 1
0

1

1
  

1n n

y x

y x

θ
θ

   
    
    ≈
       

  

( ) ( ) ( )T Tx y x x θΓ = Γ Γ



33 

(Unweighted) Least Squares 
• This is now a solvable system.  E.g.,  

 
 
 
 
 
 whose solution is given by the pseudo-inverse 
 
 
 
 We have just seen that this is the best approximate solution to    
 the original problem in the (unweighted) least squares sense 
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(Unweighted) Least squares 
• In principle, assuming that the matrix Γ(x) has full column 

rank,  the least squares solution is straightforward to 
compute 

• For example, let’s redo the line example 
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(Unweighted) Least squares 
• So that  

 
 
 

• leads to 
 
 
 
 
 

 
   which is the solution that we had obtained before, but    
   now with less work. Of course, we know from ECE174    
   that there is a deep geometric formalism at play here.   
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Relationship to Probabilistic Model 
• The (unweighted) least square solution 

– Estimates the function f(x;θ) of maximum  
likelihood for the scalar model 
 
 

– where ε is a scalar iid zero-mean Gaussian error (AWGN) of 
known variance, 
 
 
 

– The method is general 
– Other models f(x,θ) will lead to other least squares problems 
– If variance is unknown, we don’t have a pure LS problem 
– If we have a vector model, in general we have weighted LS  
– If the error is not Gaussian, problem is not least squares. 
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