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(Unweighted) Least Squares
• Assume linearity in the unknown, 

deterministic model parameters θ
S l dditi i d l• Scalar, additive noise model:
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– E.g., for a line (f affine in x), 
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Examples
• Components of γ(x) can be arbitrary 

nonlinear functions of x that are linear in θ :

– Line Fitting (affine in x):

( ; )f x xθ θθ = + ( ) [1 ]Tx xγ =
– Polynomial Fitting (nonlinear in x):
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– Truncated Fourier Series (nonlinear in x):
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(Unweighted)Least Squares
• Loss = Euclidean norm of model error: 

2L( )) (y xθ θ= Γ
where
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• The loss function can also be rewritten as,
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Examples
• The most important component is the Design Matrix Γ(x)

– Line Fitting: Polynomial Fitting:
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– Truncated Fourier Series:
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(Unweighted) Least Squares
• One way to minimize

2L( )) (y xθ θ= − Γ

is to find a value θ such that
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Thus, the least squares solution is determined by the 
Pseudoinverse of  the Design Matrix Γ(x): 
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(Unweighted) Least Squares
• If the design matrix Γ(x) is one-to-one (has full column rank) 

the least squares solution is conceptually easy to compute.  
Thi ill l l b th i tiThis will nearly always be the case in practice.

• Recall the example of fitting a line in the plane:
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(Unweighted)Least squares
• Pseudoinverse solution = LS solution:
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(Unweighted) Least Squares
• What about fitting kth order polynomial? :
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(Unweighted) Least squares
and
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• Mathematically, this is a very straightforward procedure.
• Numerically this is generally NOT how the solution is

y⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
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• Numerically, this is generally NOT how the solution is 
computed.  (Viz. the sophisticated algorithms in Matlab)



(Unweighted) Least Squares
• Note the computational costs• Note the computational costs

– when (naively) fitting a line (1st order polynomial):
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1
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2x2 matrix inversion, followed by a
2x1 vector post-multiplication 

– when (naively) fitting a general kth order polynomial:
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(k+1)x(k+1) matrix inversion, followed by a
(k+1)x1 multiplication 

It is evident that the computational complexity is an increasing 
function of the number of parameters.
More efficient (and numerically stable) algorithms are used in 
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practice, but complexity scaling with number of parameters still 
remains true.



(Unweighted) Least Squares
• Suppose the dataset {xi} is constant in value over repeated, 

non-constant measurements of the dataset {yi}. 
e g consider some process (e g temperature) where the– e.g. consider some process (e.g., temperature) where the 
measurements {yi} are taken at the same locations {xi} every day

• Then the design matrix Γ(x) is constant in value!
– In advance (off-line) compute:     Everyday (on-line) re-compute:
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Hence, least squares sometimes can be implemented very efficiently.
There are also efficient recursive updates, e.g. the Kalman filter. 
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Geometric Solution & Interpretation
• Alternatively, we can derive the least squares solution 

using geometric (Hilbert Space) considerations.
• Goal: minimize the size (norm) of the model prediction 

error (aka residual error),  e (θ ) = y - Γ(x)θ :
2 2

• Note that given a known design matrix Γ(x) the vector
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• I.e. Γ(x)θ is in the range space (column space) of Γ(x)



(Hilbert Space) Geometric Interpretation
• The vector Γθ lives in the range (column space) of 

Γ = Γ(x) = [Γ1 , … , Γk] :

y
Γ1

Γθ
Γ2

Γk y− Γθ̂

ˆ

• Assume that y is as shown. 
• Equivalent statements are:

– Γθ is the value of Γθ closest to y in the range of Γ.
Γθ is the orthogonal projection of y onto the range of Γ

ˆ
ˆ
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– Γθ is the orthogonal projection of y onto the range of Γ.
– The residual e = y- Γθ is ⊥ to the range of Γ.



Geometric Interpretation of LS
• e = y - Γθ is ⊥ to the range of Γ iff ( ) 1
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Geometric interpretation of LS
• Note: Nullspace Condition ≡ Normal Equation:

( ) 0ˆ ˆT T Ty yθ θΓ − Γ = ⇔ Γ Γ = Γ

• Thus, if Γ is one-to-one (has full column rank) 
we again get the pseudoinverse solution:

1
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⎡ ⎤= Γ Γ Γ⎣ ⎦= Γ (( ) ) ( ) ( ) yy ⎣ ⎦
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Probabilistic Interpretation
• We have seen that estimating a parameter by minimizing 

the least squares loss function is a special case of MLE
• This interpretation holds for many loss functions• This interpretation holds for many loss functions

– First, note that 

[ ]arg min L ( ; )ˆ y f xθ θ= [ ]
[ ]L , ( ; )

arg min L , ( ; )

     arg max y f x

y f x

e
θ

θ

θ θ
∈ Θ
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=

=

– Now note that, because 

g
θ ∈ Θ

we can make this exponential function into a Y|X pdf by an

[ ], ( ; ) 0, ,L y f xe y xθ− ∀≥ ∀
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we can make this exponential function into a Y|X pdf by an       
appropriate normalization.



Prob. Interpretation of Loss Minimization
• I.e. by defining

L ( ; ) L ( ; )1 y f x y f xθ θ⎡ ⎤ ⎡ ⎤⎛ ⎞
⎜ ⎟

[ ]| L , ( ; )

L , ( ; ) L , ( ; )
( ; )

1( | ; )Y X y f x

y f x y f x
xP y x

e dy
e eθ

θ θ
α θθ

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

−

− −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠∫

� �

• If the normalization constant α(x;θ) does not depend on θ, 
α(x;θ) = α(x), then

[ ]L , ( ; )arg maxˆ y f xe θ

θ
θ −

Θ∈
=
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θ
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which makes the problem a special case of MLE



Prob. Interpretation of Loss Minimization
• Note that for loss functions of the form,

) [ ( ; )L( ]g y f xθ θ=

the model f(x;θ ) only changes the mean of Y

) [ ( ; )L( ]g y f xθ θ= −

– A shift in mean does not change the shape of a pdf,
and therefore cannot change the value of the normalization  
constantconstant

– Hence, for loss functions of the type above, it is always true that
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=
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Regression
• This leads to the interpretation that 

we saw last time
• Which is the usual definition of a 

regression problem
– two random variables X and Ytwo random variables X and Y
– a dataset of examples D = {(x1,y1), … ,(xn,yn)}
– a parametric model of the form

– where θ is a parameter vector and ε a random variable that

( ; )y f x εθ= +
– where θ is a parameter vector, and ε a random variable that 

accounts for noise

• the pdf of the noise determines the loss in the other 
f l ti
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formulation



Regression
• Error pdf:

– Gaussian
• Equivalent Loss Function:

– L2 distance
2

22
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P e
ε
σ

ε ε
πσ

−
= 2( , ) ( )L x y y x= −

– Laplacian – L1 distance
2πσ

| |1 ε
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– Rayleigh
– Rayleigh distance
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2
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Regression
• We know how to solve the problem with losses

– Why would we want the added complexity incurred by introducing 
error probabilit models?error probability models?

• The main reason is that this allows a data driven definition 
of the loss

• One good way to see this is the problem of weighted least 
squares

S th t k th t t ll t ( ) h th– Suppose that you know that not all measurements (xi,yi) have the 
same importance

– This can be encoded in the loss function
– Remember that the unweighted loss is

[ ]( )22( ) ( )
i

y x y xL θ θ= =− Γ = Γ∑‖ ‖
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Regression
• To weigh different points differently we could use

[ ]( )2
( ) 0L θ >Γ∑

or even the more generic form

[ ]( ) ( ) , 0 ,i i i i
i

wL w y x θ >= − Γ∑

• In the latter case the solution is (homework)

( ) ( ) ( 0,) ( ) ,T TL y x W y x W Wθ θ= − Γ − = >Γ

• In the latter case the solution is (homework)
1* ( )  ( ) ( )  T Tx W x x W yθ

−
⎡ ⎤= Γ Γ Γ⎣ ⎦

• The question is “how do I know these weights”?
• Without a probabilistic model one has little guidance on this
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• Without a probabilistic model one has little guidance on this.



Regression
• The probabilistic equivalent

[ ], ( ; )* argmax L y f xe θθ −=

1     arg maxexp ( ( ) ) ( ( ) )
2

Ty x W y x

θ

θ θ⎧ ⎫= − − Γ − Γ⎨ ⎬
⎩ ⎭

is the MLE for a Gaussian pdf of known covariance
2θ ⎩ ⎭
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• In the case where the covariance W is diagonal we have

1−=Σ W

[ ]( )2

2

1 ( )i i
i i

L y x
σ

θ= − Γ∑
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• In this case, each point is weighted by the inverse variance.



Regression
• This makes sense

– Under the probabilistic formulation the variance σi is the variance 
of the error associated with the ith observationof the error associated with the i observation

– This means that it is a measure of the uncertainty of the

( ; )i i iy f x θ ε= +
This means that it is a measure of the uncertainty of the 
observation

• When 1−Σ=W
we are weighting each point by the inverse of its 
uncertainty (variance)

Σ=W

• We can also check the goodness of this weighting matrix 
by plotting the histogram of the errors
if W i h tl th h ld b G i
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• if W is chosen correctly, the errors should be Gaussian



Model Validation
• In fact, by analyzing the errors of the fit we can say a lot
• This is called model validation

– Leave some data on the side, and run it through the predictor
– Analyze the errors to see if there is deviation from the assumed 

model (Gaussianity for least squares)
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Model Validation & Improvement
• Many times this will give you hints to alternative models 

that may fit the data better
• Typical problems for least squares (and solutions)
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Model Validation & Improvement
• Example 1 error histogram

• this does not look Gaussian
• look at the scatter plot of the error (y – f(x,θ *))p (y ( ))

– increasing trend, maybe we should try

log( ) ( ; )i i iy f x θ ε= +

28
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Model Validation & Improvement
• Example 1 error histogram for the new model

• this looks Gaussian 
– this model is probably better
– there are statistical tests that you can use to check this objectively
– these are covered in statistics classes
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these are covered in statistics classes



Model Validation & Improvement
• Example 2 error histogram

• This also does not look Gaussian 
• Checking the scatter plot now seems to suggest to try

( ; )i i iy f x θ ε= +
30
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Model Validation & Improvement
• Example 2 error histogram for the new model

• Once again, seems to work
• The residual behavior looks Gaussian 

– However, It is NOT always the case that such changes will work.
If not, maybe the problem is the assumption of Gaussianity itself
Move away from least squares, try MLE with other error pdfs
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Move away from least squares, try MLE with other error pdfs



END
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