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(Unweighted) Least Squares

« Assume linearity in the unknown,
deterministic model parameters @

e Scalar, additive noise model:

y=f(X;0)+e=y(X) O+¢

— E.qg., for a line (f affine in x), o -

1 6,
f(X;0)=60,x+6, y(X)= 0 =
X 0,
e This can be generalized to arbitrary functions of x:

7, (X) 6,
y(X)=| : 0=\ :
7(X) 6, )




Examples

« Components of 1x) can be arbitrary

nonlinear functions of x that are linear in @:

— Line Fitting (affine in x):

f(X;0)=0%x+6,

y(x)' =[1 X]

— Polynomial Fitting (nonlinear in x):

f(x;0)= Zklé?ix‘

y(x)' =|1

X

— Truncated Fourier Series (nonlinear in x):

cos(k x)]

f(x;0)= ZkZHi cos(i X)| |[7(x)' = [1
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(Unweighted)Least Squares "’

e | 0ss = Euclidean norm of model error:

L(9)=|y-T(x)d|

where

Y, 7T (X)) ,
y=| : ['(X)= : 0=| :
yn _7T(Xn)_ gk

 The loss function can also be rewritten as,

L@ =Y (vi-7 ()8) =n{(y-7"08)")

n

E.g., for the line, L(@) = Z( Y —6, - 6,X, )2



Examples

 The most important component is the Design Matrix I'(x)

— Line Fitting: — Polynomial Fitting:

Kk

f(x;0)=6,x+86, f(x;0)=) 6,x
i=0

1 X, - —

r(x)=|: b

1 x, | I'(x)=|: :

1 XX

— Truncated Fourier Series:

1 -+ cos(kX,)
rx)=|: . :
1 - cos(kx,)

f(x;0)= Zk:Hi cos(1X)




(Unweighted) Least Squares

 One way to minimize

L&) =|y-T(00|

is to find a value d'such that

62

9 L(é)z—z[y—l“(x)éT [()=0 and — L(§) =2T(X)"T(x) >0

26
— These conditions will hold when I'(x) is one-to-one, yielding

6=[T7COrC0] Iy =T (0)y

Thus, the least squares solution is determined by the
Pseudoinverse of the Design Matrix I'(x):

I (x)=[TTOrx) | T (x)




(Unweighted) Least Squares

o If the design matrix I'(x) is one-to-one (has full column rank)
the least squares solution is conceptually easy to compute.
This will nearly always be the case in practice.

« Recall the example of fitting a line in the plane:

I ()C(X) 2[; )I(JI Xl =n{<>1<> <<>Z(2>>}

™ (x)y =[; >1<] yl ﬂ[é&]




(Unweighted)Least squares

e Pseudoinverse solution = LS solution:

O=T"(x)y=[TT (L) ] TT(x)y

The LS line fit solution Is

1 ()] (y)
() ()] L{xy).

which (naively) requires
— a 2X2 matrix inversion
— followed by a 2x1 vector post-multiplication

0 =




(Unweighted) Least Squares

« What about fitting k' order polynomial? :

Kk _ 1 ... Xlk_
f(X;H):ZHiX' r(xy=|: .

i=0 1 Xn |

(1 11 x* |
T (X)I(x)= I :

X, Xy || 1 Xn |

1 <x">_

=N .




(Unweighted) Least squares

and _ o - q
1 - 1]y, (y)

r'xyy=|: . +|l:|=n] :
X Xo ][ Y _<xky>_

Thus, when I'(x) is one-to-one (has full column rank):
i 1 <X.K>__1— <y> ]
(X)) O] [y,

 Mathematically, this is a very straightforward procedure.

 Numerically, this is generally NOT how the solution is
computed. (Viz. the sophisticated algorithms in Matlab) .,

6=T"(x)y=(T"(OI(x)) TT(x)y=




(Unweighted) Least Squares

* Note the computational costs
— when (naively) fitting a line (15t order polynomial):

_ 1 -
HA = 1 <X> < y> 2x2 matrix inversion, followed by a
<X> <X2> <Xy> 2x1 vector post-multiplication

— when (naively) fitting a general k" order polynomial:

— -_1-1r -—

T
()~ ()] o)

= |t is evident that the computational complexity is an increasing
function of the number of parameters.

= More efficient (and numerically stable) algorithms are used Iin
practice, but complexity scaling with number of parameters still
remains true. 1

(k+1)x(k+1) matrix inversion, followed by a
(k+1)x1 multiplication

>
Il




(Unweighted) Least Squares

e Suppose the dataset {x;} Is constant in value over repeated,
non-constant measurements of the dataset {y;}.

— e.g. consider some process (e.g., temperature) where the
measurements {y;} are taken at the same locations {x;} every day

e Then the design matrix I'(x) is constant in value!
— In advance (off-line) compute: - Everyday (on-line) re-compute:

p— -1 — —

L () 0
() - (x) ()

» Hence, least squares sometimes can be implemented very efficiently.
» There are also efficient recursive updates, e.g. the Kalman filter.
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Geometric Solution & Interpretation

 Alternatively, we can derive the least squares solution
using geometric (Hilbert Space) considerations.

e Goal: minimize the size (norm) of the model prediction
error (aka residual error), e (0) =y -I'(X)@:

L(©) =@ =]y-T(x0]

* Note that given a known design matrix I'(x) the vector

| 7T T
rx)e=I, ... L |=> |5
| T

IS a linear combination of the column vectors T; .
e l.e. I'(x)@ is In the range space (column space) of I'(x)
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(Hilbert Space) Geometric Interpretation

 The vector I'@ lives in the range (column space) of
=TX =[Ty,..,T]:

e Assume thaty is as shown.

e Equivalent statements are:
— T'6 is the value of I'@ closest to y in the range of I".
— T'0 is the orthogonal projection of y onto the range of I.

— The residual e = y- ro’is L to the range of I'. ”



Geometric Interpretation of LS

e e=y-T4 is L tothe range of T iff

(v-ré) LT,
LIS o

" n J_l"k

e Thus e =y -T'¢ is in the nullspace of I'7:

Ti(y-Té)=0  [_

ry(y-1d)=0 - ff
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Geometric interpretation of LS

e Note: Nullspace Condition = Normal Equation:

rT(y—ré)=0 o T'Té=T"y

e Thus, If I' is one-to-one (has full column rank)
we again get the pseudoinverse solution:

6=T"(x)y=[T"(x) T(x) ] T"()y
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Probabilistic Interpretation

* WWe have seen that estimating a parameter by minimizing
the least squares loss function is a special case of MLE

e This interpretation holds for many loss functions
— First, note that

A

e arglgleigL[y, f(x;0)]

-L|y, f(x;0
= argmax e 1159

0e®

— Now note that, because

e M- 1O > 0wy WX

we can make this exponential function into a Y|X pdf by an
appropriate normalization.
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Prob. Interpretation of Loss Minimization
* |.e. by defining

1 -L| y, T (x;0) —L[y, f (x;0)
Pix (Y1 %:0) 0 (J‘GL[y,f(x;B)]dyJ € [ ] 0 a(x;0)€ [ ]

o If the normalization constant «(x; &) does not depend on 6,
a(X;0) = a(X), then

6 = argmaxe 159
0e®

=argmax P, (y | X;H)

0ec®

which makes the problem a special case of MLE
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Prob. Interpretation of Loss Minimization

* Note that for loss functions of the form,

L(@)=9gly- T(x;0)]

the model f(x; @) only changes the mean of Y
— A shift in mean does not change the shape of a pdf,

and therefore cannot change the value of the normalization
constant

— Hence, for loss functions of the type above, it is always true that

_L[y9 f (X,H)]

@ = argmaxe
fe®

=argmaxP, (y|x;6)

0e®
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Regression

* This leads to the interpretation that
we saw last time 1
. Which is the usual definition ofa == ..
regression problem

— two random variables X and Y R
— a dataset of examples @ = {(X1,Y1)s -+ \(XnYn)}

— a parametric model of the form

y=f(X;0)+¢

— where @ is a parameter vector, and £ a random variable that
accounts for noise

 the pdf of the noise determines the loss in the other

formulation
20



Regression

e Error pdf: e Equivalent Loss Function:
— Gaussian — L, distance
1 &
2 2
P(6)=——=¢ ¥ L(X, )= (Y= X)
2ro
— Laplacian — L, distance
1 -l
P (6)=—¢ ° L(x,y)=|y—-X
20

— Rayleigh distance
— Rayleigh

; e -2, L(X,y)=(y—X)’
(=576 ~log(y - X)

21



Regression

* We know how to solve the problem with losses
— Why would we want the added complexity incurred by introducing
error probability models?
 The main reason is that this allows a data driven definition

of the loss

e One good way to see this is the problem of weighted least

squares

— Suppose that you know that not all measurements (x;y;) have the
same importance

— This can be encoded in the loss function
— Remember that the unweighted loss is

L4 y-Tod =Y (y=[r06],)

22



Regression

* To weigh different points differently we could use
2
L = Zwi (yi —[F(x)é?]i) W, >0,

or even the more generic form
L =(y-T(x)8) W (y-T(x)8), W =WT >0,

* In the latter case the solution is (homework)

6" =[T(x)'W T(x)] T(x)'W y

e The question is “how do | know these weights”?
« Without a probabilistic model one has little guidance on this.

23



Regression

e The probabilistic equivalent
—L[y,f(x;é’)]

@ =argmaxe
0

= arg ;nax exp {—%(y —T(X)8)' W (y - F(X)H)}

Is the MLE for a Gaussian pdf of known covariance

S=W

 In the case where the covariance W is diagonal we have

L= (v -[rooe] )

* In this case, each point is weighted by the inverse variance.
24




Regression

 This makes sense

— Under the probabilistic formulation the variance o; is the variance
of the error associated with the it" observation

y. = f(X;0)+¢

— This means that it is a measure of the uncertainty of the
observation

e When

Ww=3x"
we are weighting each point by the inverse of its
uncertainty (variance)

* We can also check the goodness of this weighting matrix
by plotting the histogram of the errors

* if W Is chosen correctly, the errors should be Gaussian

25




Model Validation

e In fact, by analyzing the errors of the fit we can say a lot
e This is called model validation

- | =i Regression I—» ‘f=ﬂx]\

=] Modeling

T _patasee
# I
_ o Test of Model
- -""'--“'IF;““'“" Prediction
] uns e ) ==
Original — ' ] ‘ _/

Data Set

— Leave some data on the side, and run it through the predictor

— Analyze the errors to see if there is deviation from the assumed
model (Gaussianity for least squares)
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Model Validation & Improvement

« Many times this will give you hints to alternative models
that may fit the data better

 Typical problems for least squares (and solutions)

/

5
'\
v
g

Increasing residuals.

Try In[Y)}=[X)

A wventur tube.
Try 1IY=f[X]

5

v

o,

K

-

T

W

A curving smile ar frovn.

Try In[Y)=F[X)

A bullet shape.
Try Sqri{Y)=f[(X)
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Model Validation & Improvement

 Example 1 error histogram
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e this does not look Gaussian

* look at the scatter plot of the error (y — f(x,8%))
— Increasing trend, maybe we should try

log(y.)= f(X;0)+¢
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Model Validation & Improvement

Example 1 error histogram for the new model
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e this looks Gaussian

— this model is probably better
— there are statistical tests that you can use to check this objectively

— these are covered In statistics classes
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Model Validation & Improvement

« Example 2 error histogram

45
40
CLN
30
2
20
15 1
10 ¢

5 |

0

Residual { €i)

-16 -14 12 10 08 06 04 02 00 02 04 0B 08 - 0 N 40 60 g0 100 120

Residual (g;) Predicted ¥,

* This also does not look Gaussian
* Checking the scatter plot now seems to suggest to try

JYi = F(x;0)+¢,
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Model Validation & Improvement

e Example 2 error histogram for the new model

35 0.040
a0 r 003 f ;
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0030 *
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* Once again, seems to work

 The residual behavior looks Gaussian

— However, It is NOT always the case that such changes will work.
= If not, maybe the problem is the assumption of Gaussianity itself
= Move away from least squares, try MLE with other error pdfs
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END
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