ECE-271A
Statistical Learning I: Bayesian parameter estimation

Nuno Vasconcellos

ECE Department, UCSD
Bayesian parameter estimation

- the main difference with respect to ML is that in the Bayesian case Θ is a random variable

- basic concepts
 - training set $\mathcal{D} = \{x_1, \ldots, x_n\}$ of examples drawn independently
 - probability density for observations given parameter $P_{X|\Theta}(x | \theta)$
 - prior distribution for parameter configurations $P(\theta)$ that encodes prior beliefs about them

- goal: to compute the posterior distribution $P_{\Theta|X}(\theta | D)$
Bayesian BDR

pick i if

\[
i^* (x) = \arg \max_i P_{X|Y,T}(x \mid i, D_i) P_Y(i)
\]

where
\[
P_{X|Y,T}(x \mid i, D_i) = \int P_{X|\Theta}(x \mid i, \theta) P_{\Theta|Y,T}(\theta \mid i, D_i) d\theta
\]

note:

- BDR accounts for ALL information available in the training set
- as before the bottom equation is repeated for each class
- hence, we can drop the dependence on the class
- and consider the more general problem of estimating

\[
P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta) P_{\Theta|T}(\theta \mid D) d\theta
\]
The predictive distribution

\[
P_{X|T}(x \mid D) = \int P_{X\mid\Theta}(x \mid \theta)P_{\Theta|T}(\theta \mid D)d\theta
\]

is known as the predictive distribution

note that it can also be written as

\[
P_{X|T}(x \mid D) = E_{\Theta|T}[P_{X\mid\Theta}(x \mid \theta) \mid T = D]
\]

• since each parameter value defines a model
• this is an expectation over all possible models
• each model is weighted by its posterior probability, given training data
The predictive distribution

As suppose that

\[P_{X|\Theta}(x \mid \theta) \sim N(\theta,1) \quad \text{and} \quad P_{\Theta|T}(\theta \mid D) \sim N(\mu,\sigma^2) \]

The predictive distribution is an average of all these Gaussians

\[
P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta)P_{\Theta|T}(\theta \mid D)d\theta
\]
MAP vs ML

ML-BDR

• pick i if

$$i^*(x) = \arg \max_i P_{X|Y}(x | i; \theta_i^*) P_Y(i)$$

where $\theta_i^* = \arg \max_\theta P_{X|Y}(D | i, \theta)$

Bayes MAP-BDR

• pick i if

$$i^*(x) = \arg \max_i P_{X|Y}(x | i; \theta_i^{MAP}) P_Y(i)$$

where $\theta_i^{MAP} = \arg \max_\theta P_{T|Y,\Theta}(D | i, \theta) P_{\Theta|Y}(\theta | i)$

• the difference is non-negligible only when the dataset is small

there are better alternative approximations
Example

communications problem

two states:
- \(Y=0 \) transmit signal \(s = -\mu_0 \)
- \(Y=1 \) transmit signal \(s = \mu_0 \)

noise model

\[X = Y + \epsilon, \quad \epsilon \sim N(0, \sigma^2) \]
Example

- the BDR is
 - pick “0” if
 \[x < \frac{\mu_0 + (-\mu_0)}{2} = 0 \]

- this is optimal and everything works wonderfully, but
 - one day we get a phone call: the receiver is generating a lot of errors!
 - there is a calibration mode:
 - rover can send a test sequence
 - but it is expensive, can only send a few bits
 - if everything is normal, received means should be \(\mu_0 \) and \(-\mu_0 \)
Example

- **action:**
 - ask the system to transmit a few 1s and measure X
 - compute the **ML estimate** of the mean of X

\[
\mu = \frac{1}{n} \sum_{i} X_i
\]

- **result:** the estimate is different than μ_0

- **we need to combine two forms of information**
 - our **prior** is that
 \[
 \mu \sim N(\mu_0, \sigma^2)
 \]
 - our “data driven” estimate is that
 \[
 X \sim N(\hat{\mu}, \sigma^2)
 \]
Bayesian solution

- **Gaussian likelihood (observations)**

\[P_{T|\mu}(D \mid \mu) = G(D, \mu, \sigma^2) \quad \sigma^2 \text{ is known} \]

- **Gaussian prior (what we know)**

\[P_\mu(\mu) = G(D, \mu_0, \sigma_0^2) \]

 - \(\mu_0, \sigma_0^2 \) are known hyper-parameters

- **we need to compute**

 - posterior distribution for \(\mu \)

\[P_{\mu|T}(\mu \mid D) = \frac{P_{T|\mu}(D \mid \mu)P_\mu(\mu)}{P_T(D)} \]
Bayesian solution

posterior distribution

\[P_{\mu|T}(\mu \mid D) = \frac{P_{T|\mu}(D \mid \mu)P_{\mu}(\mu)}{P_T(D)} \]

notes:

- this is a probability density
- we can ignore constraints (terms that do not depend on \(\mu \)) and normalize when we are done
- we need to know where we are going

e.g., we only need to work with

\[P_{\mu|T}(\mu \mid D) \propto P_{T|\mu}(D \mid \mu)P_{\mu}(\mu) \]

\[\propto \prod_i P_{X|\mu}(x_i \mid \mu)P_{\mu}(\mu) \]
Bayesian solution

do the posterior distribution is

\[P_{\mu|D}(\mu | D) = G(\mu, \mu_n, \sigma_n^2) \]

\[\mu_n = \frac{\sigma_0^2 \sum x_i + \mu_0 \sigma^2}{\sigma^2 + n \sigma_0^2} \]

This is intuitive
Bayesian solution

for free, Bayes also gives us

- the weighting constants
 \[\alpha_n = \frac{n \sigma_0^2}{\sigma^2 + n \sigma_0^2} \]

- a measure of the uncertainty of our estimate
 \[\frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2} \]

- note that $1/\sigma^2$ is a measure of precision
- this should be read as
 \[P_{\text{Bayes}} = P_{\text{ML}} + P_{\text{prior}} \]
- Bayesian precision is greater than both that of ML and prior
Observations

• 1) note that precision increases with n, variance goes to zero

\[
\frac{1}{\sigma_n^2} = \frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}
\]

we are guaranteed that in the limit of infinite data we have convergence to a single estimate

• 2) for large n the likelihood term dominates the prior term

\[
\mu_n = \alpha_n \hat{\mu} + (1 - \alpha_n)\mu_0
\]

\[
\alpha_n \in [0,1], \quad \alpha_n \rightarrow 1, \quad \alpha_n \rightarrow 0
\]

the solution is equivalent to that of ML

• for small n, the prior dominates

• this always happens for Bayesian solutions

\[
P_{\mu|T}(\mu \mid D) \propto \prod_i P_{X|\mu}(x_i \mid \mu)P_{\mu}(\mu)
\]
Observations

• 3) for a given n

\[
\alpha_n = \frac{n\sigma_0^2}{\sigma^2 + n\sigma_0^2}
\]

\[
\mu_n = \alpha_n \hat{\mu} + (1 - \alpha_n)\mu_0
\]

\[
\alpha_n \in [0,1], \quad \alpha_n \to 1, \quad \alpha_n \to 0
\]

if \(\sigma_0^2 \gg \sigma^2\), i.e. we really don’t know what \(\mu\) is a priori then \(\mu_n = \mu_{ML}\)

• on the other hand, if \(\sigma_0^2 \ll \sigma^2\), i.e. we are very certain a priori, then \(\mu_n = \mu_0\)

▶ in summary,

• Bayesian estimate combines the prior beliefs with the evidence provided by the data

• in a very intuitive manner
Regularization

- Regularization:
 - if $\sigma_0^2 = \sigma^2$ then $\mu_n = \frac{1}{n+1} \hat{\mu}_{ML} + \frac{1}{n+1} \mu_0$

 $$
 = \frac{1}{n+1} \sum_{i=1}^{n+1} X_i, \quad \text{with } X_{i+1} = \mu_0
 $$

- Bayes is equal to ML on a virtual sample with extra points
 - in this case, one additional point equal to the mean of the prior
 - for large n, extra point is irrelevant
 - for small n, it regularizes the Bayes estimate by
 - directing the posterior mean towards the prior mean
 - reducing the variance of the posterior
 $$
 \frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}
 $$

- HW: this interpretation holds for all conjugate priors
Conjugate priors

- note that
 - the prior \(P_{\mu}(\mu) = G(\mu, \mu_0, \sigma_0^2) \) is Gaussian
 - the posterior \(P_{\mu|D}(\mu | D) = G(x, \mu_n, \sigma_n^2) \) is Gaussian

- whenever this is the case (posterior in the same family as prior) we say that
 - \(P_{\mu}(\mu) \) is a conjugate prior for the likelihood \(P_{X|\mu}(X | \mu) \)
 - posterior \(P_{\mu|D}(\mu | D) \) is the reproducing density

- HW: a number of likelihoods have conjugate priors

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Conjugate prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>Beta</td>
</tr>
<tr>
<td>Poisson</td>
<td>Gamma</td>
</tr>
<tr>
<td>Exponential</td>
<td>Gamma</td>
</tr>
<tr>
<td>Normal (known (\sigma^2))</td>
<td>Gamma</td>
</tr>
</tbody>
</table>
Exponential family

- you will also show that **all of these likelihoods are members of the exponential family**

\[P_{X|\Theta}(x | \theta) = f(x)g(\theta) \ e^{\phi(\theta)^T u(x)} \]

- for this family, the interpretation of **Bayesian parameter estimation as “ML on a properly augmented sample” always holds (whenever the prior is the conjugate)**

- this is one of the reasons why the exponential family is “special” (but there are others)
Predictive distribution

we have seen that \(P_{\mu|T}(\mu | D) = G(x, \mu_n, \sigma_n^2) \)

we can now compute the predictive distribution

\[
P_{X|T}(x | D) = \int P_{X|\mu}(x | \mu) P_{\mu|T}(\mu | D) d\mu
\]

\[
= \int \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi\sigma_n^2}} e^{-\frac{(\mu-\mu_n)^2}{2\sigma_n^2}} d\mu
\]

\[
= \int f(x - \mu) h(\mu) d\mu
\]

(with \(f(x) = G(x,0,\sigma^2) \) and \(h(x) = G(x,\mu_n,\sigma_n^2) \))

\[
= G(x,0,\sigma^2) \ast G(x,\mu_n,\sigma_n^2)
\]

i.e. \(X|T \) is the random variable that results from adding two independent Gaussians with these parameters
Predictive distribution

hence $X|T$ is Gaussian with

$$P_{X|T}(x | D) = G(x, \mu_n, \sigma^2 + \sigma_n^2)$$

- the mean is that of the posterior
- variance increased by σ^2 to account for the uncertainty of the observations

note:
- we will not go over the multivariate case in class, but the expressions are straightforward generalization
- make sure you are comfortable with them
Priors

- potential problem of the Bayesian framework
 - “I don’t really have a strong belief about what the most likely parameter configuration is”
- in these cases it is usual to adopt a non-informative prior
- the most obvious choice is the uniform distribution
 \[P_{\Theta}(\theta) = \alpha \]
- there are, however, problems with this choice
 - if \(\theta \) is unbounded this is an improper distribution
 \[\int_{-\infty}^{\infty} P_{\Theta}(\theta) d\theta = \infty \neq 1 \]
 - the prior is not invariant to all reparametrizations
Example

- consider Θ and a new random variable η with $\eta = e^{\Theta}$

- since this is a 1-to-1 transformation it should not affect the outcome of the inference process

- we check this by using the well know fact that
 - if $y = f(x)$ then
 \[
P_Y(y) = \frac{1}{\left| \frac{\partial f}{\partial x} \right|_{x=f^{-1}(y)}} P_X(f^{-1}(y))
 \]

- in this case
 \[
P_\eta(\eta) = \frac{1}{\left| \frac{\partial e^{\theta}}{\partial \theta} \right|_{\theta=\log \eta}} P_\Theta(\log \eta) = \frac{1}{|\eta|} P_\Theta(\log \eta)
 \]
Invariant non-informative priors

- for uniform \(\eta \) this means that \(P_\eta(\eta) \propto \frac{1}{|\eta|} \), i.e. not constant
- this means that
 - there is no consistency between \(\Theta \) and \(h \)
 - a 1-to-1 transformation changes the non-informative prior into an informative one

- to avoid this problem the non-informative prior has to be invariant

- e.g. consider a location parameter:
 - a parameter that simply shifts the density
 - e.g. the mean of a Gaussian

- a non-informative prior for a location parameter has to be invariant to shifts, i.e. the transformation \(Y = \mu + c \)
Location parameters

- in this case

\[
P_Y(y) = \frac{1}{\partial(\mu + c)} P_{\mu}(y - c) = P_{\mu}(y - c)
\]

and, since this has to be valid for all \(c \),

\[
P_Y(y) = P_{\mu}(y)
\]

- hence

\[
P_{\mu}(y - c) = P_{\mu}(y)
\]

- which is valid for all \(c \) if and only if \(P_{\mu}(\mu) \) is uniform

- non-informative prior for location is \(P_{\mu}(\mu) \propto 1 \)
Scale parameters

- A scale parameter is one that controls the scale of the density

\[\sigma^{-1}f\left(\frac{X}{\sigma}\right) \]

E.g. the variance of a Gaussian distribution

- It can be shown that, in this case, the non-informative prior invariant to scale transformations is

\[P_{\sigma}(\sigma) = \frac{1}{\sigma} \]

- Note that, as for location, this is an improper prior
Selecting priors

- **non-informative priors** are the end of the spectrum where we don’t know what parameter values to favor.
- at the other end, i.e. when we are absolutely sure, the prior becomes a **delta function**

\[
P_\Theta(\theta) = \delta(\theta - \theta_0)
\]

- in this case

\[
P_{\Theta|T}(\theta \mid D) \propto P_{T|\Theta}(D \mid \theta)\delta(\theta - \theta_0)
\]

and **the predictive distribution is**

\[
P_{X|T}(x \mid D) \propto \int P_{X|\Theta}(x \mid \theta)P_{T|\Theta}(D \mid \theta)\delta(\theta - \theta_0)d\theta
\]

\[
= P_{X|\Theta}(x \mid \theta_0)
\]

- this is identical to ML if \(\theta_0 = \theta_{ML} \)
Selecting priors

- ML is a special case of the Bayesian formulation,
- where we are absolutely confident that the ML estimate is the correct value for the parameter

- but we could use other values for θ_0. For example the value that maximizes the posterior

$$
\theta_{MAP} = \arg \max_{\theta} P_{\Theta|T}(\theta \mid D) = \arg \max_{\theta} P_{T|\Theta}(D \mid \theta)P_{\Theta}(\theta)
$$

- this is called the MAP estimate and makes the predictive distribution equal to

$$
P_{X|T}(X \mid D) = P_{X|\Theta}(X \mid \theta_{MAP})
$$

- it can be useful when the true predictive distribution has no closed-form solution
Selecting priors

- The natural question is then
 - “what if I don’t get the prior right?”; “can I do terribly bad?”
 - “how robust is the Bayesian solution to the choice of prior?”
 - Let’s see how much the solution changes between the two extremes

- For the Gaussian problem
 - Absolute certainty priors: \(P_\mu(\mu) = \delta(\mu - \mu_0) \)
 - MAP estimate: since \(P_{\mu|}\mu(\mu | D) = G(x, \mu_n, \sigma_n^2) \) we have
 \[
 \mu_0 = \mu_n = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \mu_{ML} + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0
 \]
 - ML estimate is \(\mu_0 = \mu_{ML} \)
 - We have seen already that these are similar unless the sample is small (MAP = ML on sample with extra point)
Selecting priors

for the Gaussian problem

- non-informative prior:
 - in this case it is $P_\mu(\mu) \propto 1$ or

 $$P_\mu(\mu) = \lim_{\sigma_0^2 \to \infty} G(\mu, \mu_0, \sigma_0^2)$$

- from which

 $$\mu_n = \lim_{\sigma_0^2 \to \infty} \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \mu_{ML} + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 \right) = \mu_{ML}$$

 $$\frac{1}{\sigma_n^2} = \lim_{\sigma_0^2 \to \infty} \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) = \frac{n}{\sigma^2} \iff \sigma_n^2 = \sigma_{ML}^2$$

- and

 $$P_{X|T}(x \mid D) = G(x, \mu_n, \sigma^2 + \sigma_n^2) = G\left(x, \mu_{ML}, \sigma^2\left(1 + \frac{1}{n}\right)\right)$$
Selecting priors

In summary, for the two prior extremes

- Delta prior centered on MAP:
 \[P_{X|T}(x | D) = G(x, \mu_{MAP}, \sigma^2) \]
 \[\mu_{MAP} = \frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2} \mu_{ML} + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0 \]

- Delta prior centered on ML:
 \[P_{X|T}(x | D) = G(x, \mu_{ML}, \sigma^2) \]

- Non-informative prior
 \[P_{X|T}(x | D) = G(x, \mu_{ML}, \sigma^2\left(1 + \frac{1}{n}\right)) \]

- All Gaussian, “qualitatively the same”:
 - Somewhat different parameters for small n; equal for large n

- This indicates robustness to “incorrect” priors!
Any questions?