The Gaussian classifier

Nuno Vasconcelos

ECE Department, UCSD
Bayesian decision theory

recall that we have

- Y – state of the world
- X – observations
- $g(x)$ – decision function
- $L[g(x), y]$ – loss of predicting y with $g(x)$

Bayes decision rule is the rule that minimizes the risk

$$Risk = E_{X,Y}[L(X,Y)]$$

for the “0-1” loss

$$L[g(x), y] = \begin{cases}
1, & g(x) \neq y \\
0, & g(x) = y
\end{cases}$$
the optimal decision rule can be written as

1) \(i^* (x) = \arg\max_i P_{Y|X}(i \mid x) \)

2) \(i^* (x) = \arg\max_i \left[P_{X|Y}(x \mid i) P_Y(i) \right] \)

3) \(i^* (x) = \arg\max_i \left[\log P_{X|Y}(x \mid i) + \log P_Y(i) \right] \)

we have started to study the case of **Gaussian classes**

\[
P_{X|Y}(x \mid i) = \frac{1}{\sqrt{(2\pi)^d | \Sigma_i |}} \exp \left\{ -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right\}
\]
The Gaussian classifier

- BDR can be written as

\[i^*(x) = \arg \min_i [d_i(x, \mu_i) + \alpha_i] \]

with

\[d_i(x, y) = (x - y)^T \Sigma_i^{-1} (x - y) \]

\[\alpha_i = \log(2\pi)^d |\Sigma_i| - 2 \log P_Y(i) \]

- the optimal rule is to assign \(x \) to the closest class
- closest is measured with the Mahalanobis distance \(d_i(x,y) \)
- to which the \(\alpha \) constant is added to account for the class prior

\[P_{Y|x}(1|x) = 0.5 \]
The Gaussian classifier

- If $\Sigma_i = \Sigma, \ \forall i$ then

$$i^*(x) = \arg \max_i g_i(x)$$

- with

$$g_i(x) = w_i^T x + w_{i0}$$

$$w_i = \Sigma^{-1} \mu_i$$

$$w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P_Y(i)$$

- the BDR is a linear function or a linear discriminant
Geometric interpretation

- classes i,j share a boundary if
 - there is a set of x such that
 \[
 g_i(x) = g_j(x)
 \]
 - or
 \[
 (w_i - w_j)^T x + (w_{i0} - w_{j0}) = 0
 \]
 \[
 (\Sigma^{-1} \mu_i - \Sigma^{-1} \mu_j)^T x + \left(-\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P_Y(i) + \frac{1}{2} \mu_j^T \Sigma^{-1} \mu_j - \log P_Y(j) \right) = 0
 \]
Geometric interpretation

\[\left(\Sigma^{-1} \mu_i - \Sigma^{-1} \mu_j \right)^T x + \left(-\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P_Y(i) + \frac{1}{2} \mu_j^T \Sigma^{-1} \mu_j - \log P_Y(j) \right) = 0 \]

\[\text{can be written as} \]
\[\left(\mu_i - \mu_j \right)^T \Sigma^{-1} x - \frac{1}{2} \left(\mu_i^T \Sigma^{-1} \mu_i - \mu_j^T \Sigma^{-1} \mu_j - 2 \log \frac{P_Y(i)}{P_Y(j)} \right) = 0 \]

\[\text{next, we use} \]
\[\mu_i^T \Sigma^{-1} \mu_i - \mu_j^T \Sigma^{-1} \mu_j = \]
\[\mu_i^T \Sigma^{-1} \mu_i - \mu_i^T \Sigma^{-1} \mu_j + \mu_i^T \Sigma^{-1} \mu_j - \mu_j^T \Sigma^{-1} \mu_j = \]
Geometric interpretation

which can be written as

$$\mu_i^T \Sigma^{-1} \mu_i - \mu_j^T \Sigma^{-1} \mu_j =$$

$$\mu_i^T \Sigma^{-1} \mu_i - \mu_i^T \Sigma^{-1} \mu_j + \mu_i^T \Sigma^{-1} \mu_j - \mu_j^T \Sigma^{-1} \mu_j =$$

$$\mu_i^T \Sigma^{-1} (\mu_i - \mu_j) + (\mu_i - \mu_j)^T \Sigma^{-1} \mu_j =$$

$$\mu_i^T \Sigma^{-1} (\mu_i - \mu_j) + \mu_j^T \Sigma^{-1} (\mu_i - \mu_j) =$$

$$(\mu_i + \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j)$$

using this in

$$\left(\mu_i - \mu_j\right)^T \Sigma^{-1} x - \frac{1}{2} \left(\mu_i^T \Sigma^{-1} \mu_i - \mu_j^T \Sigma^{-1} \mu_j - 2 \log \frac{P_Y(i)}{P_Y(j)} + \right) = 0$$
Geometric interpretation

leads to

\[
\begin{align*}
(\mu_i - \mu_j)^T \Sigma^{-1} x - \frac{1}{2} (\mu_i + \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j) & - 2 \log \frac{P_Y(i)}{P_Y(j)} + \\
& = 0
\end{align*}
\]

\[w^T x + b = 0\]

\[w = \Sigma^{-1} (\mu_i - \mu_j)\]

\[b = - \frac{(\mu_i + \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j)}{2} + \log \frac{P_Y(i)}{P_Y(j)}\]

this is the equation of the hyper-plane of parameters w and b
Geometric interpretation

which can also be written as

\[
(\mu_i - \mu_j)^T \Sigma^{-1} x - \frac{1}{2} \left((\mu_i + \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j) - 2 \log \frac{P_Y(i)}{P_Y(j)} \right) = 0
\]

\[
(\mu_i - \mu_j)^T \Sigma^{-1} \left(x - \frac{\mu_i + \mu_j}{2} + \frac{(\mu_i - \mu_j)}{(\mu_i - \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j)} \log \frac{P_Y(i)}{P_Y(j)} \right) = 0
\]

or

\[
 w^T (x - x_0) = 0
\]

\[
w = \Sigma^{-1} (\mu_i - \mu_j)
\]

\[
x_0 = \frac{\mu_i + \mu_j}{2} - \frac{(\mu_i - \mu_j)}{(\mu_i - \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j)} \log \frac{P_Y(i)}{P_Y(j)}
\]
this is the equation of the hyper-plane

- of normal vector \(w \)
- that passes through \(x_0 \)

\[
W^T(x - x_0) = 0
\]

\[
W = \Sigma^{-1}(\mu_i - \mu_j)
\]

\[
x_0 = \frac{\mu_i + \mu_j}{2} - \frac{(\mu_i - \mu_j)(\mu_i - \mu_j)^T \Sigma^{-1}(\mu_i - \mu_j)}{\log \frac{P_Y(i)}{P_Y(j)}}
\]
Geometric interpretation

- special case i)
 \[\Sigma = \sigma^2 I \]

- optimal boundary has

\[
W = \frac{\mu_i - \mu_j}{\sigma^2} \\
X_0 = \frac{\mu_i + \mu_j}{2} - \sigma^2 \frac{(\mu_i - \mu_j)}{\|\mu_i - \mu_j\|^2} \log \frac{P_Y(i)}{P_Y(j)} \\
= \frac{\mu_i + \mu_j}{2} - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \log \frac{P_Y(i)}{P_Y(j)} (\mu_i - \mu_j)
\]
Geometric interpretation

\[W = \frac{\mu_i - \mu_j}{\sigma^2} \]

\[\chi_0 = \frac{\mu_i + \mu_j}{2} - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \log \frac{P_Y(i)}{P_Y(j)}(\mu_i - \mu_j) \]

vector along the line through \(\mu_i \) and \(\mu_j \)

Gaussian classes, equal covariance \(\sigma^2 I \)
Geometric interpretation

for equal prior probabilities \((P_Y(i) = P_Y(j)) \)

optimal boundary:
- plane through midpoint between \(\mu_i \) and \(\mu_j \)
- orthogonal to the line that joins \(\mu_i \) and \(\mu_j \)

\[
W = \frac{\mu_i - \mu_j}{\sigma^2}
\]

\[
X_0 = \frac{\mu_i + \mu_j}{2}
\]

mid-point between \(\mu_i \) and \(\mu_j \)

Gaussian classes, equal covariance \(\sigma^2I \)
Geometric interpretation

- different prior probabilities \((P_Y(i) \neq P_Y(j))\)

\[
W = \frac{\mu_i - \mu_j}{\sigma^2} \\
x_0 = \frac{\mu_i + \mu_j}{2} - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \log \frac{P_Y(i)}{P_Y(j)} (\mu_i - \mu_j)
\]

\(x_0\) moves along line through \(\mu_i\) and \(\mu_j\)

Gaussian classes, equal covariance \(\sigma^2 I\)
Geometric interpretation

what is the effect of the prior? \((P_Y(i) \neq P_Y(j)) \)

\[
X_0 = \mu_i + \mu_j - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \log \frac{P_Y(i)}{P_Y(j)} (\mu_i - \mu_j)
\]

\(x_0 \) moves away from \(\mu_i \) if \(P_Y(i) > P_Y(j) \)
making it more likely to pick \(i \).

Gaussian classes, equal covariance \(\sigma^2 I \)
Geometric interpretation

what is the strength of this effect? \((P_Y(i) \neq P_Y(j) \))

\[
\mathcal{W} = \frac{\mu_i - \mu_j}{\sigma^2}
\]

\[
\chi_0 = \frac{\mu_i + \mu_j}{2} - \sigma^2 \log \frac{P_Y(i)}{P_Y(j)} \left(\mu_i - \mu_j \right)
\]

“inversely proportional to the distance between means in units of standard deviation”

Gaussian classes, equal covariance \(\sigma^2 I \)
Geometric interpretation

- note the similarities with scalar case, where

\[x < \frac{\mu_i + \mu_j}{2} + \frac{\sigma^2}{\mu_i - \mu_j} \log \frac{P_Y(0)}{P_Y(1)} \]

- while here we have

\[W^T (x - x_0) = 0 \]

\[W = \frac{\mu_i - \mu_j}{\sigma^2} \]

\[x_0 = \frac{\mu_i + \mu_j}{2} - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \log \frac{P_Y(i)}{P_Y(j)} (\mu_i - \mu_j) \]

- hyper-plane is the high-dimensional version of the threshold!
Geometric interpretation

- boundary hyper-plane in 1, 2, and 3D

- for various prior configurations
Geometric interpretation

- special case ii) \(\Sigma_i = \Sigma \)

- optimal boundary

\[
\mathbf{w}^T (\mathbf{x} - \mathbf{x}_0) = 0
\]

\[
\mathbf{w} = \Sigma^{-1}(\mu_i - \mu_j)
\]

\[
\mathbf{x}_0 = \frac{\mu_i + \mu_j}{2} - \frac{1}{(\mu_i - \mu_j)^T \Sigma^{-1}(\mu_i - \mu_j)} \log \frac{P_Y(i)}{P_Y(j)} (\mu_i - \mu_j)
\]

- \(\mathbf{x}_0 \) basically the same, strength of the prior inversely proportional to Mahalanobis distance between means

- \(\mathbf{w} \) is multiplied by \(\Sigma^{-1} \), which changes its direction and the slope of the hyper-plane
Geometric interpretation

- equal but arbitrary covariance

\[w = \Sigma^{-1}(\mu_i - \mu_j) \]

\[x_0 = \frac{\mu_i + \mu_j}{2} - \frac{1}{(\mu_i - \mu_j)^T \Sigma^{-1}(\mu_i - \mu_j)} \log \frac{P_Y(i)}{P_Y(j)}(\mu_i - \mu_j) \]

Gaussian classes, equal covariance \(\Sigma \)
Geometric interpretation

- In the homework you will show that the separating plane is tangent to the pdf iso-contours at x_0.

- Reflects the fact that the natural distance is now Mahalanobis.
Geometric interpretation

- boundary hyper-plane in 1, 2, and 3D
- for various prior configurations
Geometric interpretation

what about the generic case where covariances are different?

• in this case

\[i^*(x) = \arg \min_i [d_i(x, \mu_j) + \alpha_i] \]

\[d_i(x, y) = (x - y)^T \Sigma_i^{-1} (x - y) \]

\[\alpha_i = \log(2\pi)^d |\Sigma_i| - 2 \log P_Y(i) \]

• there is not much to simplify

\[g_i(x) = (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) + \log|\Sigma_i| - 2 \log P_Y(i) \]

\[= x^T \Sigma_i^{-1} x - 2x^T \Sigma_i^{-1} \mu_i + \mu_i^T \Sigma_i^{-1} \mu_i + \log|\Sigma_i| - 2 \log P_Y(i) \]
Geometric interpretation

\[g_i(x) = x^T \Sigma_i^{-1} x - 2 x^T \Sigma_i^{-1} \mu_i + \mu_i^T \Sigma_i^{-1} \mu_i + \log|\Sigma_i| - 2 \log P_Y(i) \]

• which can be written as

\[g_i(x) = x^T W_i x + W_{i0} \]

\[W_i = \Sigma_i^{-1} \]
\[w_i = -2 \Sigma_i^{-1} \mu_i \]
\[W_{i0} = \mu_i^T \Sigma_i^{-1} \mu_i + \log|\Sigma_i| - 2 \log P_Y(i) \]

for 2 classes the decision boundary is hyper-quadratic

• this could mean hyper-plane, pair of hyper-planes, hyper-spheres, hyper-ellipsoids, hyper-hyperboloids, etc.
Geometric interpretation

in 2 and 3D:
The sigmoid

we have derived all of this from the log-based BDR

\[i^*(x) = \arg \max_i \left[\log P_{X|Y}(x \mid i) + \log P_Y(i) \right] \]

when there are only two classes, it is also interesting to look at the original definition

\[i^*(x) = \arg \max_i g_i(x) \]

with

\[g_i(x) = P_{Y|X}(i \mid x) = \frac{P_{X|Y}(x \mid i)P_Y(i)}{P_X(x)} \]

\[= \frac{P_{X|Y}(x \mid i)P_Y(i)}{P_{X|Y}(x \mid 0)P_Y(0) + P_{X|Y}(x \mid 1)P_Y(1)} \]
The sigmoid

Note that this can be written as

\[i^*(x) = \arg \max_i g_i(x) \]

\[g_1(x) = 1 - g_0(x) \]

\[g_0(x) = \frac{1}{1 + \frac{P_{x|y}(x|1)P_y(1)}{P_{x|y}(x|0)P_y(0)}} \]

And, for Gaussian classes, the posterior probabilities are

\[g_0(x) = \frac{1}{1 + \exp \left\{ d_0(x - \mu_0) - d_1(x - \mu_1) + \alpha_0 - \alpha_1 \right\} } \]

Where, as before,

\[d_i(x, y) = (x - y)^T \Sigma_i^{-1} (x - y) \]

\[\alpha_i = \log(2\pi)^d |\Sigma_i| - 2 \log P_y(i) \]
The sigmoid

- the posterior

\[g_0(x) = \frac{1}{1 + \exp\left\{d_0(x - \mu_0) - d_1(x - \mu_1) + \alpha_0 - \alpha_1 \right\}} \]

- is a sigmoid and looks like this

\(P(C_1 \mid x) = 0.5 \)
The sigmoid

- The sigmoid appears in neural networks
 - it is the true posterior for Gaussian problems where the covariances are the same

Equal variances

Single boundary at halfway between means
The sigmoid

but not necessarily when the covariances are different

Variances are different

Two boundaries
Bayesian decision theory

advantages:

• BDR is **optimal** and **cannot be beaten**
• Bayes keeps you **honest**
• models reflect **causal interpretation of the problem**, this is how we think
• natural decomposition into “**what we knew already**” (prior) and “**what data tells us**” (CCD)
• no need for **heuristics** to combine these two sources of info
• BDR is, almost invariably, **intuitive**
• Bayes rule, chain rule, and marginalization enable **modularity**, and **scalability** to very complicated models and problems

problems:

• BDR is optimal only insofar the models are correct.
Any questions?