Bayesian decision theory

Nuno Vasconcelos ECE Department, UCSD

Notation

the notation in DHS is quite sloppy

• e.g. show that

$$P(error) = \int P(error \mid z)P(z)dz$$

- really not clear what this means
- we will use the following notation

$$P_{X|Y}(x_0 \mid y_0)$$

- subscripts are random variables (uppercase)
- arguments are the values of the random variables (lowercase)
- equivalent to $P(X = x_0 \mid Y = y_0)$

Bayesian decision theory

- framework for computing optimal decisions on problems involving uncertainty (probabilities)
- basic concepts:
 - world:
 - has states or classes, drawn from a state or class random variable Y
 - fish classification, $Y \in \{bass, salmon\}$
 - student grading, $Y \in \{A, B, C, D, F\}$
 - medical diagnosis ∈ {disease A, disease B, ..., disease M}
 - observer:
 - measures observations (features), drawn from a random process X
 - fish classification, $X = (scale length, scale width) \in \mathbb{R}^2$
 - student grading, $X = (HW_1, ..., HW_n) \in \mathbb{R}^n$
 - medical diagnosis X = (symptom 1, ..., symptom n) $\in \mathbb{R}^n$

Bayesian decision theory

- decision function:
 - observer uses the observations to make decisions about the state of the world y
 - if $x\in \Omega$ and $y\in \Psi$ the decision function is the mapping

$$g: \Omega \to \Psi$$

such that

$$g(x) = y_o$$

and \boldsymbol{y}_{o} is a prediction of the state \boldsymbol{y}

- loss function:
 - is the cost $L(y_{o'}y)$ of deciding for y_o when the true state is y
 - usually this is zero if there is no error and positive otherwise
- goal: to determine the optimal decision function for the loss L(.,.)

Classification

- we will focus on classification problems
 - the observer tries to infer the state of the world $g(x) = i, i \in \{1, ..., M\}$

• we will also mostly consider the "0-1" loss function

$$L[g(x), y] = \begin{cases} 1, & g(x) \neq y \\ 0, & g(x) = y \end{cases}$$

- but the regression case
 - the observer tries to predict a continuous y_{40}^{50} $g(x) \in \Re$
 - is basically the same, for a suitable loss function, e.g. squared error

$$L[g(x), y] = ||y - g(x)||^2$$

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities

properties of probabilistic inference

- chain rule of probability
- marginalization
- independence
- Bayes rule

- in order to find optimal decision function we need a probabilistic description of the problem
 - in the most general form this is the joint distribution

$$P_{X,Y}(x,i)$$

• we frequently decompose it into combination of two terms

$$P_{X,Y}(x,i) = \underbrace{P_{X|Y}(x \mid i)}_{X|Y}\underbrace{P_Y(i)}_{Y}$$

- these are the "class conditional distribution" and "class probability"
- class probability
 - prior probability of state i, before observer measures anything
 - reflects a "prior belief" that, if all else is equal, the world will be in state i with probability $\mathsf{P}_{\mathsf{Y}}(i)$

- class-conditional distribution:
 - is the model for the observations given the class or state of the world
- consider the grading example
 - I know, from experience, that a% of the students will get A's, b% B's, c% C's, and so forth
 - hence, for any student, P(A) = a/100, P(B) = b / 100, etc.
 - these are the state probabilities, before I get to see any of the student's work
 - the class-conditional densities are the models for the grades given the type of student
 - let's assume that the grades are Gaussian, i.e. they are completely characterized by a mean and a variance

- knowledge of the class changes the mean grade, e.g. I expect
 - A students to have an average HW grade of 90%
 - B students 75%
 - C students 60%, etc
- this means that

$$P_{X|Y}(x|i) = G(x, \mu_i, \sigma)$$

- i.e. the distribution of class i is a Gaussian of mean $\mu_{\!i}$ and variance σ

note that the decomposition

$$P_{X,Y}(x,i) = P_{X|Y}(x \mid i)P_{Y}(i)$$

is a special case of a very powerful tool in Bayesian inference

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

The chain rule of probability

- is an important consequence of the definition of conditional probability
 - note that, by recursive application of

$$P_{X,Y}(x, y) = P_{X|Y}(x \mid y)P_{Y}(y)$$

• we can write

$$P_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = P_{X_1 | X_2, \dots, X_n}(x_1 | x_2, \dots, x_n) \times \times P_{X_2 | X_3, \dots, X_n}(x_2 | x_3, \dots, x_n) \times \dots \times \dots \times P_{X_{n-1} | X_n}(x_{n-1} | x_n) P_{X_n}(x_n)$$

- this is called the chain rule of probability
- ▶ it allows us to modularize inference problems

The chain rule of probability

- e.g. in the medical diagnosis scenario
 - what is the probability that you will be sick and have 104° of fever?

$$P_{Y,X_1}(sick,104) = P_{Y|X_1}(sick|104)P_{X_1}(104)$$

- breaks down a hard question (prob of sick and 104) into two easier questions
- Prob (sick | 104): everyone knows that this is close to one

The chain rule of probability

e.g. what is the probability that you will be sick and have 104° of fever?

 $P_{Y,X_1}(sick,104) = P_{Y|X_1}(sick | 104)P_{X_1}(104)$

- Prob(104): still hard, but easier than P(sick,104) since we now only have one random variable (temperature)
- does not depend on sickness, it is just the question "what is the probability that someone will have 104°?"
 - gather a number of people, measure their temperatures and make a histogram that everyone can use after that

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

- frequently we have problems with multiple random variables
 - e.g. when in the doctor, you are mostly a collection of random variables
 - x1: temperature
 - x₂: blood pressure
 - x₃: weight
 - x₄: cough

we can summarize this as

- a vector $\mathbf{X} = (x_1, \dots, x_n)$ of n random variables
- $P_{\mathbf{x}}(\mathbf{x}_1, ..., \mathbf{x}_n)$ is the joint probability distribution
- but frequently we only care about a subset of X

16

Marginalization

- what if I only want to know if the patien? has a cold or not?
 - does not depend on blood pressure and weight
 - all that matters are fever and cough
 - that is, we need to know $P_{X1,X4}(a,b)$

we marginalize with respect to a subset of variables

- (in this case X_1 and X_4)
- this is done by summing (or integrating) the others out

$$P_{X_1,X_4}(x_1,x_4) = \sum_{x_2,x_3} P_{X_1,X_2,X_3,X_4}(x_1,x_2,x_3,x_4)$$
$$P_{X_1,X_4}(x_1,x_4) = \int \int P_{X_1,X_2,X_3,X_4}(x_1,x_2,x_3,x_4) \, dx_2 dx_3$$

Marginalization

- important equation:
 - seems trivial, but for large models is a major computational asset for probabilistic inference
 - for any question, there are lots of variables which are irrelevant
 - direct evaluation is frequently intractable
 - typically, we combine with the chain rule to explore independence relationships that will allow us to reduce computation
- independence:
 - X and Y are independent random variables if

$$P_{X|Y}(x \mid y) = P_X(x)$$

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

Independence

- very useful in the design of intelligent systems
 - frequently, knowing X makes Y independent of Z
 - e.g. consider the shivering symptom:
 - if you have temperature you sometimes shiver
 - it is a symptom of having a cold
 - but once you measure the temperature, the two become independent

$$P_{Y,X_{1},S}(sick,98, shiver) = P_{Y|X_{1},S}(sick | 98, shiver) \times P_{S|X_{1}}(shiver | 98)P_{X_{1}}(98)$$
$$= P_{Y|X_{1}}(sick | 98) \times P_{S|X_{1}}(shiver | 98)P_{X_{1}}(98)$$

simplifies considerably the estimation of the probabilities

Independence

- combined with marginalization, enables efficient computation
 - e.g to compute P_Y(sick)
 - 1) marginalization

$$P_Y(sick) = \sum_{s} \int P_{Y,X_1,S}(sick, x, s) dx$$

• 2) chain rule

$$P_{Y}(sick) = \sum_{s} \int P_{Y|X_{1},s}(sick \mid x, s) P_{S|X_{1}}(s \mid x) P_{X_{1}}(x) dx$$

• 3) independence

$$P_{Y}(sick) = \int P_{Y|X_{1}}(sick \mid x) P_{X_{1}}(x) \sum_{s} P_{S|X_{1}}(s \mid x) dx$$

dividing and grouping terms (divide and conquer) makes the integral simpler

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

Bayes rule

$$P_{Y|X}(y \mid x) = \frac{P_{X|Y}(x \mid y)P_{Y}(y)}{P_{X}(x)}$$

- is the central equation of Bayesian inference
- allows us to "switch" the relation between the variables
- this is extremely useful
- e.g. for medical diagnosis doctor needs to know

 $P_{Y|X}$ (disease y | symptom x)

- this is very complicated because it is not causal
- we are asking for the probability of cause given consequence

 Bayes rule transforms it into the probability of consequence given cause

 $P_{Y|X}(disease \ y \mid symptom \ x) =$

 $= \frac{P_{X|Y}(symptom \ x \mid disease \ y)P_{Y}(disease \ y)}{P_{X}(symptom \ x)}$

and some other stuff

- note that P_{X|Y}(symptom x | disease y) is easy you can get it out of any medical textbook
- what about the other stuff?
 - P_Y(disease y) does not depend on the patient you can get it by collecting statistics over the entire population
 - $P_X(symptom x)$ is a combination of the two (marginalization)

 $P_X(symptom x) = \sum_{y} P_{X|Y}(symptom x | disease y) P_Y(disease y)$

Bayes rule

- Bayes rule allows us
 - to combine textbook knowledge with prior knowledge to compute the probability of cause given consequence
 - e.g. if you heard on the radio that there is an outbreak of "measles",
 - you increase the prior probability for the measles disease (cause)

 $P_{Y}(measles) \uparrow \uparrow \uparrow$

• since (relation between cause and consequence)

 $P_{X|Y}(patient symptoms | measles)$

does not change, Bayes rule will give you the "updated"

 $P_{Y|X}$ (measles | patient symptoms)

- that accounts for the new information
- this is hard if you work directly with the posterior probability

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

we are now ready to make optimal decisions!

