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Notation

» the notation in DHS is quite sloppy

e e.g.show that
P(error) = J' P(error | z)P(z)dz

e redlly not clear what this means

» we will use the following notation

Py (% | ¥o)

e subscripts are random variables (uppercase)

e arguments are the values of the random variables
(lowercase)

e equivalent to P(X — XO ‘Y — yo)



Bayesian decision theory

» framework for computing optimal decisions on
problems involving uncertainty (probabilities)

» basic concepts:

e world:

e has states or classes, drawn from a state or class random
variable Y

e fish classification, Y e {bass, salmon}
e student grading, Y € {A, B, C, D, F}
 medical diagnosis € {disease A, disease B, ..., disease M}

e Observer:

e measures observations (features), drawn from a random
process X

e fish classification, X = (scale length, scale width) e R?
e sfudent grading, X = (HW,, ..., HW,) € R"
e medical diagnosis X = (symptom 1, ..., symptom n) € R"



Bayesian decision theory

e decision function:

e Observer uses the observations to make decisions about the
state of the world y

e ifXx e Qandy e ¥ the decision function is
the mapping

g:Q—->Y¥
such that
g(x) =Y,
and y, is a prediction of the state y
e |oss function:
 isthe cost L(y,y) of deciding for y, when the true state isy

e ysually this is zero if there is no error and positive otherwise
e goal: to determine the optimal decision function for the loss

L(...)



Classification

» we will focus on classificafion problems - ‘
« the observer fries to infer the state of the -
world ..
g(x) =i, iefl,..,M}

* we Will also mostly consider the “0-1" loss function

1,
Lig(). y]={O IO

» but the regression case
e the observer fries to predict a continuous yj:
g(x) e R ]

. . . Size
e is basically the same, for a suitable loss 20
function, e.g. squared error 10

a

L[Q(X),Y]=HY—Q(X)H2 EREEEEEE




Tools for solving BDT problem

» probabilistic representations
 joint distribution
e class-conditional distributions
e class probabilities

» properties of probabillistic inference
e chain rule of probability
e marginalization
* independence
e Bayesrule



Tools for solving BDT problem

» in order to find optimal decision function we need a
probabilistic description of the problem

e in the most general form this is the joint distribution

Py v (X1)

e we frequently decompose it info combination of two terms
Py (X,1) =Py (X[ DR (1)
“ ~ ) ——

/

e these are the “class conditional distribution” and *“Class
probability”

e class probability

e prior probability of state i, before observer measures anything

e reflects a “prior belief” that, if all else is equal, the world will be in
state i with probability Py (i)



Tools for solving BDT problem

» class-conditional distribution:

e is the model for the observations given the class or state of
the world

» consider the grading example

e | know, from experience, that a% of the students will get A’s,
b% B's, c% C's, and so forth

* hence, for any student, P(A) = a/100, P(B) =b / 100, etc.

e these are the state probabilities, before | get to see any of
the student’s work

e the class-conditional densities are the models for the grades
given the type of student

e let's assume that the grades are Gaussian, i.e. they are
completely characterized by a mean and a variance



Tools for solving BDT problem

* knowledge of the class changes the mean grade, e.g. |
expect

e A students to have an average HW grade of 90%
e Bstudents 75%
e C students 60%, etc

e this means that
I:)xh( (X[1) =G(X, 1, 0)

e |.e. the distribution of class iis a Gaussian of mean x and
variance o

» note that the decomposition
Pey (1) =Py (X[ 1R (1)

Is a special case of a very powerful tool in Bayesian
inference




Tools for solving BDT problem

» probabilistic representations
 joint distribution
e class-conditional distributions
e class probabilities

» properties of probabillistic inference
e chain rule of probability
e marginalization
* independence
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The chain rule of probabillity

» IS an iImportant consequence of the definition of
conditional probability

e note that, by recursive application of

Py (X5 Y) =Py (X[ V)R (y)

* Wwe can write

..... n

X Py ixx. (X, | Xgyeeny X ) X

X... X Pxn_lp(n (Xn—l | Xn)PXn (Xn)

» this is called the chain rule of probability
» it allows us to modularize inference problems



The chain rule of probabillity

» £.9. In The medical diagnosis scenario

e whatis the probability that you will be sick and have 104° of
fevere

P, x, (sick104) =R, (sick|104)P, (104)

e breaks down a hard question (prob of sick and 104) into two
easier guestions

e Prob (sick| 104): everyone knows that this is close to one

You have
s a cold!
o ©° QL Al

{\m 1\ B
/ )QN(//D/ 4

SN S =
\ </ /\ S

\\Vl\ B

O
P x (sick|104) =1

—_—




The chain rule of probabillity

» ©.9. what is the probability that you will be sick and

have 104° of fevere
P, . (sick104) = R, (sick |104)P, (104)
* Prob(104): still hard, but easier than P(sick,104) since we now
only have one random variable (tfemperature)

e does not depend on sickness, it is just the question “what is
the probability that someone will have 104°2"

e gather a number of people, measure their temperatures and
make a histogram that everyone can use after that
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Tools for solving BDT problem
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Tools for solving BDT problems

» frequently we have problems with mulfiple random
variables

e e.g. whenin the doctor, you are mostly a collection of
random variables

* X;: temperature

blood O/ 1
* X,: blood pressure
* X5 weight - @v Y’
* X, cough / o

[\ :

» WEe Ccan summarize ’rh|s as
e avector X = (x;, ..., x,) of nrandom variables
* Py(X;, ..., X,) is the joint probability distribution

» but frequently we only care about a subset of X



Marginalization

O
» what if | only want to know if the pahen?
has a cold or notfe g
» does not depend on W?(‘\)\ B
blood pressure and weight / ]Qy////,<
e all that matters are fever and cough ‘<\<(1;4>/%/

* thatis, we need to know Py, y4(a.b)

» we marginalize with respect to a subset of variables

e (in this case X, and X,)
e thisis done by summing (or integrating) the others out

PX1,X4(x1»x4) = z PXl,Xz,Xg,X4(x1'x2'x3»x4)
X2,X3

Py, x, (X1, %4) = jjle,xz,xg,x4(x1»xz»xs»x4) dx,dx;




Marginalization

» important equation:

e seem:s trivial, but for large models is a major computational
asset for probabilistic inference

e for any question, there are lots of variables which are
irelevant

e direct evaluation is frequently infractable

e typically, we combine with the chain rule to explore
independence relationships that will allow us to reduce
computation

» independence:

e XandY are independent random variables if

I:)xp/ (Xl Y) = I:)x (X)
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Independence

» very useful in the design of infelligent
systems ¢

~

e frequently, knowing X makes Y independent of /

e e.g. consider the shivering symptom: \

 if you have temperature you sometimes shiver
e itis a symptom of having a cold

* but once you measure the temperature, the two become
independent

P, x,s(sick,98,shiver) =R, (sick |98, shiver)x
P x, (shiver |98) P, (98)

=R x, (sick|98) x
P x, (shiver |98) P, (98)

» simplifies considerably the estimation of the
probabilities

)



Independence

» combined with marginalization, enables efficient
computation

e e.gto compute Py(sick|
e 1) marginalization

R, (sick) =" [ R, x, s (sick, x, s)dx
2) chain rule S
P, (sick) = Zj Prix,.s (SICK X, 8) Py (S| X)Py (X)dx

3) independence

=1

P, (sick) = [ Py, (sick | x)Py, (x)[z Py (5] x}dx

dividing and grouping terms (divide and conquer) makes the
integral simpler

20



Tools for solving BDT problem
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e class-conditional distributions
e class probabilities

» properties of probabillistic inference
e chain rule of probability
e marginalization
* independence
e Bayesrule
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Tools for solving BDT problems

» Bayesrule

P P
2y P EIIRD)

e is the central equation of Bayesian inference

e allows us to “switch” the relation between the variables
e this is extremely useful
e e.g. for medical diagnosis doctor needs to know

P, x (disease y | symptom x)

e thisis very complicated because it is not causal

e we are asking for the probability of cause given
consequence

22



Tools for solving BDT problems

e Bayesrule transforms it into the probability of consequence
given cause

P, x (disease y | symptom X) =

Py (Symptom x| disease y)R, (disease y)
P, (symptom Xx)

and some other stuff

* note that Py, y(symptom x| disease y) is easy — you can get
it out of any medical textbook

e what about the other stuffe

* Py(disease y) does not depend on the patient —you can get if
by collecting statistics over the entire population

e Py(symptom x) is a combination of the two (marginalization)

P, (symptom X) = Z P,y (symptom x| disease y)R, (disease y)
y

23



Bayes rule

» Bayes rule allows us

e 10 combine textbook knowledge with prior knowledge to
compute the probability of cause given consequence

e e.g.if you heard on the radio that there is an outbreak of
“measles”,

* you increase the prior probability for the measles disease (cause)

P, (measles) TTT

e since (relation between cause and consequence)

P,y (patient symptoms | measles)

does not change, Bayes rule will give you the “updated”

P, x (measles | patient symptoms)

e that accounts for the new information
e this is hard if you work directly with the posterior probability

24



Tools for solving BDT problem

» probabilistic representations
 joint distribution
e class-conditional distributions
e class probabilities

» properties of probabilistic inference
e chain rule of probability
e marginalization
* independence
e Bayesrule

» we are now ready to make optimal decisions!
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