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Notation

the notation in DHS is quite sloppy

• e.g. show that

• really not clear what this means

we will use the following notation

• subscripts are random variables (uppercase)

• arguments are the values of the random variables 
(lowercase) 

• equivalent to 

= dzzPzerrorPerrorP )()|()(

)|( 00| yxP YX

)|( 00 yYxXP ==
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Bayesian decision theory
framework for computing optimal decisions on 
problems involving uncertainty (probabilities)

basic concepts:

• world:

• has states or classes, drawn from a state or class random 
variable Y

• fish classification, Y  {bass, salmon}

• student grading, Y  {A, B, C, D, F}

• medical diagnosis  {disease A, disease B, …, disease M}

• observer:

• measures observations (features), drawn from a random 
process X

• fish classification, X = (scale length, scale width)  R2

• student grading, X = (HW1, …, HWn)  Rn

• medical diagnosis X = (symptom 1, …, symptom n)  Rn
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Bayesian decision theory
• decision function:

• observer uses the observations to make decisions about the 
state of the world y

• if x   and y   the decision function is
the mapping

such that

and yo is a prediction of the state y

• loss function:

• is the cost  L(yo,y) of deciding for yo when  the true state is y

• usually this is zero if there is no error and positive otherwise

• goal: to determine the optimal decision function for the loss 
L(.,.)

→:g

oyxg =)(
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Classification

we will focus on classification problems

• the observer tries to infer the state of the 
world

• we will also mostly consider the “0-1” loss function

but the regression case

• the observer tries to predict a continuous y

• is basically the same, for a suitable loss 
function, e.g. squared error

 Miixg ,,1   ,)( =





=


=

yxg

yxg
yxgL

)(,0

)(,1
]),([

)(xg

2
)(]),([ xgyyxgL −=



6

Tools for solving BDT problem

probabilistic representations

• joint distribution

• class-conditional distributions

• class probabilities

properties of probabilistic inference

• chain rule of probability

• marginalization

• independence

• Bayes rule
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Tools for solving BDT problem
in order to find optimal decision function we need a 
probabilistic description of the problem

• in the most general form this is the joint distribution

• we frequently decompose it into combination of two terms

• these are the “class conditional distribution” and “class 
probability”

• class probability

• prior probability of state i, before observer measures anything

• reflects a “prior belief” that, if all else is equal, the world will be in 
state i with probability PY(i)

),(, ixP YX

)()|(),( |, iPixPixP YYXYX 
=
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Tools for solving BDT problem

class-conditional distribution:

• is the model for the observations given the class or state of 
the world

consider the grading example

• I know, from experience, that a% of the students will get A’s, 
b% B’s, c% C’s, and so forth

• hence, for any student, P(A) = a/100, P(B) = b / 100, etc.

• these are the state probabilities, before I get to see any of 
the student’s work

• the class-conditional densities are the models for the grades 
given the type of student

• let’s assume that the grades are Gaussian, i.e. they are 
completely characterized by a mean and a variance 
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Tools for solving BDT problem
• knowledge of the class changes the mean grade, e.g. I 

expect 

• A students to have an average HW grade of 90%

• B students 75%

• C students 60%, etc

• this means that 

• i.e. the distribution of class i is a Gaussian of mean mi and 
variance s

note that the decomposition

is a special case of a very powerful tool in Bayesian 
inference

),,()|(| smiYX xGixP =

)()|(),( |, iPixPixP YYXYX =
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Tools for solving BDT problem

probabilistic representations

• joint distribution

• class-conditional distributions

• class probabilities

properties of probabilistic inference

• chain rule of probability

• marginalization

• independence

• Bayes rule
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The chain rule of probability
is an important consequence of the definition of 
conditional probability

• note that, by recursive application of 

• we can write 

this is called the chain rule of probability

it allows us to modularize inference problems

)()|(),( |, yPyxPyxP YYXYX =

= ),...,|(),...,,( 21,...,|21,...,, 2121 nXXXnXXX xxxPxxxP
nn

...),...,|( 32...,| 32
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The chain rule of probability
e.g. in the medical diagnosis scenario

• what is the probability that you will be sick  and have 104o of 
fever? 

• breaks down a hard question (prob of sick and 104) into two 
easier questions

• Prob (sick|104): everyone knows that this is close to one

)104()104|()104,(
111 |, XXYXY PsickPsickP =

!1)104|(| =sickP XY

You have

a cold!
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The chain rule of probability
e.g. what is the probability that you will be sick  and 
have 104o of fever? 

• Prob(104): still hard, but easier than P(sick,104) since we now 
only have one random variable (temperature)

• does not depend on sickness, it is just the question “what is 
the probability that someone will have 104o?”

• gather a number of people, measure their temperatures and 
make a histogram that everyone can use after that

)104()104|()104,(
111 |, XXYXY PsickPsickP =
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Tools for solving BDT problem

probabilistic representations

• joint distribution

• class-conditional distributions

• class probabilities

properties of probabilistic inference

• chain rule of probability

• marginalization

• independence

• Bayes rule
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Tools for solving BDT problems
frequently we have problems with multiple random 
variables

• e.g. when in the doctor, you are mostly a collection of 
random variables

• x1: temperature

• x2: blood pressure

• x3: weight

• x4: cough

we can summarize this as 

• a vector X = (x1, …, xn) of n random variables

• PX(x1, …, xn) is the joint probability distribution

but frequently we only care about a subset of X
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Marginalization

what if I only want to know if the patient
has a cold or not?

• does not depend on 
blood pressure and weight

• all that matters are fever and cough

• that is, we need to know PX1,X4(a,b)

we marginalize with respect to a subset of variables

• (in this case X1 and X4)

• this is done by summing (or integrating) the others out

𝑃𝑋1,𝑋4(𝑥1, 𝑥4) = නන𝑃𝑋1,𝑋2,𝑋3,𝑋4(𝑥1, 𝑥2, 𝑥3, 𝑥4) 𝑑𝑥2𝑑𝑥3

𝑃𝑋1,𝑋4(𝑥1, 𝑥4) = ෍

𝑥2,𝑥3

𝑃𝑋1,𝑋2,𝑋3,𝑋4(𝑥1, 𝑥2, 𝑥3, 𝑥4)

?)(coldP
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Marginalization

important equation:

• seems trivial, but for large models is a major computational 
asset for probabilistic inference

• for any question, there are lots of variables which are 
irrelevant

• direct evaluation is frequently intractable

• typically, we combine with the chain rule to explore 
independence relationships that will allow us to reduce 
computation

independence: 

• X and Y are independent random variables if

)()|(| xPyxP XYX =
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Tools for solving BDT problem

probabilistic representations

• joint distribution

• class-conditional distributions

• class probabilities

properties of probabilistic inference

• chain rule of probability

• marginalization

• independence

• Bayes rule
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Independence
very useful in the design of intelligent
systems

• frequently, knowing X makes Y independent of Z

• e.g. consider the shivering symptom:

• if you have temperature you sometimes shiver

• it is a symptom of having a cold 

• but once you measure the temperature, the two become 
independent

simplifies considerably the estimation of the 
probabilities

= ),98|(),98,( ,|,, 11
shiversickPshiversickP SXYSXY

)98()98|(
11| XXS PshiverP

= )98|(
1| sickP XY

)98()98|(
11| XXS PshiverP
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Independence
combined with marginalization, enables efficient 
computation

• e.g to compute PY(sick)

• 1) marginalization

• 2) chain rule

• 3) independence

• dividing and grouping terms (divide and conquer) makes the 
integral simpler

dxsxsickPsickP
s

SXYY = ),,()( ,, 1

dxxPxsPsxsickPsickP X
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111 ||
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Tools for solving BDT problem

probabilistic representations

• joint distribution

• class-conditional distributions

• class probabilities

properties of probabilistic inference

• chain rule of probability

• marginalization

• independence

• Bayes rule
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Tools for solving BDT problems

Bayes rule

• is the central equation of Bayesian inference

• allows us to “switch” the relation between the variables

• this is extremely useful

• e.g. for medical diagnosis doctor needs to know

• this is very complicated because it is not causal

• we are asking for the probability of cause given 
consequence

)(

)()|(
)|(

|

|
xP
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xyP
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YYX

XY =

) | (| xsymptomydiseaseP XY
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Tools for solving BDT problems

• Bayes rule transforms it into the probability of consequence 
given cause

and some other stuff

• note that PX|Y(symptom x| disease y) is easy – you can get 
it out of any medical textbook

• what about the other stuff?

• PY(disease y) does not depend on the patient – you can get it 
by collecting statistics over the entire population

• PX(symptom x) is a combination of the two (marginalization)

=) | (| xsymptomydiseaseP XY

) (

) () | (|

xsymptomP

ydiseasePydiseasexsymptomP

X

YYX
=

=
y

YYXX ydiseasePydiseasexsymptomPxsymptomP ) () | () ( |
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Bayes rule
Bayes rule allows us

• to combine textbook knowledge with prior knowledge to 
compute the probability of cause given consequence

• e.g. if you heard on the radio that there is an outbreak of 
“measles”, 

• you increase the prior probability for the measles disease (cause)

• since (relation between cause and consequence)

does not change, Bayes rule will give you the “updated”

• that accounts for the new information

• this is hard if you work directly with the posterior probability

)| (| measlessymptomspatientP YX

    )(measlesPY

) |(| symptomspatientmeaslesP XY
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Tools for solving BDT problem

probabilistic representations

• joint distribution

• class-conditional distributions

• class probabilities

properties of probabilistic inference

• chain rule of probability

• marginalization

• independence

• Bayes rule

we are now ready to make optimal decisions!
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