Bayesian decision theory

Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory

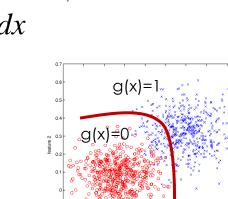
- recall that we have
 - Y state of the world
 - X observations
 - g(x) decision function
 - L[g(x),y] loss of predicting y with g(x)

the expected value of the loss is called the risk

$$Risk = E_{X,Y}[L(X,Y)]$$

• which can be written as

$$Risk = \int \sum_{i=1}^{M} P_{Y,X}(i,x) L[g(x),i] dx$$



 $P_{Y|X}(1 | x) = 0$

 $P_{Y|X}(1 | x) = 1$

Bayesian decision theory

• from this

$$Risk = \int \sum_{i=1}^{M} P_{Y,X}(i,x) L[g(x),i] dx$$

• by chain rule

$$Risk = \int P_X(x) \sum_{i=1}^M P_{Y|X}(i \mid x) L[g(x), i] dx$$
$$= \int P_X(x) R(x) dx = E_X[R(x)]$$

where

$$R(x) = \sum_{i=1}^{M} P_{Y|X}(i \mid x) L[g(x), i]$$

• is the conditional risk, given the observation x

0.5

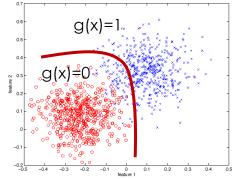
Bayesian decision theory

• since, by definition,

M

 $L[g(x),i] \ge 0, \quad \forall x, y$

• it follows that



$$R(x) = \sum_{i=1}^{m} P_{Y|X}(i \mid x) L[g(x), i] \ge 0, \quad \forall x$$

• Also, the

$$Risk = E_X[R(X)]$$

is minimum if we minimize R(x) at all x, i.e., if we use pick the decision function

$$g^{*}(x) = \arg\min_{g(x)} \sum_{i=1}^{M} P_{Y|X}(i \mid x) L[g(x), i]$$

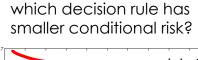
Bayesian decision theory

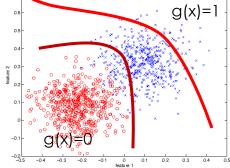
this is the Bayes decision rule

$$g^{*}(x) = \arg\min_{g(x)} \sum_{i=1}^{M} P_{Y|X}(i \mid x) L[g(x), i]$$

the associated risk

$$R^* = \int \sum_{i=1}^{M} P_{Y,X}(i,x) L[g^*(x),i] dx$$





$$R^* = \int P_X(x) \sum_{i=1}^M P_{Y|X}(i \mid x) L[g^*(x), i] dx$$

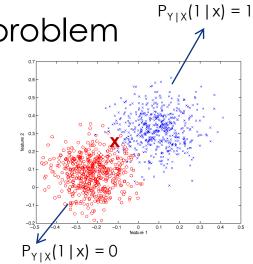
• is the Bayes risk, and cannot be beaten

Iet's consider a binary classification problem

 $g^*(x) \in \{0,1\}$

• for which the conditional risk is

$$R(x) = \sum_{i=0}^{1} P_{Y|X}(i|x)L[g(x), i]$$



 $= P_{Y|X}(0|x)L[g(x),0] + P_{Y|X}(1|x)L[g(x),1]$

we have two options

 $g(x) = 0 \Rightarrow R_0(x) = P_{Y|X}(0|x)L[0,0] + P_{Y|X}(1|x)L[0,1]$

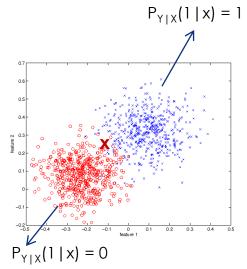
 $g(x) = 1 \Rightarrow R_1(x) = P_{Y|X}(0|x)L[1,0] + P_{Y|X}(1|x)L[1,1]$

• and should pick the one of smaller conditional risk

- i.e. pick g(x) = 0 if $R_0(x) < R_1(x)$ and g(x)=1 otherwise
- this can be written as, pick 0 if

 $P_{Y|X}(0 \mid x)L[0,0] + P_{Y|X}(1 \mid x)L[0,1] <$ < $P_{Y|X}(0 \mid x)L[1,0] + P_{Y|X}(1 \mid x)L[1,1]$

• or $P_{Y|X}(0 \mid x) \{ L[0,0] - L[1,0] \} <$ $< P_{Y|X}(1 \mid x) \{ L[1,1] - L[0,1] \}$



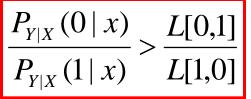
• usually there is no loss associated with the correct decision

L[1,1] = L[0,0] = 0

• and this is the same as

 $P_{Y|X}(0 \mid x)L[1,0] > P_{Y|X}(1 \mid x)L[0,1]$

• or, "pick 0" if

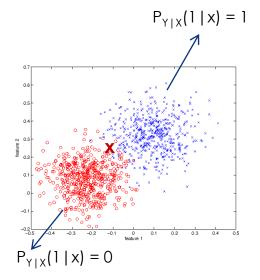


and applying Bayes rule

$$\frac{P_{X|Y}(x|0)P_{Y}(0)}{P_{X|Y}(x|1)P_{Y}(1)} > \frac{L[0,1]}{L[1,0]}$$

• which is equivalent to "pick 0" if

$$\frac{P_{X|Y}(x|0)}{P_{X|Y}(x|1)} > T^* = \frac{L[0,1]P_Y(1)}{L[1,0]P_Y(0)}$$



- i.e. we pick 0, when the probability of X given that Y=0 divided by that given Y=1 is greater than a threshold
- the optimal threshold T* depends on the costs of the two types of error and the probabilities of the two classes

BDR for 0-1 loss

Iet's consider the "0-1" loss

$$L[g(x), y] = \begin{cases} 1, & g(x) \neq y \\ 0, & g(x) = y \end{cases}$$

• in this case the optimal decision function is $g^{*}(x) = \arg\min \sum P_{Y|X}(i \mid x) L[g(x), i]$ $g(x) \quad \overline{i-1}$ $= \arg \min \sum P_{Y|X}(i \mid x)$ $g(x) = i \neq g(x)$ $= \arg\min\left[1 - P_{Y|X}(g(x) \mid x)\right]$ g(x) $= \arg \max P_{Y|X}(g(x) \mid x)$ g(x) $= \arg \max P_{Y|X}(i \mid x)$

BDR for 0-1 loss

for the "0-1" loss the optimal decision rule is the maximum a-posteriori probability rule

$$g^*(x) = \arg\max_i P_{Y|X}(i \mid x)$$

what is the associated risk?

$$R^{*} = \int P_{X}(x) \sum_{i=1}^{M} P_{Y|X}(i \mid x) L[g^{*}(x), i] dx$$

= $\int P_{X}(x) \sum_{i \neq g^{*}(x)}^{M} P_{Y|X}(i \mid x) dx$
= $\int P_{X}(x) P_{Y|X}(y \neq g^{*}(x) \mid x) dx$
= $\int P_{Y,X}(y \neq g^{*}(x), x) dx$

BDR for 0-1 loss

$$R^* = \int P_{Y,X}(y \neq g^*(x), x) dx$$

- is just the probability of error of the decision rule $g^*(x)$
- note that the same result would hold for any g(x), i.e. R would be the probability of error of g(x)
- this implies the following
- ▶ for the "0-1" loss
 - the Bayes decision rule is the MAP rule

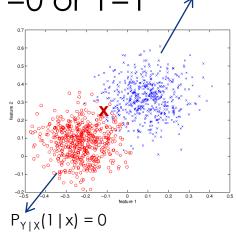
$$g^*(x) = \arg\max_i P_{Y|X}(i \mid x)$$

- the risk is the probability of error of this rule (Bayes error)
- there is no other decision function with lower error

MAP rule

- usually can be written in a simple form given a probabilistic model for X and Y
- consider the two-class problem, i.e. Y=0 or $Y=1^{\frac{1}{1}}$

$$f(\mathbf{X}) = \arg \max_{i} P_{Y|X}(i \mid \mathbf{X})$$
$$= \begin{cases} 0, & \text{if } P_{Y|X}(0 \mid \mathbf{X}) \ge P_{Y|X}(1 \mid \mathbf{X}) \\ 1, & \text{if } P_{Y|X}(0 \mid \mathbf{X}) < P_{Y|X}(1 \mid \mathbf{X}) \end{cases}$$



- pick "0" when $P_{Y|X}(0|x) \ge P_{Y|X}(1|x)$ and "1" otherwise
- using Bayes rule $P_{Y|X}(0|x) \ge P_{Y|X}(1|x) \Leftrightarrow$ $\frac{P_{X|Y}(x|0)P_Y(0)}{P_X(x)} \ge \frac{P_{X|Y}(x|1)P_Y(1)}{P_X(x)}$

MAP rule

- noting that $P_{\chi}(x)$ is a non-negative quantity this is the same as
- pick "0" when

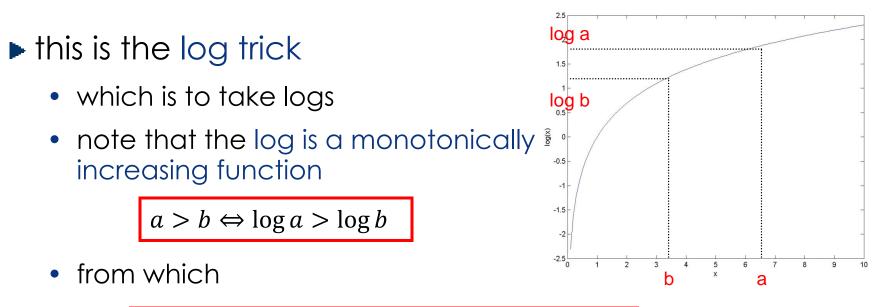
 $P_{X|Y}(x|0)P_Y(0) \ge P_{X|Y}(x|1)P_Y(1)$

by using the same reasoning, this can be easily generalized to

$$i^{*}(\boldsymbol{X}) = \arg\max_{i} P_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{X} \mid i) P_{\boldsymbol{Y}}(i)$$

- note that:
 - many class-conditional distributions are exponential (e.g. the Gaussian)
 - this product can be tricky to compute (e.g. the tail probabilities are quite small)
 - we can take advantage of the fact that we only care about the order of the terms on the right-hand side

The log trick



$$i^{*}(x) = \arg \max_{i} P_{X|Y}(x \mid i) P_{Y}(i)$$

=
$$\arg \max_{i} \log \left(P_{X|Y}(x \mid i) P_{Y}(i) \right)$$

=
$$\arg \max_{i} \log P_{X|Y}(x \mid i) + \log P_{Y}(i)$$

• the order is preserved

MAP rule

▶ in summary

- for the zero/one loss, the following three decision rules are
- optimal and equivalent

• 1)
$$i^{*}(x) = \arg \max_{i} P_{Y|X}(i | x)$$

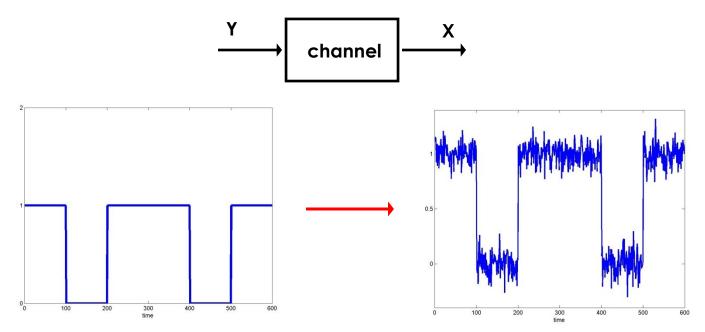
• 2)
$$i^{*}(x) = \arg \max_{i} \left[P_{X|Y}(x \mid i) P_{Y}(i) \right]$$

• 3)
$$i^{*}(X) = \arg \max_{i} \left[\log P_{X|Y}(X \mid i) + \log P_{Y}(i) \right]$$

• 1) is usually hard to use, 3) is frequently easier than 2)

the Bayes decision rule is usually highly intuitive

- example: communications
 - a bit is transmitted by a source, corrupted by noise, and received by a decoder

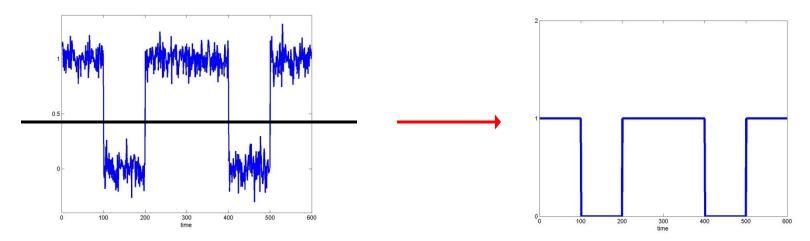


• Q: what should the optimal decoder do to recover Y?

intuitively, it appears that it should just threshold X

• pick T

• decision rule
$$Y = \begin{cases} 0, & \text{if } x < T \\ 1, & \text{if } x > T \end{cases}$$



- what is the threshold value?
- let's solve the problem with the BDR

▶ we need

- class probabilities:
 - in the absence of any other info let's say

$$P_Y(0) = P_Y(1) = \frac{1}{2}$$

- class-conditional densities:
 - noise results from thermal processes, electrons moving around and bumping each other
 - a lot of independent events that add up
 - by the central limit theorem it appears reasonable to assume that the noise is Gaussian

 \blacktriangleright we denote a Gaussian random variable of mean μ and variance σ^2 by

$$X \sim N(\mu, \sigma^2)$$

the Gaussian probability density function is

$$P_X(x) = G(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

since noise is Gaussian, and assuming it is just added to the signal we have

$$\xrightarrow{\mathbf{Y}} \quad \text{channel} \xrightarrow{\mathbf{X}} \quad X = Y + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

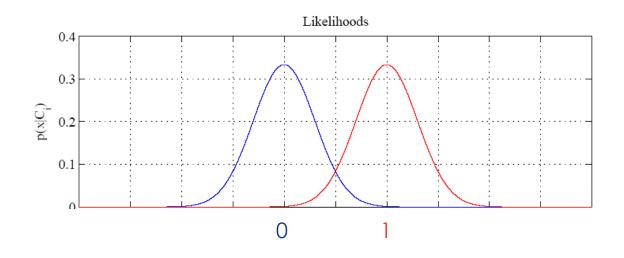
- in both cases, X corresponds to a constant (Y) plus zeromean Gaussian noise
- this simply adds Y to the mean of the Gaussian

▶ in summary

$$P_{X|Y}(x \mid 0) = G(x,0,\sigma)$$
$$P_{X|Y}(x \mid 1) = G(x,1,\sigma)$$

$$P_{Y}(0) = P_{Y}(1) = \frac{1}{2}$$

• or, graphically,



▶ to compute the BDR, we recall that

$$i^{*}(\mathbf{X}) = \arg\max_{i} \left[\log P_{X|Y}(\mathbf{X} \mid i) + \log P_{Y}(i) \right]$$

and note that

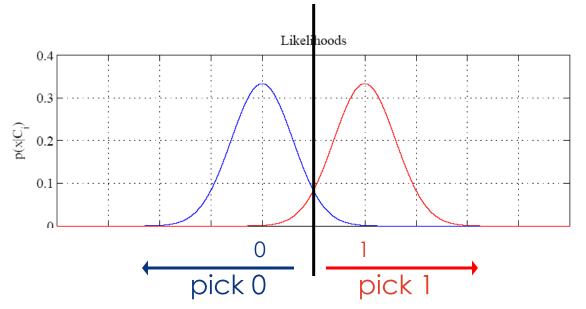
- terms which are constant (as a function of i) can be dropped
- since we are just looking for the i that maximizes the function
- since this is the case for the class-probabilities

$$P_Y(0) = P_Y(1) = \frac{1}{2}$$

• we have $i^*(x) = \arg\max_i \log P_{X|Y}(x|i)$

this is intuitive

- we pick the class that "best explains" (gives higher probability) the observation
- in this case, we can solve visually



• but the mathematical solution is equally simple

Iet's consider the more general case

$$P_{X|Y}(x|0) = G(x, \mu_0, \sigma)$$
 $P_{X|Y}(x|1) = G(x, \mu_1, \sigma)$

• for which

$$i^{*}(x) = \arg\max_{i} \log P_{X|Y}(x \mid i)$$

$$= \arg\max_{i} \log \left\{ \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-\mu_{i})^{2}}{2\sigma^{2}}} \right\}$$

$$= \arg\max_{i} \left\{ -\frac{1}{2} \log(2\pi\sigma^{2}) - \frac{(x-\mu_{i})^{2}}{2\sigma^{2}} \right\}$$

$$= \arg\min_{i} \frac{(x-\mu_{i})^{2}}{2\sigma^{2}}$$

• or
$$i^* = \arg\min_i \frac{(x-\mu_i)^2}{2\sigma^2}$$

= $\arg\min_i (x^2 - 2x\mu_i + {\mu_i}^2)$
= $\arg\min_i (-2x\mu_i + {\mu_i}^2)$

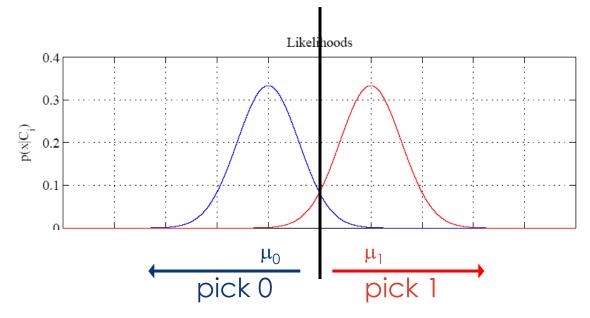
- the optimal decision is, therefore
 - pick 0 if

$$-2x\mu_0 + {\mu_0}^2 < -2x\mu_1 + {\mu_1}^2$$
$$2x(\mu_1 - \mu_0) < {\mu_1}^2 - {\mu_0}^2$$

• or, pick 0 if

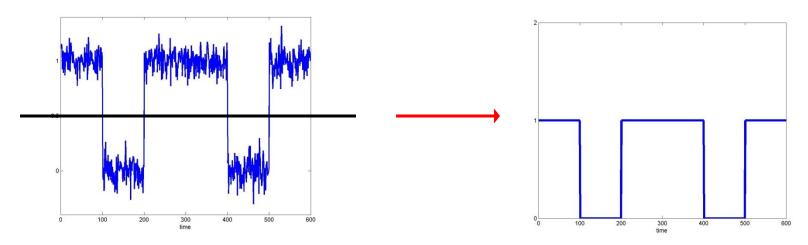
$$x < \frac{\mu_1 + \mu_0}{2}$$

- for a problem with Gaussian classes, equal variances and equal class probabilities
 - optimal decision boundary is the threshold
 - at the mid-point between the two means



back to our signal decoding problem

- in this case T = 0.5
- decision rule $Y = \begin{cases} 0, & \text{if } x < 0.5 \\ 1, & \text{if } x > 0.5 \end{cases}$



- this is, once again, intuitive
- we place the threshold midway along the noise sources

what is the point of going through all the math?

- now we know that the intuitive threshold is actually optimal, and in which sense it is optimal (minimum probability or error)
- the Bayesian solution keeps us honest.
- it forces us to make all our assumptions explicit
- assumptions we have made
 - uniform class probabilities
 - Gaussianity
 - the variance is the same under the two states
 - noise is additive
- even for a trivial problem, we have made lots of assumptions

$$P_Y(0) = P_Y(1) = \frac{1}{2}$$

$$P_{X|Y}(x \mid i) = G(x, \mu_i, \sigma_i)$$

$$\sigma_i = \sigma, \forall i$$

$$X = Y + \varepsilon$$

what if the class probabilities are not the same?

- e.g. coding scheme 7 = 11111110
- in this case $P_{\gamma}(1) >> P_{\gamma}(0)$
- how does this change the optimal decision rule?

$$i^{*}(x) = \arg \max_{i} \left\{ \log P_{X|Y}(x \mid i) + \log P_{Y}(i) \right\}$$

= $\arg \max_{i} \left\{ \log \left\{ \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-\mu_{i})^{2}}{2\sigma^{2}}} \right\} + \log P_{Y}(i) \right\}$
= $\arg \max_{i} \left\{ -\frac{1}{2} \log(2\pi\sigma^{2}) - \frac{(x-\mu_{i})^{2}}{2\sigma^{2}} + \log P_{Y}(i) \right\}$
= $\arg \min_{i} \left\{ \frac{(x-\mu_{i})^{2}}{2\sigma^{2}} - \log P_{Y}(i) \right\}$

• or
$$i^* = \arg\min_i \left\{ \frac{(x - \mu_i)^2}{2\sigma^2} - \log P_Y(i) \right\}$$

= $\arg\min_i (x^2 - 2x\mu_i + \mu_i^2 - 2\sigma^2 \log P_Y(i))$
= $\arg\min_i (-2x\mu_i + \mu_i^2 - 2\sigma^2 \log P_Y(i))$

- the optimal decision is, therefore
 - pick 0 if

$$-2x\mu_0 + {\mu_0}^2 - 2\sigma^2 \log P_Y(0) < -2x\mu_1 + {\mu_1}^2 - 2\sigma^2 \log P_Y(1)$$

$$2x(\mu_1 - \mu_0) < {\mu_1}^2 - {\mu_0}^2 + 2\sigma^2 \log \frac{P_Y(0)}{P_Y(1)}$$

• or, pick 0 if

$$x < \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{\mu_1 - \mu_0} \log \frac{P_Y(0)}{P_Y(1)}$$

what is the role of the prior for class probabilities?

$$x < \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{\mu_1 - \mu_0} \log \frac{P_Y(0)}{P_Y(1)}$$

- the prior moves the threshold up or down, in an intuitive way
 - P_Y(0)>P_Y(1) : threshold increases
 - since 0 has higher probability, we care more about errors on the 0 side
 - by using a higher threshold we are making it more likely to pick 0
 - if P_Y(0)=1, all we care about is Y=0, the threshold becomes infinite
 - we never say 1
- how relevant is the prior?
 - it is weighed by

$$\frac{1}{\mu_1 - \mu_0} \frac{1}{\sigma^2}$$

how relevant is the prior?

• it is weighed by the inverse of the normalized distance between the means

$$\frac{1}{\mu_1 - \mu_0} \sigma^2$$

distance between the means in units of variance

- if the classes are very far apart, the prior makes no difference
 - this is the easy situation, the observations are very clear, Bayes says "forget the prior knowledge"
- if the classes are exactly equal (same mean) the prior gets infinite weight
 - in this case the observations do not say anything about the class, Bayes says "forget about the data, just use the knowledge that you started with"
 - even if that means "always say 0" or "always say 1"

