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Bayesian decision theory

recall that we have

• Y – state of the world

• X – observations

• g(x)  – decision function

• L[g(x),y] – loss of predicting y with g(x)

the expected value of the loss is called the risk

• which can be written as
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Bayesian decision theory

• from this

• by chain rule

• where

• is the conditional risk, given the observation x 
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Bayesian decision theory

• since, by definition,

• it follows that

• Also, the

is minimum if we minimize R(x) at all x, i.e., if we use pick the 
decision function
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Bayesian decision theory

this is the Bayes decision rule

• the associated risk 

• or

• is the Bayes risk, and cannot be beaten
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Example 

let’s consider a binary classification problem

• for which the conditional risk is

• we have two options

• and should pick the one of smaller conditional risk
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Example 

• i.e. pick g(x) = 0 if R0(x) < R1(x) and g(x)=1 otherwise

• this can be written as, pick 0 if

• or

• usually there is no loss associated with the correct decision

• and this is the same as
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Example 

• or, “pick 0” if

• and applying Bayes rule

• which is equivalent to “pick 0” if

• i.e. we pick 0, when the probability of X given that Y=0 divided
by that given Y=1 is greater than a threshold

• the optimal threshold T* depends on the costs of the two types 
of error and the probabilities of the two classes
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BDR for 0-1 loss

let’s consider the “0-1” loss

• in this case the optimal decision function is
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BDR for 0-1 loss

for the “0-1” loss the optimal decision rule is the 
maximum a-posteriori probability rule

what is the associated risk?
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BDR for 0-1 loss

but

• is just the probability of error of the decision rule g*(x)

• note that the same result would hold for any g(x), i.e. R 
would be the probability of error of g(x)

• this implies the following

for the “0-1” loss

• the Bayes decision rule is the MAP rule

• the risk is the probability of error of this rule (Bayes error)

• there is no other decision function with lower error
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MAP rule

usually can be written in a simple form given a 
probabilistic model for X and Y

consider the two-class problem, i.e. Y=0 or Y=1

• the BDR is

• pick “0” when  and “1” otherwise

• using Bayes rule
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MAP rule

• noting that PX(x) is a non-negative quantity this is the same as

• pick “0” when

by using the same reasoning, this can be easily 
generalized to

• note that:

• many class-conditional distributions are exponential (e.g. the 
Gaussian) 

• this product can be tricky to compute (e.g. the tail probabilities 
are quite small)

• we can take advantage of the fact that we only care about the 
order of the terms on the right-hand side

𝑃𝑋|𝑌(𝑥|0)𝑃𝑌(0) ≥ 𝑃𝑋|𝑌(𝑥|1)𝑃𝑌(1)
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The log trick

this is the log trick

• which is to take logs

• note that the log is a monotonically 
increasing function

• from which

• the order is preserved

𝑎 > 𝑏 ⇔ log 𝑎 > log 𝑏
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MAP rule

in summary

• for the zero/one loss, the following three decision rules are

• optimal and equivalent

• 1)

• 2)

• 3)

• 1) is usually hard to use, 3) is frequently easier than 2)
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Example

the Bayes decision rule is usually highly intuitive

example: communications

• a bit is transmitted by a source, corrupted by noise, and 
received by a decoder

• Q: what should the optimal decoder do to recover Y?

channel
Y X
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Example

intuitively, it appears that it should just threshold X

• pick T

• decision rule

• what is the threshold value?

• let’s solve the problem with the BDR
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Example

we need

• class probabilities: 

• in the absence of any other info let’s say

• class-conditional densities:

• noise results from thermal processes, electrons  moving around 
and bumping each other

• a lot of independent events that add up

• by the central limit theorem it appears reasonable to assume 
that the noise is Gaussian

we denote a Gaussian random variable of mean m
and variance s2 by

𝑃𝑌(0) = 𝑃𝑌(1) = ൗ1 2

𝑋~𝑁(𝜇, 𝜎2)
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Example

the Gaussian probability density function is

since noise is Gaussian, and assuming it is just added 
to the signal we have

• in both cases, X corresponds to a constant (Y) plus zero-
mean Gaussian noise

• this simply adds Y to the mean of the Gaussian
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Example

in summary

• or, graphically,
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Example

to compute the BDR, we recall that

and note that 

• terms which are constant (as a function of i) can be
dropped

• since we are just looking for the i that maximizes the 
function

• since this is the case for the class-probabilities

• we have 
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BDR

this is intuitive

• we pick the class that “best explains” (gives higher 
probability) the observation

• in this case, we can solve visually

• but the mathematical solution is equally simple
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BDR

let’s consider the more general case

• for which
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BDR

• or

• the optimal decision is, therefore

• pick 0 if

• or, pick 0 if
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BDR

for a problem with Gaussian classes, equal 
variances and equal class probabilities

• optimal decision boundary is the threshold

• at the mid-point between the two means
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BDR

back to our signal decoding problem

• in this case T = 0.5

• decision rule

• this is, once again, intuitive

• we place the threshold midway along the noise sources
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BDR
what is the point of going through all the math?

• now we know that the intuitive threshold is actually optimal, 
and in which sense it is optimal (minimum probability or 
error)

• the Bayesian solution keeps us honest.

• it forces us to make all our assumptions explicit

• assumptions we have made

• uniform class probabilities

• Gaussianity

• the variance is the same under the two states

• noise is additive

• even for a trivial problem, we have made lots of 
assumptions
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BDR

what if the class probabilities are not the same?

• e.g. coding scheme  7 = 11111110

• in this case PY(1) >> PY(0)

• how does this change the optimal decision rule?
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BDR

• or

• the optimal decision is, therefore

• pick 0 if

• or, pick 0 if
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BDR
what is the role of the prior for class probabilities?

• the prior moves the threshold up or down, in an intuitive way

• PY(0)>PY(1) : threshold increases

• since 0 has higher probability, we care more about errors on the 
0 side

• by using a higher threshold we are making it more likely to pick 0

• if PY(0)=1, all we care about is Y=0, the threshold becomes 
infinite

• we never say 1

• how relevant is the prior?

• it is weighed by 
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BDR
how relevant is the prior?

• it is weighed by the inverse of the normalized distance 
between the means

• if the classes are very far apart, the prior makes no 
difference

• this is the easy situation, the observations are very clear, Bayes 
says “forget the prior knowledge”

• if the classes are exactly equal (same mean) the prior gets 
infinite weight

• in this case the observations do not say anything about the 
class, Bayes says “forget about the data, just use the 
knowledge that you started with”

• even if that means “always say 0” or “always say 1”
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