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Bayesian decision theory

» recall that we have

e Y —state of the world
e X —observations
e g(x) —decision function
* L[g(x),y] — loss of predicting y with g(x)
» the expected value of the loss is called the risk

Risk=E, , [L(X,Y)]

e which can be written as

Risk = ji R,  (i,x)L[g(x),ildx



Bayesian decision theory

Pyix(11x) =1

e from this

Risk = ji R,  (i,x)L[g(x),ildx

by chain rule
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Risk = : P, (x)i P x (1 X)L[g(x), 1]dx

Pyix(11x) =0

= : P, (X)R(x)dx = E, [R(X)]

e where

RO =2 R ( DOLLG 0.1

e is the conditional risk, given the observation x



Bayesian decision theory

e since, by definition,

L[g(x),1]=0, VX,V
e it follows that

R(X) =Y R (i1 X)L[9(x),i]=0, Vx
i=1

e Also, the

Risk = E, [R(X)]

is minimum if we minimize R(x) at all x, i.e., if we use pick the
decision function

g (x)=argmin > R, (i| x)L[g(x),i]

g(x) i=1




Bayesian decision theory

» this is the Bayes decision rule

g (x)=argmin > R, (i| x)L[g(x),i]

g(x) i=1

which decision rule has
smaller conditional risk?

* the associated risk

R" = ji P, (i, X)L[g"(x), ildx

R =[P (03 P i) LLG" (),

e is the Bayes risk, and cannot be beaten




Example

: : : - : Peix(11x) =1
» let’s consider a binary classification problem '/
" T
g (x) e{0,1} %ﬁ

e for which the conditional risk is

1
R() = ) Py (I0LIg (), ]
i=0

= Py|x(0|x)L[g(x),0] + Pyx(1|x)L[g(x), 1]
e we have two options
g(x) = 0= Ry(x) = Pyx(0|x)L[0,0] + Py|x(1[x)L[0,1]
g(x) =1= Ry(x) = Py x(0|x)L[1,0] + Pyx(1|x)L[1,1]

* and should pick the one of smaller conditional risk



Example

e i.e.pick g(x) =0if Ry(x) < R;(x) and g(x)=1 otherwise
this can be written as, pick O if

R (O1X)LIO,0]+ Ry (L] X)L[0] <
<Py (O1X)LILOT+ R, (L ¥)LILY]

°* Or
P,ix (O] X){L[0,0]- L[1,0]} <

< Py (@] X){L[L1] - L[01]}
usually there is no loss associated with the correct decision
L[11] =L[0,0]=0
e and this is the same as
P x (O X)L[L0] > R, x (1] x)L[0,1]
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P\/\x(YlX):M

P (X)
Example
e or, “pick 0" if Rx (0]x) § L[0,1] ST
* and applying Bayes rule W% |
S
Pyy (X]0)R, (0) . L[0,1] 5 %ﬁ?}’%w ‘

Pey (XIDR (1) L[1,0]
e which is equivalent to “pick 0" if

Pyix(11x) =0

P (X10) - LI0AIR, (1)
P (1)~ LILOIR (0

e i.e. we pick 0, when the probability of X given that Y=0 divided
by that given Y=1 is greater than a threshold

e the optimal threshold T* depends on the costs of the two types
of error and the probabilities of the two classes



BDR for O-1 loss

» let’s consider the “0-1" loss

1,
Lig(). y]={O IO

e in this case the op’ril\rpql decision function is
g"(x) =argmin > P, (i [ x)L[g(x),i]

g(x) i=1

=argmin > P, (i]x)

g9(X)  izg(x)

=argmin L-PR (@) %)]
g(x

=arg {r;ax Pix (9(x) | X)
g(x

=argmax R, (1| x)



BDR for O-1 loss

» for the “0-1" loss the optimal decision rule is the
maximum a-posteriori probability rule

g*(x)=argmaxP,, (1]x)

» what is the associated risk?

R*= [P (02 Ry (1 )LLG" () 10X

~ R0 3Py (100X

i=9*(x)
= [P OOR e (y = g * (x) | X)dx

— .' P, « (Y # g*(x), x)dx




BDR for O-1 loss

» but

R*= [ Ry (¥ # g% (X), X)dx

e |sjust the probability of error of the decision rule g*(x)

* note that the same result would hold for any g(x), i.e. R
would be the probability of error of g(x)

 this implies the following
» for the “0-1" loss

 the Bayes decision rule is the MAP rule
g*(x)=argmaxP,, (1]x)

e the risk is the probability of error of this rule (Bayes error)
e there is no other decision function with lower error



MAP rule

» usually can be written in a simple form given a
probabilistic model for X and Y

Pyix(11x) =
» consider the two-class problem, i.e. Y= O orY ] '/
» the BDR is i o N
.k . ° «’??’M«%} x
/ (x)=arg maXPy|)( (/] x) g%ﬁ?@

0, ifA(O0]Xx)=F,1]xX)
L ifB,0]x)<h 1] x)

Pyix(11x) =0

* pick “0” when Pyx(0]x) = Pyix(1]x) and “1” otherwise
* using Bayesrule Py x(0]x) = Pyix(1|x) &
PX|Y(x|O)PY(O) S PX|Y(x|1)PY(1)
Py (x) B Py (x)




MAP rule

e noting that P,(x) is a non-negative quantity this is the same as
e pick “0" when
Py 1y (x[0)Py(0) = Pxy(x]1)Py (1)

» by using the same reasoning, this can be easily
generalized to

" (x) =argmax Py, (x| )R, (1)

e note that:

 many class-conditional distributions are exponential (e.g. the
Gaussian)

 this product can be tricky to compute (e.g. the tail probabilities
are quite small)

* we can take advantage of the fact that we only care about the
order of the terms on the right-hand side



The log trick

» this is the log frick i — :
» which is fo take logs |9;(;[,'"'""i'f/fjjﬁi'lfi‘ """"

* note that the log is @ mono’romcolly 5o
increasing function

a>b s loga>logh

e from which U Ty

/" (x)=arg max Py, (X | 1)F, (/)

=arg maX |Og PX|y (X | /) + Iog Py (/)

e the orderis preserved



MAP rule

» iNn summary
e for the zero/one loss, the following three decision rules are
e optimal and equivalent

c 1) [ =argmax B, (7] x)

. 2) [77(x) =argmax[p,,, (x|/)Py(/)I‘

* 3) [/ (x) =argmax[log Ay, (x | /) +log A, (/)I\

e 1)is usually hard to use, 3) is frequently easier than 2)



Example

» the Bayes decision rule is usually highly infuitive

» example: communications

e q bitis fransmitted by a source, corrupted by noise, and
received by a decoder

Y X
—| channel |—

 Q:what should the optimal decoder do to recover Y¢



Example

» infuitively, it appears that it should just threshold X
e pickT

. 0, If x<T
e decisionrulely =

1, if x>T

ey

. . . 1 I
100 200 300 400 500
time

e whatis the threshold value?
* |let’s solve the problem with the BDR




Example

» We need

e class probabilities:
* in the absence of any other info let’s say

Py(0) = Py(1) = 1/,
e class-conditional densities:

* noise results from thermal processes, electrons moving around
and bumping each other

* alot of independent events that add up

* by the cenftral limit theorem it appears reasonable to assume
that the noise is Gaussian

» we denote a Gaussian random variable of mean pu
and variance o2 by

X~N(u,a?%)




Example

» the Gaussian probability density function is

P, (X) = G(X, 11,0) =

l _(X_ﬂ)z

e

2
270

257

» since noise is Gaussian, and assuming it is just added

to the signal we have

Y
—

channel

X
—

X =Y +g,

g~N(0,0%)

e in both cases, X corresponds to a constant (Y) plus zero-

mean Gaussian noise

e this simply adds Y to the mean of the Gaussian



Example

» in summary

Ith( (x]0) =G(x,0,0)

PXlY (X | ]_) — G(X,l, 0) R (0)=R )= %

e or, graphically,

Likelihoods
I
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Example

» TO compute the BDR, we recall that

/" (x) =argmax(log Py, (x | /) +log A, (/)l\

» and note that

e ferms which are constant (as a function of i) can be
dropped

e since we are just looking for the i that maximizes the
function

e since this is the case for the class-probabilities

PO)=R1=1

» we have i"(x) =argmax log Py, (x|i)

21



BDR

» this is infuitive

e we pick the class that “best explains™ (gives higher
probability) the observation

* in this case, we can solve visually

o Likelfhoods
03h NN ]
T aaf e N N |
oLb /\ ______________________________________ ]
0 1
pick O pick 1

* but the mathematical solution is equally simple
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BDR

» let’s consider the more general case

PX|Y(X|O):G(XHUO’G) Py (X]|1) =G(X, 14,0)

 for which

i"(x) = argmax log P, (x]i)

( 2 M)

1 ~(X=g)

2072

= arg max log-

e
i \ 270t

.

— 7/ 2
— arg _rnax{—%log(Zymz) - (Xz “2') }

'

i O

 (X= 1)’
= dallg min
gi 20°



BDR

2
: . (X— 4
©or |*=argm|n( /12.)
i 20

= argmin (x> —2Xu, + 4"
= argmin (—2xu; + 11,°)
e the optimal decision is, therefore
e pick Oif
— 2Xpy + ﬂoz < =2Xpy + ﬂlz
2 2
2X(4h — o) < 14" — 1y
e or, pick Oif

<ttt
2
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BDR

» for a problem with Gaussian classes, equal
variances and equal class probabilities

e optimal decision boundary is the threshold
e atf the mid-point between the two means

Likelthoods
0.4

p(x (."i}
(=)

pick O pick 1

25



BDR

» back to our signal decoding problem

e inthiscaseT=0.5
e decision rule {O, if Xx<0.5

11 if x>05

ulualli

. . . 1 I
100 200 300 400 500
time

e thisis, once again, intuitive
* we place the threshold midway along the noise sources




BDR

» what is the point of going through all the mathe

now we know that the intuitive threshold is actually optimal,
and in which sense it is optimal (minimum probability or

error)

the Bayesian solution keeps us honest.

it forces us to make all our assumptions explicit
assumptions we have made

« uniform class probabilities R(O)=R®=1
e Gaussianity Py (x|1) =G(x, 1,0))
* the variance is the same under the two states o, =0,Vi
* noise is additive X=Y+¢g

even for a trivial problem, we have made lots of
assumptions
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BDR

» what if the class probabilities are not the same®e
e e.g.codingscheme 7=11111110

* in this case Py(1) >> P(0O)
 how does this change the optimal decision rule?

i (x)=arg _max{log Py (X]1)+log R, (i)}

1 _(X—#i)2
= argmax| log e 2 t+logP, (i)

i 270"

= arg max{—% log(275°) - (= p4)° +log R, (i)}

i 20'2

—arg _min{(xz“ﬁ)2 “log P, (i)}

i O

28



BDR

e or i"<:arg_rnin{(xz_ﬂ‘)2 —log P, (i)}

2
|

= arg min (x2 —2Xu; + ,uiz —20° log R, (1))
=arg min(-2xy; + " =202 log R, (i)

e the optimal decision is, therefore
e pick Oif
—2Xpy + py. — 202 log R, (0) < —2Xu, + 11,° —25% log P, (1)
R (0)
R @)

2X (4 = M) < “w _fuo2 +20° log
e or, pick O if

2
X < lul +/’IO + o Iog PY (O)
2 My — Hy P (1)




BDR

» what is the role of the prior for class probabilities?

2
y <t T Ho +_9 log R, (0)
2 H — Hy P Q)

e the prior moves the threshold up or down, in an intuitive way

* Py (0)>Py(1) : threshold increases

e since 0 has higher probability, we care more about errors on the
O side

e by using a higher threshold we are making it more likely to pick O

e if Py(0)=1, all we care about is Y=0, the threshold becomes
infinite

* we never say |
e how relevant is the priore

* it is weighed by
H— Hy
o
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BDR

» how relevant is the priore

e it is weighed by the inverse of the normalized distance
between the means

H— Hy ’
LY @s’ropce be’ryveen the means
o in units of variance

e if the classes are very far apart, the prior makes no
difference

* this is the easy situation, the observations are very clear, Bayes
says “forget the prior knowledge”

e if the classes are exactly equal (same mean) the prior gets
infinite weight
* in this case the observations do not say anything about the

class, Bayes says “forget about the data, just use the
knowledge that you started with”

e even if that means “always say 0" or “always say 1"
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