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Bayesian parameter estimation

 the main difference with respect to ML is that in the
Bayesian case @is a random variable

* basic concepts
— training set ® = {Xx, , ..., X} of examples drawn independently

— probability density for observations given parameter

Pyio (X]6)

— prior distribution for parameter configurations

Po (6)
that encodes prior beliefs about them

e goal: to compute the posterior distribution

Pox (€] D)




Bayes vs ML

 there are a number of significant differences between
Bayesian and ML estimates

e D;:
— ML produces a number, the best estimate
— to measure its goodness we need to measure bias and variance

— this can only be done with repeated experiments

— Bayes produces a complete characterization of the parameter
from the single dataset @~ A R

— In addition to the most
probable estimate, we
obtain a characterization

of the uncertainty i m\
/ |
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Bayes vs ML

oD2
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. optimal estimate

under ML there is one “best” estimate
under Bayes there is no “best” estimate

only a random variable that takes different values with different
probabilities

technically speaking, it makes no sense to talk about the “best
estimate

. predictions

remember that we do not really care about the parameters
themselves

they are needed only in the sense that they allow us to build
models

that can be used to make predictions (e.g. the BDR)

unlike ML, Bayes uses ALL information in the training set to
make predictions



Bayes vs ML

e |let’'s consider the BDR under the “0-1" loss and an
iIndependent sample © = {X, , ..., X,}

 ML-BDR:
— pick i if

i"(x) = argmax Py, (x |i; Qi*)PY (i)

where & =argmax Py, (D|i,6)
0

« two steps:
— i) find &
— i) plug into the BDR

o all information not captured by & is lost, not used at
decision time



Bayesian BDR

o this problem is avoided by Bayesian estimates
— pickiif

i"(x) = argmax Py, - (x]i, D, )R, (i)

where Py, (x]i,D; )= [ Pyy o (X]1,0)P0y - (011, D, 0@

* note:
— as before the bottom equation is repeated for each class
— hence, we can drop the dependence on the class
— and consider the more general problem of estimating

Par (X D)= [ Pyo (x| 6)Por (0] D)6




The predictive distribution

e the distribution
Par (X[ D)= [ Pyo (x| 0)Por (0] D)dO

IS known as the predictive distribution

* this follows from the fact that it allows us
— to predict the value of x
— given ALL the information available in the training set

e note that it can also be written as
PX|T (X| D): E®|T lPX|®(X|‘9)|T — DJ

— since each parameter value defines a model
— this is an expectation over all possible models

— each model is weighted by its posterior probability, given training
data



The predictive distribution

e suppose that

PX|®(X|‘9)~ N(H,l) and Porr (‘9| D)~ N(:U’GZ)

weight r,

1 PX|T (X | D)
weight =,

weight =,

>
H H M H H Ky

 the predictive distribution is an average of all these
Gaussians |p (x|D)= [P,(x| 0., (0] D)0




The predictive distribution

 Bayes vs ML
— ML: pick one model
— Bayes: average all models

e are Bayesian predictions very different than those of ML?
— they can be, unless the prior is narrow

P®|T (‘9 | D) P®|T (‘9 | D)

9 o 9 6

max max

Bayes ~ ML very different



MAP approximation

* this sounds good, why use ML at all?
« the main problem with Bayes is that the integral

Par (X D)= [ Po (x| 6)Por (0] D)6

can be quite nasty
* In practice one is frequently forced to use approximations
» one possibility is to do something similar to ML, I.e. pick
only one model

* this can be made to account for the prior by

— picking the model that has the largest posterior probability given
the training data

Ounp = r9 gnax P®|T (‘9 | D)
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MAP approximation

o this can usually be computed since

Oune =G gnax P®|T (‘9 | D)

=argmax P, , (D |9)P, ()
0

and corresponds to approximating the prior by a delta
function centered at its maximum

P®|T (‘9 | D) P®|T (‘9 | D)

WANN

QMAP

0
Ovap 11



MAP vs ML

« ML-BDR
— pickiif [ P v
I (x) =arg max Py (x |1; 6. )PY (1)

where & =argmax Py, (D|i,6)
0

. Bayes MAP-BDR
— pick i if

i"(x) = argmax Py, (x |i; 0 R, (i)

where """ =arg max Pryo(D11,0)Pyy (611)

— the difference is non-negligible only when the dataset is small
 there are better alternative approximations



Example

* |let’'s consider an example of why Bayes is usefull

e example: communications

— a bit is transmitted by a source, corrupted by noise, and received
by a decoder

—| channel |———

500 600

Hrne 500 600

- Q What should the optimal decoder do to recover Y’>
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Example

 the optimal solution is to threshold X
— pick T
— decision rule

B 0, Ifx<T
1 ifx>T

W

"o

100 200 300 400 500 500
time

— what is the threshold? y < L+ Uy
— the midpoint between signal values 2




Example

» today we consider a slight variation

atmosphere —— receiver

o still:
— two states:
= Y=0 transmit signal s = -p,
= Y=1 transmit signal s = p,
— same noise model

X=Y+e, &~N(0,c°)




Example

e the BDR is siill
— pick “0” if

X < :uo_l_g_zuo):O

— this is optimal and everything works wonderfully

— one day we get a phone call: the receiver is generating a lot of
errors!

— something must have changed in the rover
— there is no way to go to Mars and check

e goal: to do as best as possible with the info that we have
at X and our knowledge of the system



Example

e what we know:

— the received signal is Gaussian, with same variance ¢, but the
means have changed

— there is a calibration mode:
= rover can send a test sequence
» put it is expensive, can only send a few bits

— if everything is normal, received means should be x, and —,

e action:
— ask the system to transmit a few 1s and measure X
— compute the ML estimate of the mean of X

1
H—HZXi

« result: the estimate Is different than g
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Example

e we need to combine two forms of information

— our prior is that X ~ N(u 02)
0!

— our “data driven” estimate is that ~
X ~N(i,0")

e Q: what do we do?

B /un = f(lLAlHUO’n)

— for large n,

H, =~ f (1)

— for small n,

= T (1)

— intuitive combination L= i+ (1— a, ),uo

a, €[01], o —1 a,—0

n—o0 n—0
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Bayesian solution

e Gaussian likelihood (observations)

P (D] ) =G(D, u,0°)

o%is known

e Gaussian prior (what we know)

P.(12) = G (1, 1y, 57)

— Ug,0,% are known hyper-parameters

e we need to compute
— posterior distribution for p

P (D] )P, (1)

P (4] D) =

Py (D)
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Bayesian solution

 posterior distribution

P (D] )P, (1)

P
P, (D)

(1| D) =

 note that
— this is a probability density
— we can ignore constraints (terms that do not depend on L)
— and normalize when we are done

e we only need to work with
Pr (1| D) oc By, (D] 1)P, (1)
x H P (X | £0)P,, (1)
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Bayesian solution

 plugging in the Gaussians
Pur (| D)o | [ Py, (x| )P, (w)

OCHG(X,-,,U,UZ)G(,UHUO’GOZ)

oC exp<

oC €XP5
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Bayesian solution

/ZX_ )
P (1£] D) oc exps - n2+ 12 pi+2 —+ ’UOZ 1
g 20° 20, 20° 20,
\ J

o this is a Gaussian, we just need to put it in the standard
guadratic form to know its mean and variance

* use the completing the squares trick

ax2+2bx+(::a(x2+29x+£j
a a

R ORHI R G
=al X +2—X+|—| —|—| +—|=a X+—| +C——
a a a a a a



Bayesian solution

e In this case

(Y x )

P (u|D)ocexps- N + 1 T [ — o
" 267 20 262 207
\ J
2 y) 2

ax2+2bx+c:a(x+9j +C—b—oca x+9)

a a a

e we have

n 1 {
PﬂT(,Ll|D)OCeXp<-£2 2+ 2) u—

o 20,
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Bayesian solution

e and using N 1 265267
1/ t+— | =
20° 20} (G +n00)
e we have ) i -2)
Pur (4 20°  20¢ H o’ +no; 20°0;
- _ , 5 =2
26252 |l Oy in + 1O
o expi -| — 0 _ - l2 > >
o°+no; o +No,
e and ‘ ) ]
O X + UO
(ﬂl D) G(lu » ) - Ozi: i T o 02 B 020'5
P n " o'2+n65 o +No,




Bayesian solution

e this can be rewritten as

P (] D)=G(ﬂ,ﬂn,0§)

2 2
GOZXi T 4O
i

Hy = =

o’ +no

, [ o‘o,
on = — - | =
o +No;

no, o
— 2 > Hu T— 2
o’ +no, o’ +no,
C;fn 1_\g5n
1 N n
2 2
c, O

e We can compare with our “intuitive” solution




Bayesian solution

* we had Hy = an:[l-l_(l_an )luO
a,€[0]], o —1 a,—0

N—o0 n—0
 the Bayesian solution is
no: . o
Hy = Ha Ho
" o’+no o’ +Nnog
C;fn 1_\g5n

e note that |, €[01], «, 1 «a,—0

n—o0 n—0

* it IS exactly the same as our heuristic



Bayesian solution

o for free, Bayes also gives us
— the weighting constants

2
no,

a, =

o’ +not

— a measure of the uncertainty of our estimate

1_1+n
Gf 05 o

— note that 1/c? is a measure of precision
— this should be read as
P = F)ML + I:)prior
— Bayesian precision is greater than both that of ML and prior

Bayes
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Observations

— 1) note that precision increases with n, variance goes to zero

1 1 n

2 2 2
n 00 o

O

we are guaranteed that in the limit of infinite data we have
convergence to a single estimate

— 2) for large n the likelihood term dominates the prior term
Hn = an/:\l T (1_ o, )luO
a, €[01], o —1 a,—0

n—o0 n—0

the solution is equivalent to that of ML
—  for small n, the prior dominates
—  this always happens for Bayesian solutions

Pr (1] D) o< | [ Py, (% [ )P, (1)
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Observations

— 3) fora given n

ncg Hy, :an:[l-l_(l_an):uO

o =
" o'+no! a,€[01], «o,—->1 a,—>0
0 Nn—o0 n—0

If 6,2>>02, i.e. we really don’t know what p is a priori
then Hn = HmL

— on the other hand, if 5,°<<c?, i.e. we are very certain a priori,
then Hn = Ho

e In summary,

— Bayesian estimate combines the prior beliefs with the evidence
provided by the data

— In a very intuitive manner
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