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Bayesian parameter estimation
• the main difference with respect to ML is that in the 

Bayesian case Θ is a random variable
• basic concepts

– training set D = {x1 , ..., xn} of examples drawn independently
– probability density for observations given parameter

– prior distribution for parameter configurations

that encodes prior beliefs about them

• goal: to compute the posterior distribution

)|(| θxPX Θ

)(θΘP

)|(| DP X θΘ

2



Bayes vs ML
• there are a number of significant differences between 

Bayesian and ML estimates
• D1: 

– ML produces a number, the best estimate
– to measure its goodness we need to measure bias and variance
– this can only be done with repeated experiments
– Bayes produces a complete characterization of the parameter 

from the single dataset
– in addition to the most

probable estimate, we
obtain a characterization
of the uncertainty

lower uncertainty

higher uncertainty 3



Bayes vs ML
• D2: optimal estimate

– under ML there is one “best” estimate
– under Bayes there is no “best” estimate
– only a random variable that takes different values with different 

probabilities
– technically speaking, it makes no sense to talk about the “best” 

estimate

• D3: predictions
– remember that we do not really care about the parameters 

themselves
– they are needed only in the sense that they allow us to build 

models
– that can be used to make predictions (e.g. the BDR)
– unlike ML, Bayes uses ALL information in the training set  to 

make predictions
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Bayes vs ML
• let’s consider the BDR under the “0-1” loss and an 

independent sample D = {x1 , ..., xn}
• ML-BDR:

– pick i if

• two steps:
– i) find θ*
– ii) plug into the BDR

• all information not captured by θ* is lost, not used at 
decision time
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Bayesian BDR
• this problem is avoided by Bayesian estimates 

– pick i if

• note: 
– as before the bottom equation is repeated for each class
– hence, we can drop the dependence on the class
– and consider the more general problem of estimating

( )
( ) ( ) ( ) θθθ dDiPixPDixPwhere

iPDixPxi

iTYYXiTYX

YiTYX
i

,|,|,|   

)(,|maxarg)(

,|,|,|

,|
*

ΘΘ∫=

=

( ) ( ) ( ) θθθ dDPxPDxP TXTX ||| ||| ΘΘ∫=

6



The predictive distribution
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• the distribution

is known as the predictive distribution
• this follows from the fact that it allows us 

– to predict the value of x
– given ALL the information available in the training set

• note that it can also be written as

– since each parameter value defines a model
– this is an expectation over all possible models
– each model is weighted by its posterior probability, given training 

data
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The predictive distribution
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• suppose that

• the predictive distribution is an average of all these 
Gaussians
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The predictive distribution
• Bayes vs ML

– ML: pick one model
– Bayes: average all models

• are Bayesian predictions very different than those of ML?
– they can be, unless the prior is narrow

Bayes ~ ML                              very  different
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MAP approximation
• this sounds good, why use ML at all?
• the main problem with Bayes is that the integral

can be quite nasty
• in practice one is frequently forced to use approximations
• one possibility is to do something similar to ML, i.e. pick 

only one model
• this can be made to account for the prior by 

– picking the model that has the largest posterior probability given 
the training data
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MAP approximation
• this can usually be computed since

and corresponds to approximating the prior by a delta 
function centered at its maximum
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MAP vs ML
• ML-BDR

– pick i if

• Bayes MAP-BDR
– pick i if

– the difference is non-negligible only when the dataset is small

• there are better alternative approximations
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Example

• let’s consider an example of why Bayes is usefull
• example: communications

– a bit is transmitted by a source, corrupted by noise, and received 
by a decoder

– Q: what should the optimal decoder do to recover Y?

channel
Y X
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Example

• the optimal solution is to threshold X
– pick T
– decision rule

– what is the threshold?
– the midpoint between signal values
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Example
• today we consider a slight variation

• still:
– two states:

Y=0 transmit signal s = -µ0

Y=1 transmit signal s = µ0

– same noise model

atmosphere
Y X

),0(~      , 2σεε NYX +=

receiver
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Example
• the BDR is still

– pick “0” if

– this is optimal and everything works wonderfully
– one day we get a phone call: the receiver is generating a lot of 

errors!
– something must have changed in the rover
– there is no way to go to Mars and check

• goal: to do as best as possible with the info that we have 
at X and our knowledge of the system
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Example
• what we know:

– the received signal is Gaussian, with same variance σ2, but the 
means have changed

– there is a calibration mode:
rover can send a test sequence
but it is expensive, can only send a few bits

– if everything is normal, received means should be µ0 and –µ0

• action:
– ask the system to transmit a few 1s and measure X
– compute the ML estimate of the mean of X

• result: the estimate is different than µ0
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Example
• we need to combine two forms of information

– our prior is that

– our “data driven” estimate  is that

• Q: what do we do?
–

– for large n, 

– for small n,

– intuitive combination
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Bayesian solution
• Gaussian likelihood (observations)

• Gaussian prior (what we know)

– µ0,σ0
2 are known hyper-parameters

• we need to compute
– posterior distribution for µ
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Bayesian solution
• posterior distribution

• note that 
– this is a probability density
– we can ignore constraints (terms that do not depend on µ)
– and normalize when we are done

• we only need to work with
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Bayesian solution
• plugging in the Gaussians
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Bayesian solution

• this is a Gaussian, we just need to put it in the standard 
quadratic form to know its mean and variance

• use the completing the squares trick
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Bayesian solution

• in this case

• we have
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Bayesian solution
• and using

• we have

• and ⎪
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Bayesian solution
• this can be rewritten as

• we can compare with our “intuitive” solution
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Bayesian solution
• we had

• the Bayesian solution is

• note that 

• it is exactly the same as our heuristic
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Bayesian solution
• for free, Bayes also gives us

– the weighting constants

– a measure of the uncertainty of our estimate

– note that 1/σ2 is a measure of precision
– this should be read as

PBayes = PML + Pprior

– Bayesian precision is greater than both that of ML and prior
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Observations 
– 1) note that precision increases with n, variance goes to zero

we are guaranteed that in the limit of infinite data we have
convergence to a single estimate

– 2) for large n the likelihood term dominates the prior term

the solution is equivalent to that of ML
– for small n, the prior dominates
– this always happens for Bayesian solutions
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Observations 
– 3) for a given n

if σ0
2>>σ2, i.e. we really don’t know what µ is a priori

then µn = µML

– on the other hand, if σ0
2<<σ2, i.e. we are very certain a priori,

then µn = µ0

• in summary,
– Bayesian estimate combines the prior beliefs with the evidence 

provided by the data
– in a very intuitive manner
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