Bayesian parameter estimation

Nuno Vasconcelos
UCSD

Bayesian parameter estimation

- the main difference with respect to ML is that in the Bayesian case Θ is a random variable
- basic concepts
- training set $\mathscr{D}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ of examples drawn independently
- probability density for observations given parameter

$$
P_{x \mid \Theta}(x \mid \theta)
$$

- prior distribution for parameter configurations

$$
P_{\Theta}(\theta)
$$

that encodes prior beliefs about them

- goal: to compute the posterior distribution

$$
P_{\Theta \mid X}(\theta \mid D)
$$

Bayes vs ML

- there are a number of significant differences between Bayesian and ML estimates
- D_{1} :
- ML produces a number, the best estimate
- to measure its goodness we need to measure bias and variance
- this can only be done with repeated experiments
- Bayes produces a complete characterization of the parameter from the single dataset
- in addition to the most probable estimate, we obtain a characterization of the uncertainty
lower uncertainty

Bayes vs ML

- D_{2} : optimal estimate
- under ML there is one "best" estimate
- under Bayes there is no "best" estimate
- only a random variable that takes different values with different probabilities
- technically speaking, it makes no sense to talk about the "best" estimate
- D_{3} : predictions
- remember that we do not really care about the parameters themselves
- they are needed only in the sense that they allow us to build models
- that can be used to make predictions (e.g. the BDR)
- unlike ML, Bayes uses ALL information in the training set to make predictions

Bayes vs ML

- let's consider the BDR under the "0-1" loss and an independent sample $\mathscr{D}=\left\{x_{1}, \ldots, x_{n}\right\}$
- ML-BDR:
- pick i if

$$
\begin{aligned}
& i^{*}(x)=\underset{i}{\arg \max } P_{X \mid Y}\left(x \mid i ; \theta_{i}^{*}\right) P_{Y}(i) \\
& \text { where } \theta_{i}^{*}=\underset{\theta}{\arg \max } P_{X \mid Y}(D \mid i, \theta)
\end{aligned}
$$

- two steps:
- i) find θ^{*}
- ii) plug into the BDR
- all information not captured by θ^{*} is lost, not used at decision time

Bayesian BDR

- this problem is avoided by Bayesian estimates
- pick i if

$$
\begin{aligned}
& i^{*}(x)=\underset{i}{\arg \max } P_{X \mid Y, T}\left(x \mid i, D_{i}\right) P_{Y}(i) \\
& \text { where } P_{X \mid Y, T}\left(x \mid i, D_{i}\right)=\int P_{X \mid Y, \Theta}(x \mid i, \theta) P_{\Theta \mid Y, T}\left(\theta \mid i, D_{i}\right) d \theta
\end{aligned}
$$

- note:
- as before the bottom equation is repeated for each class
- hence, we can drop the dependence on the class
- and consider the more general problem of estimating

$$
P_{X \mid T}(x \mid D)=\int P_{x \mid \Theta}(x \mid \theta) P_{\Theta \mid T}(\theta \mid D) d \theta
$$

The predictive distribution

- the distribution

$$
P_{X \mid T}(x \mid D)=\int P_{x \mid \Theta}(x \mid \theta) P_{\Theta \mid T}(\theta \mid D) d \theta
$$

is known as the predictive distribution

- this follows from the fact that it allows us
- to predict the value of x
- given ALL the information available in the training set
- note that it can also be written as

$$
P_{X \mid T}(x \mid D)=E_{\Theta \mid T}\left[P_{x \mid \Theta}(x \mid \theta) \mid T=D\right]
$$

- since each parameter value defines a model
- this is an expectation over all possible models
- each model is weighted by its posterior probability, given training data

The predictive distribution

- suppose that

$$
P_{X \mid \Theta}(x \mid \theta) \sim N(\theta, 1) \quad \text { and } \quad P_{\Theta \mid T}(\theta \mid D) \sim N\left(\mu, \sigma^{2}\right)
$$

- the predictive distribution is an average of all these Gaussians

$$
P_{X \mid T}(x \mid D)=\int P_{X \mid \Theta}(x \mid \theta) P_{\Theta \mid T}(\theta \mid D) d \theta
$$

The predictive distribution

- Bayes vs ML
- ML: pick one model
- Bayes: average all models
- are Bayesian predictions very different than those of ML?
- they can be, unless the prior is narrow

MAP approximation

- this sounds good, why use ML at all?
- the main problem with Bayes is that the integral

$$
P_{X \mid T}(x \mid D)=\int P_{X \mid \Theta}(x \mid \theta) P_{\Theta \mid T}(\theta \mid D) d \theta
$$

can be quite nasty

- in practice one is frequently forced to use approximations
- one possibility is to do something similar to ML, i.e. pick only one model
- this can be made to account for the prior by
- picking the model that has the largest posterior probability given the training data

$$
\theta_{M A P}=\underset{\theta}{\arg \max } P_{\Theta \mid T}(\theta \mid D)
$$

MAP approximation

- this can usually be computed since

$$
\begin{aligned}
\theta_{M A P} & =\underset{\theta}{\arg \max } P_{\Theta \mid T}(\theta \mid D) \\
& =\underset{\theta}{\arg \max } P_{T \mid \Theta}(D \mid \theta) P_{\Theta}(\theta)
\end{aligned}
$$

and corresponds to approximating the prior by a delta function centered at its maximum

MAP vs ML

- ML-BDR
- pick if

$$
\begin{aligned}
& i^{*}(x)=\underset{i}{\arg \max } P_{X \mid Y}\left(x \mid i ; \theta_{i}^{*}\right) P_{Y}(i) \\
& \text { where } \theta_{i}^{*}=\underset{\theta}{\arg \max } P_{X \mid Y}(D \mid i, \theta)
\end{aligned}
$$

- Bayes MAP-BDR
- pick i if

$$
\begin{aligned}
& i^{*}(x)=\underset{i}{\arg \max } P_{X \mid Y}\left(x \mid i ; \theta_{i}^{M A P}\right) P_{Y}(i) \\
& \text { where } \theta_{i}^{\text {MAP }}=\underset{\theta}{\arg \max } P_{T \mid Y, \Theta}(D \mid i, \theta) P_{\Theta \mid Y}(\theta \mid i)
\end{aligned}
$$

- the difference is non-negligible only when the dataset is small
- there are better alternative approximations

Example

- let's consider an example of why Bayes is usefull
- example: communications
- a bit is transmitted by a source, corrupted by noise, and received by a decoder

- Q: what should the optimal decoder do to recover Y ?

Example

- the optimal solution is to threshold X
- pick T
- decision rule $Y= \begin{cases}0, & \text { if } x<\mathrm{T} \\ 1, & \text { if } x>\mathrm{T}\end{cases}$

- what is the threshold?
- the midpoint between signal values

$$
x<\frac{\mu_{1}+\mu_{0}}{2}
$$

Example

- today we consider a slight variation

- still:
- two states:
- $Y=0$ transmit signal $s=-\mu_{0}$
- $Y=1$ transmit signal $s=\mu_{0}$
- same noise model

$$
X=Y+\varepsilon, \quad \varepsilon \sim N\left(0, \sigma^{2}\right)
$$

Example

- the BDR is still
- pick " 0 " if

$$
x<\frac{\mu_{0}+\left(-\mu_{0}\right)}{2}=0
$$

- this is optimal and everything works wonderfully
- one day we get a phone call: the receiver is generating a lot of errors!
- something must have changed in the rover
- there is no way to go to Mars and check
- goal: to do as best as possible with the info that we have at X and our knowledge of the system

Example

- what we know:
- the received signal is Gaussian, with same variance σ^{2}, but the means have changed
- there is a calibration mode:
- rover can send a test sequence
- but it is expensive, can only send a few bits
- if everything is normal, received means should be μ_{0} and - μ_{0}
- action:
- ask the system to transmit a few 1 s and measure X
- compute the ML estimate of the mean of X

$$
\mu=\frac{1}{n} \sum_{i} X_{i}
$$

- result: the estimate is different than μ_{0}

Example

- we need to combine two forms of information
- our prior is that $X \sim N\left(\mu_{0}, \sigma^{2}\right)$
- our "data driven" estimate is that

$$
X \sim N\left(\hat{\mu}, \sigma^{2}\right)
$$

- Q: what do we do?
- $\mu_{n}=f\left(\hat{\mu}, \mu_{0}, n\right)$
- for large $\mathrm{n}, \mu_{n} \approx f(\hat{\mu})$
- for small n,

$$
\mu_{n} \approx f\left(\mu_{0}\right)
$$

- intuitive combination

$$
\begin{array}{rlr|}
\mu_{n}= & \alpha_{n} \hat{\mu}+\left(1-\alpha_{n}\right) \mu_{0} & \\
& \alpha_{n} \in[0,1], \quad \alpha_{n} \rightarrow 1, \quad \alpha_{n \rightarrow \infty} \xrightarrow[n \rightarrow 0]{ } 0
\end{array}
$$

Bayesian solution

- Gaussian likelihood (observations)

$$
P_{T \mid \mu}(D \mid \mu)=G\left(D, \mu, \sigma^{2}\right) \quad \sigma^{2} \text { is known }
$$

- Gaussian prior (what we know)

$$
P_{\mu}(\mu)=G\left(\mu, \mu_{0}, \sigma_{0}^{2}\right)
$$

- $\mu_{0}, \sigma_{0}{ }^{2}$ are known hyper-parameters
- we need to compute
- posterior distribution for μ

$$
P_{\mu \mid T}(\mu \mid D)=\frac{P_{T \mid \mu}(D \mid \mu) P_{\mu}(\mu)}{P_{T}(D)}
$$

Bayesian solution

- posterior distribution

$$
P_{\mu \mid T}(\mu \mid D)=\frac{P_{T \mid \mu}(D \mid \mu) P_{\mu}(\mu)}{P_{T}(D)}
$$

- note that
- this is a probability density
- we can ignore constraints (terms that do not depend on μ)
- and normalize when we are done
- we only need to work with

$$
\begin{aligned}
P_{\mu \mid T}(\mu \mid D) & \propto P_{T \mid \mu}(D \mid \mu) P_{\mu}(\mu) \\
& \propto \prod_{i} P_{X \mid \mu}\left(x_{i} \mid \mu\right) P_{\mu}(\mu)
\end{aligned}
$$

Bayesian solution

- plugging in the Gaussians

$$
\begin{aligned}
& P_{\mu \mid T}(\mu \mid D) \propto \prod_{i} P_{X \mid \mu}\left(x_{i} \mid \mu\right) P_{\mu}(\mu) \\
& \propto \prod_{i} G\left(x_{i}, \mu, \sigma^{2}\right) G\left(\mu, \mu_{0}, \sigma_{0}^{2}\right)
\end{aligned}
$$

$$
\propto \exp \left\{-\sum_{i} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}\right\}
$$

$$
\propto \exp \left\{-\sum_{i} \frac{\mu^{2}-2 x_{i} \mu+x_{i}^{2}}{2 \sigma^{2}}-\frac{\mu^{2}-2 \mu \mu_{0}+\mu_{0}^{2}}{2 \sigma_{0}^{2}}\right\}
$$

$$
\propto \exp \left\{-\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right) \mu^{2}+2\left(\frac{\sum_{i} x_{i}}{2 \sigma^{2}}+\frac{\mu_{0}}{2 \sigma_{0}^{2}}\right) \mu-\left(\frac{\sum_{i} x_{i}^{2}}{2 \sigma^{2}}+\frac{\mu_{0}}{2 \sigma_{0}^{2}}\right)\right\}
$$

Bayesian solution

$$
P_{\mu \mid T}(\mu \mid D) \propto \exp \left\{-\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right) \mu^{2}+2\left(\frac{\sum_{i} x_{i}}{2 \sigma^{2}}+\frac{\mu_{0}}{2 \sigma_{0}^{2}}\right) \mu\right\}
$$

- this is a Gaussian, we just need to put it in the standard quadratic form to know its mean and variance
- use the completing the squares trick

$$
\begin{aligned}
& a x^{2}+2 b x+c=a\left(x^{2}+2 \frac{b}{a} x+\frac{c}{a}\right) \\
& \quad=a\left(x^{2}+2 \frac{b}{a} x+\left(\frac{b}{a}\right)^{2}-\left(\frac{b}{a}\right)^{2}+\frac{c}{a}\right)=a\left(x+\frac{b}{a}\right)^{2}+c-\frac{b^{2}}{a}
\end{aligned}
$$

Bayesian solution

$$
P_{\mu \mid T}(\mu \mid D) \propto \exp \left\{-\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right) \mu^{2}+2\left(\frac{\sum_{i} x_{i}}{2 \sigma^{2}}+\frac{\mu_{0}}{2 \sigma_{0}^{2}}\right) \mu\right\}
$$

- in this case

$$
a x^{2}+2 b x+c=a\left(x+\frac{b}{a}\right)^{2}+c-\frac{b^{2}}{a} \propto a\left(x+\frac{b}{a}\right)^{2}
$$

- we have

$$
P_{\mu \mid T}(\mu \mid D) \propto \exp \left\{-\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right)\left[\mu-\left(\frac{\left(\frac{\sum_{i} x_{i}}{2 \sigma^{2}}+\frac{\mu_{0}}{2 \sigma_{0}^{2}}\right) /\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right)}{}\right]\right\}\right.
$$

Bayesian solution

- and using

$$
1 /\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right)=\frac{2 \sigma^{2} \sigma_{0}^{2}}{\left(\sigma^{2}+n \sigma_{0}^{2}\right)}
$$

- we have

$$
\begin{aligned}
& P_{\mu \mid T}(\mu \mid D) \propto \exp \left\{-\left(\frac{\mathrm{n}}{2 \sigma^{2}}+\frac{1}{2 \sigma_{0}^{2}}\right)\left[\mu-\left(\frac{2 \sigma^{2} \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}\right)\left(\frac{\sigma_{0}^{2} \sum_{i} x_{i}+\mu_{0} \sigma^{2}}{2 \sigma^{2} \sigma_{0}^{2}}\right)\right]^{2}\right\} \\
& \\
& \qquad \propto \exp \left\{-\left(\frac{2 \sigma^{2} \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}\right)^{-1}\left[\mu-\left(\frac{\sigma_{0}^{2} \sum_{i} x_{i}+\mu_{0} \sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}}\right)\right]^{2}\right]
\end{aligned}
$$

- and

$$
P_{\mu \mid T}(\mu \mid D)=G\left(\mu, \mu_{n}, \sigma_{n}^{2}\right), \quad \mu_{n}=\frac{\sigma_{0}^{2} \sum_{i} x_{i}+\mu_{0} \sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}}, \sigma_{n}^{2}=\left(\frac{\sigma^{2} \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}\right)
$$

Bayesian solution

- this can be rewritten as

$$
\begin{aligned}
& P_{\mu \mid T}(\mu \mid D)=G\left(\mu, \mu_{n}, \sigma_{n}^{2}\right) \\
& \mu_{n}=\frac{\sigma_{0}^{2} \sum_{i} x_{i}+\mu_{0} \sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}} \Rightarrow \mu_{n}=\underbrace{\frac{n \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}}_{\alpha_{\mathrm{n}}} \mu_{M L}+\underbrace{\frac{\sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}} \mu_{0}}_{1-\alpha_{n}} \\
& \sigma_{n}^{2}=\left(\frac{\sigma^{2} \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}\right) \Rightarrow \frac{1}{\sigma_{n}^{2}}=\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}
\end{aligned}
$$

- we can compare with our "intuitive" solution

Bayesian solution

- we had

$$
\begin{array}{rlr|}
\mu_{n}= & \alpha_{n} \hat{\mu}+\left(1-\alpha_{n}\right) \mu_{0} \\
& \alpha_{n} \in[0,1], \quad \alpha_{n} \rightarrow 1, \quad \alpha_{n \rightarrow \infty} \xrightarrow[n \rightarrow 0]{ } 0
\end{array}
$$

- the Bayesian solution is

$$
\mu_{n}=\underbrace{\frac{n \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}}_{\alpha_{\mathrm{n}}} \mu_{M L}+\underbrace{\frac{\sigma^{2}}{\sigma^{2}+n \sigma_{0}^{2}}}_{1-\alpha_{n}} \mu_{0}
$$

- note that $\alpha_{n} \in[0,1], \quad \alpha_{n} \rightarrow 1, \quad \alpha_{n \rightarrow \infty}^{\rightarrow 0}$
- it is exactly the same as our heuristic

Bayesian solution

- for free, Bayes also gives us
- the weighting constants

$$
\alpha_{n}=\frac{n \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}
$$

- a measure of the uncertainty of our estimate

$$
\frac{1}{\sigma_{n}^{2}}=\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}
$$

- note that $1 / \sigma^{2}$ is a measure of precision
- this should be read as

$$
P_{\text {Bayes }}=P_{M L}+P_{\text {prior }}
$$

- Bayesian precision is greater than both that of ML and prior

Observations

- 1) note that precision increases with n, variance goes to zero

$$
\frac{1}{\sigma_{n}^{2}}=\frac{1}{\sigma_{0}^{2}}+\frac{n}{\sigma^{2}}
$$

we are guaranteed that in the limit of infinite data we have convergence to a single estimate

- 2) for large n the likelihood term dominates the prior term

$$
\begin{array}{rlr|}
\mu_{n}= & \alpha_{n} \hat{\mu}+\left(1-\alpha_{n}\right) \mu_{0} \\
& \alpha_{n} \in[0,1], \quad \alpha_{n} \rightarrow 1, \quad \alpha_{n \rightarrow \infty} \underset{n \rightarrow 0}{ } 0
\end{array}
$$

the solution is equivalent to that of ML

- for small n, the prior dominates
- this always happens for Bayesian solutions

$$
P_{\mu \mid T}(\mu \mid D) \propto \prod_{i} P_{X \mid \mu}\left(x_{i} \mid \mu\right) P_{\mu}(\mu)
$$

Observations

- 3) for a given n

$$
\alpha_{n}=\frac{n \sigma_{0}^{2}}{\sigma^{2}+n \sigma_{0}^{2}}
$$

$$
\begin{aligned}
\mu_{n}= & \alpha_{n} \hat{\mu}+\left(1-\alpha_{n}\right) \mu_{0} \\
& \alpha_{n} \in[0,1], \quad \alpha_{n} \rightarrow 1, \quad \alpha_{n \rightarrow \infty} \rightarrow 0 \\
&
\end{aligned}
$$

if $\sigma_{0}{ }^{2} \gg \sigma^{2}$, i.e. we really don't know what μ is a priori then $\mu_{\mathrm{n}}=\mu_{\mathrm{ML}}$

- on the other hand, if $\sigma_{0}{ }^{2} \ll \sigma^{2}$, i.e. we are very certain a priori, then $\mu_{\mathrm{n}}=\mu_{0}$
- in summary,
- Bayesian estimate combines the prior beliefs with the evidence provided by the data
- in a very intuitive manner

