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Bayesian parameter estimation

» the main difference with respect to ML is that in the
Bayesian case @is a random variable

» basic concepts
e training set ® = {X, , ..., X} of examples drawn independently

* probability density for observations given parameter

Pyio (X]6)

e prior distribution for parameter configurations
P (6)

that encodes prior beliefs about them

» goal: to compute the posterior distribution
Poix (€1 D)




Bayesian BDR

» pick i If

i"(x) = argmax Py, - (x]i, D, )R, (i)

where Py, (x]i,D; )= [ Pyy o (X]1,0)P0y - (011, D, 0@

» note:
« BDR accounts for ALL information available in the training set
* as before the bottom equation is repeated for each class
* hence, we can drop the dependence on the class
« and consider the more general problem of estimating

Par (X D) = [ Pyio(X] )P (0] D)6




The predictive distribution
» the distribution

Par (X D) = [ Pyio(X] )P (0] D)6

IS known as the predictive distribution
» note that it can also be written as

PX|T (Xl D): E®|T |_PX|®(X|9)|T — DJ

e since each parameter value defines a model
 this is an expectation over all possible models

« each model is weighted by its posterior probability, given training
data



The predictive distribution

» suppose that

PX|®(X|‘9)~ N(H,l) and Porr (‘9| D)~ N(IU’GZ)

weight r,

1 PX|T (X | D)
weight 7,

weight 7,

H; H H H; M
» the predictive distribution is an average of all these
Gaussians

PX|T (Xl D): j PX|®(X | ‘9)P®|T (‘9| D)d@




MAP vs ML

» ML-BDR

° p|Ck | if i*(X) =arg maX PX|Y (X | |1 ei*)PY (I)

where & =argmax Py, (D|i,6)
0

» Bayes MAP-BDR
o pickiif

i"(x) =argmax Py, (x|i; 60 R, (i)

where """ =arg max Pryo(D11,0)Pyy (611)

 the difference is non-negligible only when the dataset is small

» there are better alternative approximations



Example

» communications problem

» tWO states:

atmosphere f|—

receiver

e Y=0 transmit signal s = -p,

« Y=1transmit signal s = p,

» Noise model

X =Y +¢g,

g~N(0,05°%)




Example

» the BDR Is
o pick “O0” if

¥ < ﬂo"'g_,uo)

=0

» this is optimal and everything works wonderfully, but

* one day we get a phone call: the receiver is generating a lot of
errors!

* there is a calibration mode:
 rover can send a test sequence

* but it is expensive, can only send a few bits

« If everything is normal, received means should be z, and —,



Example

» action:

e ask the system to transmit a few 1s and measure X
« compute the ML estimate of the mean of X

1
ﬂ—HZXi

» result: the estimate is different than

» Wwe need to combine two forms of information

e our prior is that

1~ Ny, 0°)

e our “data driven” estimate is that

X ~N(&,0°)




Bayesian solution

» Gaussian likelihood (observations)

P, (D] ) =G(D, u,0°) o ’is known
» Gaussian prior (what we know)
P, (1) =G (i o, )
* L,,04° are known hyper-parameters
» We need to compute
» posterior distribution for p Tlu( |,u)P (1)
P (1| D)=
P (D)
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Bayesian solution

» the posterior distribution is
P, (41D) =Glu, p,,57)

2 2
oY X + o0 nog
_ i Hn = 2 2
Mo = = o +no
! o’ +Nno, - 9

2 .2 1 1 n
Un_[ j:’ 2 + 2

o’ +no;

» this is Intuitive
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Bayesian solution

» for free, Bayes also gives us

» the weighting constants

no;
a4y =3 2
o~ +No,
e a measure of the uncertainty of our estimate
1 1 L
2 2 2
o, O, O

* note that 1/c2 is a measure of precision

e this should be read as
P =P, +P

« Bayesian precision is greater than both that of ML and prior

Bayes prior

12



Observations

« 1) note that precision increases with n, variance goes to zero

1 1 n

=—+
2 2 2
n 00 o

O

we are guaranteed that in the limit of infinite data we have
convergence to a single estimate

« 2) for large n the likelihood term dominates the prior term
Hn = an:[l T (1_ A, )luO
a, €[01], o —1 a,—0

n—o0 n—0

the solution is equivalent to that of ML
. for small n, the prior dominates
. this always happens for Bayesian solutions

Pr (1] D) oc | [ Py, (% [ )P, (1)
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Observations

« 3)foragivenn

nag Hy :an/&-l_(l_an):uO

a.<|01l], a. -1 a.—0
O +nC70 n [ ] n o n

If 6,°>>02, i.e. we really don’t know what p is a priori
then Hn = HmL

. on the other hand, if 6,°<<c?, i.e. we are very certain a priori,
then Hn = Ho

» IN summary,

« Bayesian estimate combines the prior beliefs with the evidence
provided by the data

* In avery intuitive manner
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Regularization

» regularization:

. 2 2 1 1
e iIf o,=0"then x,= o 1yML it
__ 1 MX with X. . =
/7—|—1 . i1 — Mo

» Bayes is equal to ML on a virtual sample with extra points

 in this case, one additional point equal to the mean of the prior
« for large n, extra point is irrelevant
o for small n, it regularizes the Bayes estimate by

 directing the posterior mean towards the prior mean

« reducing the variance of the posterior 1 _n N 1
2 0_2 0-62

Op

» HW: this interpretation holds for all conjugate priors
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Conjugate priors

» Note that

+ the prior A, (u) = G(u, 1y, 02) is Gaussian
* the posterior A, (u|D) = G()(,Iun,gz) IS Gaussian

n

» whenever this is the case (posterior in the same family as
prior) we say that

* P,(u) is a conjugate prior for the likelihood Ay, (x| )
* posterior P, (u|D) is the reproducing density

» HW: a number of likelihoods have conjugate priors

Likelihood Conjugate prior
Bernoulli Beta
Poisson Gamma

Exponential Gamma
Normal (known o) Gamma
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Exponential family

» you will also show that all of these likelihoods are
members of the exponential family

Pro(X160)=F(x)g(8) e’ “

» for this family, the interpretation of Bayesian parameter
estimation as “ML on a properly augmented sample”
always holds (whenever the prior is the conjugate)

» this is one of the reasons why the exponential family is
“special” (but there are others)
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Predictive distribution

» we have seen that 2, (u| D)= G(X,u,,,ai)
» we can now compute the predictive distribution

Pyr (X|D) = [ Py, (X | t1)Pr (12 D)l

= [ F(x = w)h(u)au
(wi’rh f(x)=G(x,0,6°) and /7(X)=G(X,,Um5§))
=G(x.0,6°)*G (x,,,00)

» i.e. X|T is the random variable that results from adding
two independent Gaussians with these parameters
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Predictive distribution

» hence X|T is Gaussian with

Py (X1D) =G (X, 1,,0% +07)

» the mean is that of the posterior

e variance increased by o2 to account for the uncertainty of the
observations

» Note:

* we will not go over the multivariate case in class, but the
expressions are straightforward generalization

 make sure you are comfortable with them
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Priors

» potential problem of the Bayesian framework

* “lI don’t really have a strong belief about what the most likely
parameter configuration is”

» in these cases it is usual to adopt a non-informative prior
» the most obvious choice is the uniform distribution

Po(0) =

» there are, however, problems with this choice

 if @is unbounded this is an improper distribution
jp®(9)d9=oo 21
 the prior is not invariant to all reparametrizations
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Example

» consider ® and a new random variable 7 with 7 = e®

» since this is a 1-to-1 transformation it should not affect
the outcome of the inference process

» we check this by using the change of variable theorem
o ify=1(x) then

1 _
PW) =P W)
. . a—Xx=f‘1(y)
» In this case
1 1
P, (17) = — 17— Po(logn) == Fy(log7)
oe” 7
89 f=logn
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Invariant non-informative priors

. . 1 .
» for uniform &this means that £ () —, i.e. not constant

» this means that ‘77‘

* there is no consistency between @ and h

e a l1-to-1 transformation changes the non-informative prior into an
informative one

» to avoid this problem the non-informative prior has to be
Invariant

» .. consider a location parameter:

« a parameter that simply shifts the density
e e.g.the mean of a Gaussian

» a non-informative prior for a location parameter has to be
Invariant to shifts, I.e. the transformation Y = x4+ c
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Location parameters

» IN this case

1
I = P\WVy-c)=Py-c
() |5(ﬂ+0) Wy —¢c)=A.ly-c)
O H=y—C
and, since this has to be valid for all c,
PY (y) :P,u(y)
» hence

Py -c)=P,y)

» which is valid for all ¢ if and only if P () Is uniform
» non-informative prior for location is P (x) « 1



Scale parameters

» a scale parameter is one that controls the scale of the
density
X
o 'f (—j
o

e.g. the variance of a Gaussian distribution

» it can be shown that, in this case, the non-informative
prior invariant to scale transformations is

P (o) =§

» note that, as for location, this is an improper prior

24



Selecting priors

» hon-informative priors are the end of the spectrum
where we don’'t know what parameter values to favor

» at the other end, i.e. when we are absolutely sure, the
prior becomes a delta function

Fo(0)=0(0-6,)

» In this case
’D®|r(‘9|D) o Pr|®(D|‘9)5(‘9_‘90)

and the predictive distribution Is

Pyr (X | D) [ Pyo (X 0)Pro (D | 0)5(0—0,)00
:PX|® (x| ‘90)
» this Is identical to ML If 6, = 6,
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Selecting priors

» hence,

ML is a special case of the Bayesian formulation,

* where we are absolutely confident that the ML estimate is the
correct value for the parameter

» but we could use other values for &,. For example the
value that maximizes the posterior

Opup = arg max Por (0] D) = arg max Pre(D160)F(6)

» this is called the MAP estimate and makes the predictive
distribution equal to

Pyr (X | D) =Py (X |6))

» it can be useful when the true predictive distribution has
no closed-form solution
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Selecting priors

» the natural question is then

« “what if | don’t get the prior right?”; “can | do terribly bad?”
* “how robust is the Bayesian solution to the choice of prior?”

* let’'s see how much the solution changes between the two
extremes

» for the Gaussian problem
« absolute certainty priors: P, (1) =0(u—u,)

« MAP estimate: since P, (u|D) :G(X,,u,,,a,f) we have
= = no, Lo
£ nol 4ot nol+o?" "’

* ML estimate is 1, = s,

* we have seen already that these are similar unless the sample is
small (MAP = ML on sample with extra point)
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Selecting priors

» for the Gaussian problem

* non-informative prior:

* inthiscaseitis P (x) a1or
P,(1) = lim Gy, iy, )

e from which

 and

PXT(X|D):G(qu/ﬂo-z+O-,27):G(X1,UML,(72(

1+i
n

)
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Selecting priors

» In summary, for the two prior extremes

« delta prior centered on MAP:

2 2
_ 2 o O
PX|T(X|D)_G(XHUMAP’G ,UMAP: 2 0 2,UML—I- > 2/10
I70'0+O' /70'0+O'

o delta prior centered on ML.:

PX|T(X|D):G(XUUML’02)

e non-informative prior

Pur (X |D) :G[XUUML’GZ(]-‘F:LJJ

n

» all Gaussian, “qualitatively the same™

« somewhat different parameters for small n; equal for large n

» this indicates robustness to “incorrect” priors!
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