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Bayesian parameter estimation
the main difference with respect to ML is that in the 
Bayesian case Θ is a random variable
basic concepts
• training set D = {x1 , ..., xn} of examples drawn independently

• probability density for observations given parameter

• prior distribution for parameter configurations

that encodes prior beliefs about them

goal: to compute the posterior distribution
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Bayesian BDR
pick i if

note: 
• BDR accounts for ALL information available in the training set
• as before the bottom equation is repeated for each class
• hence, we can drop the dependence on the class
• and consider the more general problem of estimating
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The predictive distribution
the distribution

is known as the predictive distribution
note that it can also be written as

• since each parameter value defines a model
• this is an expectation over all possible models
• each model is weighted by its posterior probability, given training 

data
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The predictive distribution
suppose that

the predictive distribution is an average of all these 
Gaussians
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MAP vs ML
ML-BDR
• pick i if

Bayes MAP-BDR
• pick i if

• the difference is non-negligible only when the dataset is small

there are better alternative approximations
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Example
communications problem

two states:
• Y=0 transmit signal s = -µ0

• Y=1 transmit signal s = µ0

noise model

atmosphere
Y X

receiver

),0(~      , 2σεε NYX +=



8

Example
the BDR is 
• pick “0” if

this is optimal and everything works wonderfully, but
• one day we get a phone call: the receiver is generating a lot of 

errors!
• there is a calibration mode:

• rover can send a test sequence
• but it is expensive, can only send a few bits

• if everything is normal, received means should be µ0 and –µ0
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Example
action:
• ask the system to transmit a few 1s and measure X
• compute the ML estimate of the mean of X

result: the estimate is different than µ0

we need to combine two forms of information
• our prior is that

• our “data driven” estimate  is that
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Bayesian solution
Gaussian likelihood (observations)

Gaussian prior (what we know)

µ0,σ0
2 are known hyper-parameters

we need to compute
• posterior distribution for µ
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Bayesian solution
the posterior distribution is 

this is intuitive
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Bayesian solution
for free, Bayes also gives us
• the weighting constants

• a measure of the uncertainty of our estimate

• note that 1/σ2 is a measure of precision
• this should be read as

PBayes = PML + Pprior

• Bayesian precision is greater than both that of ML and prior
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Observations 
• 1) note that precision increases with n, variance goes to zero

we are guaranteed that in the limit of infinite data we have
convergence to a single estimate

• 2) for large n the likelihood term dominates the prior term

the solution is equivalent to that of ML
• for small n, the prior dominates
• this always happens for Bayesian solutions
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Observations 
• 3) for a given n

if σ0
2>>σ2, i.e. we really don’t know what µ is a priori

then µn = µML

• on the other hand, if σ0
2<<σ2, i.e. we are very certain a priori,

then µn = µ0

in summary,
• Bayesian estimate combines the prior beliefs with the evidence 

provided by the data
• in a very intuitive manner
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Regularization
regularization:
• if then

Bayes is equal to ML on a virtual sample with extra points
• in this case, one additional point equal to the mean of the prior
• for large n, extra point is irrelevant
• for small n, it regularizes the Bayes estimate by 

• directing the posterior mean towards the prior mean
• reducing the variance of the posterior

HW: this interpretation holds for all conjugate priors
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Conjugate priors
note that
• the prior                                is Gaussian
• the posterior                                       is Gaussian

whenever this is the case (posterior in the same family as 
prior) we say that 
• is a conjugate prior for the likelihood
• posterior                 is the reproducing density

HW: a number of likelihoods have conjugate priors
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Exponential family
you will also show that all of these likelihoods are 
members of the exponential family

for this family, the interpretation of Bayesian parameter 
estimation as “ML on a properly augmented sample”
always holds (whenever the prior is the conjugate)
this is one of the reasons why the exponential family is 
“special” (but there are others)
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Predictive distribution
we have seen that
we can now compute the predictive distribution

i.e. X|T is the random variable that results from adding 
two independent Gaussians with these parameters
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Predictive distribution
hence X|T is Gaussian with

• the mean is that of the posterior
• variance increased by σ2 to account for the uncertainty of the 

observations

note:
• we will not go over the multivariate case in class, but the 

expressions are straightforward generalization
• make sure you are comfortable with them
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Priors
potential problem of the Bayesian framework
• “I don’t really have a strong belief about what the most likely 

parameter configuration is”

in these cases it is usual to adopt a non-informative prior
the most obvious choice is the uniform distribution

there are, however, problems with this choice
• if θ is unbounded this is an improper distribution

• the prior is not invariant to all reparametrizations
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Example
consider Θ and a new random variable η with η = eΘ

since this is a 1-to-1 transformation it should not affect 
the outcome of the inference process
we check this by using the change of variable theorem
• if y = f(x) then

in this case 
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Invariant non-informative priors
for uniform θ this means that                  , i.e. not constant
this means that
• there is no consistency between Θ and h
• a 1-to-1 transformation changes the non-informative prior into an 

informative one

to avoid this problem the non-informative prior has to be 
invariant
e.g. consider a location parameter:
• a parameter that simply shifts the density
• e.g. the mean of a Gaussian

a non-informative prior for a location parameter has to be 
invariant to shifts, i.e. the transformation Y = µ + c

η
αηη
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Location parameters
in this case

and, since this has to be valid for all c,

hence

which is valid for all c if and only if Pµ(µ) is uniform
non-informative prior for location is Pµ(µ) α 1
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Scale parameters
a scale parameter is one that controls the scale of the 
density

e.g. the variance of a Gaussian distribution
it can be shown that, in this case, the non-informative 
prior invariant to scale transformations is

note that, as for location, this is an improper prior
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Selecting priors
non-informative priors are the end of the spectrum
where we don’t know what parameter values to favor
at the other end, i.e. when we are absolutely sure, the 
prior becomes a delta function

in this case

and the predictive distribution is

this is identical to ML if θ0 = θML
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Selecting priors
hence, 
• ML is a special case of the Bayesian formulation,
• where we are absolutely confident that the ML estimate is the 

correct value for the parameter

but we could use other values for θ0. For example the 
value that maximizes the posterior

this is called the MAP estimate and makes the predictive 
distribution equal to

it can be useful when the true predictive distribution has 
no closed-form solution
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Selecting priors
the natural question is then
• “what if I don’t get the prior right?”; “can I do terribly bad?”
• “how robust is the Bayesian solution to the choice of prior?”
• let’s see how much the solution changes between the two 

extremes

for the Gaussian problem
• absolute certainty priors:

• MAP estimate: since                                        we have

• ML estimate is µp = µML

• we have seen already that these are similar unless the sample is 
small (MAP  = ML on sample with extra point)
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Selecting priors
for the Gaussian problem
• non-informative prior:

• in this case it is Pµ(µ) α 1 or

• from which 

• and 
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Selecting priors
in summary, for the two prior extremes
• delta prior centered on MAP:

• delta prior centered on ML:

• non-informative prior

all Gaussian, “qualitatively the same”:
• somewhat different parameters for small n; equal for large n

this indicates robustness to “incorrect” priors!
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