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Bayesian estimation
last class we considered the Gaussian problem
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good example of various properties that are typical of 
Bayesian parameter estimates



Properties
regularization:
• if then22 σσ = 0

1ˆ µµµ += ML
n

if then 0 σσ =

01

1

1

0

       with,
1

1     

11

µ

µµµ

=
+

=

+
+

+

+

+

=
∑ i

n

i
i

MLn

XX
n

nn

Bayes is equal to ML on a virtual sample with extra points
• in this case, one additional point equal to the mean of the prior
• for large n, extra point is irrelevant
• for small n, it regularizes the Bayes estimate by 

• directing the posterior mean towards the prior mean• directing the posterior mean towards the prior mean
• reducing the variance of the posterior     2
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Conjugate priors
note that
• the prior is Gaussian( )2)( σµµµ GP =the prior                                is Gaussian
• the posterior                                       is Gaussian

whenever this is the case (posterior in the same family as 

( )00 ,,)( σµµµµ GP =
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prior) we say that 
• is a conjugate prior for the likelihood
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• posterior                 is the reproducing density

HW: a number of likelihoods have conjugate priors
)|(| DP T µµ

Likelihood Conjugate priorLikelihood Conjugate prior
Bernoulli Beta
Poisson Gamma

Exponential Gamma

4

Exponential Gamma
Normal (known σ2) Gamma



Priors
potential problem of the Bayesian framework
• “I don’t really have a strong belief about what the most likelyI don t really have a strong belief about what the most likely 

parameter configuration is”

in these cases it is usual to adopt a non-informative prior
the most obvious choice is the uniform distribution
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• if θ is unbounded this is an improper distributionθ s u bou ded s s a p ope d s bu o
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• the prior is not invariant to all reparametrizations
∞



Example
consider Θ and a new random variable η with η = eΘ

since this is a 1 to 1 transformation it should not affectsince this is a 1-to-1 transformation it should not affect 
the outcome of the inference process
we check this by using the change of variables theoremy g g
• if y = f(x) then
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Invariant non-informative priors
for uniform η this means that                  , i.e. not constant
this means that

η
αηη

1)(P
this means that
• there is no consistency between Θ and h
• a 1-to-1 transformation changes the non-informative prior into an g p

informative one

to avoid this problem the non-informative prior has to be 
invariantinvariant
e.g. consider a location parameter:
• a parameter that simply shifts the density• a parameter that simply shifts the density
• e.g. the mean of a Gaussian

a non-informative prior for a location parameter has to be 
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invariant to shifts, i.e. the transformation Y = µ + c



Location parameters
in this case
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which is valid for all c if and only if Pµ(µ) is uniform
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non-informative prior for location is Pµ(µ) α 1



Scale parameters
a scale parameter is one that controls the scale of the 
densityy
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e.g. the variance of a Gaussian distribution
it can be shown that, in this case, the non-informative 
prior invariant to scale transformations is
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note that, as for location, this is an improper prior
σ
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Selecting priors
non-informative priors are the end of the spectrum
where we don’t know what parameter values to favorp
at the other end, i.e. when we are absolutely sure, the 
prior becomes a delta function

in this case
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this is identical to ML if θ0 = θML



Selecting priors
hence, 
• ML is a special case of the Bayesian formulation,
• where we are absolutely confident that the ML estimate is the 

correct value for the parameter

but we could use other values for θ0. For example the 0
value that maximizes the posterior

)()|(maxarg)|(maxarg || θθθθ
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ΘΘΘ == PDPDP TTMAP     

this is called the MAP estimate and makes the predictive 
distribution equal to

θθ

q

it can be useful when the true predictive distribution has
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it can be useful when the true predictive distribution has 
no closed-form solution



Selecting priors
the natural question is then
• “what if I don’t get the prior right?”; “can I do terribly bad?”
• “how robust is the Bayesian solution to the choice of prior?”
• let’s see how much the solution changes between the two 

extremesextremes

for the Gaussian problem
• absolute certainty priors: )()( pP µµδµµ −=y p

• MAP estimate: since                                        we have( )2
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• we have seen already that these are similar unless the sample is 
small (MAP  = ML on sample with extra point)



Selecting priors
for the Gaussian problem
• non-informative prior:

• in this case it is Pµ(µ) α 1 or
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Selecting priors
in summary, for the two prior extremes
• delta prior centered on MAP:
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• delta prior centered on ML:

( )2
| ,,)|( σµMLTX xGDxP  =

• non-informative prior

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

n
xGDxP MLTX

11,,)|( 2
| σµ 

all Gaussian, “qualitatively the same”:
• somewhat different parameters for small n; equal for large n
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somewhat different parameters for small n; equal for large n

this indicates robustness to “incorrect” priors!



Selecting priors
another example, problem 3.5.17 DHS (HW prob 3)
• multivariate Bernoulli (d independent Bernoulli variables)
• since Bernoulli is 
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Selecting priors
another example, problem 3.5.17 DHS (HW prob 3)
• in (b) you then show that if Θ is uniform (non-informative) the 

predictive distribution is 

∏
−

⎟
⎠
⎞

⎜
⎝
⎛

+
+

−⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
d

 
ii x

i
x

i
TX n

s
n
sDxP

1

| 2
11

2
1)|(

• in (d) you show that comparing with 
= ⎠⎝ +⎠⎝ +1i nn 22

( )∏ −
d

ii xxxP 11)|( θθθ

• this can be interpreted as: 

( )∏
=

Θ −=
1i

ii
iiX xP | 1)|( θθθ

• under Bayes, with a uniform prior, the predicted distribution is the 
same as the likelihood, with the parameter estimate
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Selecting priors
let’s now consider the extreme of 
• ML: we know that 
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Selecting priors
• MAP: given prior 
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• let’s consider some specific priors



Selecting priors
• prior that favors “1”s
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• the predicted distribution is the same as the likelihood, with the 
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Selecting priors
• prior that favors “0”s
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Selecting priors
in summary
• all cases are of the form ( )∏
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ML n si

MAP non-informative n si “the same”
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MAP favor “1”s n+1 si+1 “add one 1”

MAP favor “0”s n+1 si “add one 0”
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• all cases qualitatively the same: “ML estimate on an extended 

Bayes non-informative n+2 si+1 “add one of each”)2()1( ++ ns i
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sample with extra points that reflect the bias of the prior”.



Regularization
these are all examples of regularization
Q: what is the point of “adding one of each?” by Bayes p g y y
non-informative?
• the main problem of ML (si / n) is the “empty bin” problem

f ll i lik l b i d d l f h l f• for small n, si is likely to be zero independently of the value of θi

• this can lead to all sorts of problems, e.g. a likelihood ratio that 
goes to infinity

• by adding “one of each” Bayes eliminates this problem
• for richly populated bins it makes no difference, but it matters for 

empty binsempty bins

note that this is consistent with the non-informative prior
• empty bins are as likely as any other value
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• if we see a lot of them, we need to correct this



Regularization
“empty bin” problem
• “why should I care?” this is unlikely if I have a large sample
• remember that “large” is always relative
• 10 bins in 1D transforms into 100 in 2D, 1000 in 3D, and 10d in a 

d-dimensional spaced dimensional space 
• when d is large, we are always in the “small sample” regime
• regularization usually makes a tremendous difference

example:
• histogram estimates in high dimensional spaces• histogram estimates in high-dimensional spaces
• e.g. histogram of English words for indexing web-pages 

• for each page, compute histogram C = (c1, ..., cw) where ci is the # of 
h
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times word ith word appeared in page
• measure similarity between pages i,j with some function d(Ci,Cj)



Regularization
histogram similarity:
• natural measure is the Kullback-Leibler divergence
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k = 0!

• for low-frequency words the noisy estimates are amplified by the 
ratio of probabilities
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• the distance measure has a large variance



Regularization
Prob 3 on HW
• the count vector C is distributed according to a multinomial 

distribution
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• since the πj are probabilities, we can’t use any prior here.
• distribution over vectors π = (π1, ..., πw) must satisfy the 

constraints of a probability mass function
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Regularization
Prob 3 on HW
• one such distribution is the Dirichlet distribution
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• uj are hyper-parameters
• Γ( ) is the gamma function• Γ(.) is the gamma function
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Regularization
Prob 3 on HW
• on HW you will show that the posterior is 
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• i.e. Dirichlet of hyper-parameters cj + uj

• the prior parameters can be seen as additional counts that 
regularize the predictive distribution!regularize the predictive distribution!
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