ECE-271A
 Statistical Learning I: Bayesian parameter estimation

Nuno Vasconcelos

ECE Department, UCSD

Bayesian estimation

- last class we considered the Gaussian problem

$$
P_{X \mid \mu}(x \mid \mu)=G\left(x, \mu, \sigma^{2}\right), \sigma^{2} \text { known } \quad P_{\mu}(\mu)=G\left(\mu, \mu_{0}, \sigma_{0}^{2}\right)
$$

and showed that

$$
\text { with } \begin{aligned}
& P_{\mu \mid T}(\mu \mid D)=G\left(x, \mu_{n}, \sigma_{n}^{2}\right) \quad P_{X \mid T}(x \mid D)= \\
& \mu_{n}=\frac{n \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \hat{\mu}_{M L}+\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{0} \\
& \frac{1}{\sigma_{n}^{2}}=\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}
\end{aligned}
$$

- good example of various properties that are typical of Bayesian parameter estimates

Properties

- regularization:
- if $\sigma_{0}^{2}=\sigma^{2}$ then $\mu_{n}=\frac{n}{n+1} \hat{\mu}_{M L}+\frac{1}{n+1} \mu_{0}$

$$
=\frac{1}{n+1} \sum_{i=1}^{n+1} X_{i}, \quad \text { with } X_{i+1}=\mu_{0}
$$

- Bayes is equal to ML on a virtual sample with extra points
- in this case, one additional point equal to the mean of the prior
- for large n, extra point is irrelevant
- for small n, it regularizes the Bayes estimate by
- directing the posterior mean towards the prior mean
- reducing the variance of the posterior $\frac{1}{\sigma_{n}^{2}}=\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}$

Conjugate priors

- note that
- the prior $P_{\mu}(\mu)=G\left(\mu, \mu_{0}, \sigma_{0}^{2}\right)$ is Gaussian
- the posterior $P_{\mu \mid T}(\mu \mid D)=G\left(x, \mu_{n}, \sigma_{n}^{2}\right)$ is Gaussian
- whenever this is the case (posterior in the same family as prior) we say that
- $P_{\mu}(\mu)$ is a conjugate prior for the likelihood $P_{X \mid \mu}(X \mid \mu)$
- posterior $P_{\mu \mid T}(\mu \mid D)$ is the reproducing density
- HW: a number of likelihoods have conjugate priors

Likelihood	Conjugate prior
Bernoulli	Beta
Poisson	Gamma
Exponential	Gamma
Normal (known σ^{2})	Gamma

Priors

- potential problem of the Bayesian framework
- "I don't really have a strong belief about what the most likely parameter configuration is"
- in these cases it is usual to adopt a non-informative prior
- the most obvious choice is the uniform distribution

$$
P_{\Theta}(\theta)=\alpha
$$

- there are, however, problems with this choice
- if θ is unbounded this is an improper distribution

$$
\int_{-\infty}^{\infty} P_{\Theta}(\theta) d \theta=\infty \neq 1
$$

- the prior is not invariant to all reparametrizations

Example

- consider Θ and a new random variable η with $\eta=e^{\Theta}$
- since this is a 1-to-1 transformation it should not affect the outcome of the inference process
- we check this by using the change of variables theorem
- if $y=f(x)$ then

$$
P_{Y}(y)=\frac{1}{\left|\frac{\partial f}{\partial x}\right|_{x=f^{-1}(y)}} P_{X}\left(f^{-1}(y)\right)
$$

- in this case

$$
P_{\eta}(\eta)=\frac{1}{\left|\frac{\partial e^{\theta}}{\partial \theta}\right|_{\theta=\log \eta}} P_{\Theta}(\log \eta)=\frac{1}{|\eta|} P_{\Theta}(\log \eta)
$$

Invariant non-informative priors

- for uniform η this means that $P_{\eta}(\eta) \alpha \frac{1}{|\eta|}$, i.e. not constant
- this means that
- there is no consistency between Θ and h
- a 1-to-1 transformation changes the non-informative prior into an informative one
- to avoid this problem the non-informative prior has to be invariant
- e.g. consider a location parameter:
- a parameter that simply shifts the density
- e.g. the mean of a Gaussian
- a non-informative prior for a location parameter has to be invariant to shifts, i.e. the transformation $Y=\mu+c$

Location parameters

- in this case

$$
P_{Y}(y)=\frac{1}{\left|\frac{\partial(\mu+c)}{\partial \mu}\right|_{\mu=y-c}} P_{\mu}(y-c)=P_{\mu}(y-c)
$$

and, since this has to be valid for all c,

$$
P_{Y}(y)=P_{\mu}(y)
$$

- hence

$$
P_{\mu}(y-c)=P_{\mu}(y)
$$

- which is valid for all c if and only if $P_{\mu}(\mu)$ is uniform
- non-informative prior for location is $P_{\mu}(\mu) \alpha 1$

Scale parameters

- a scale parameter is one that controls the scale of the density

$$
\sigma^{-1} f\left(\frac{x}{\sigma}\right)
$$

e.g. the variance of a Gaussian distribution

- it can be shown that, in this case, the non-informative prior invariant to scale transformations is

$$
P_{\sigma}(\sigma)=\frac{1}{\sigma}
$$

- note that, as for location, this is an improper prior

Selecting priors

- non-informative priors are the end of the spectrum where we don't know what parameter values to favor
- at the other end, i.e. when we are absolutely sure, the prior becomes a delta function

$$
P_{\Theta}(\theta)=\delta\left(\theta-\theta_{0}\right)
$$

- in this case

$$
P_{\Theta \mid T}(\theta \mid D) \propto P_{T \mid \Theta}(D \mid \theta) \delta\left(\theta-\theta_{0}\right)
$$

and the predictive distribution is

$$
\begin{aligned}
P_{x \mid T}(x \mid D) & \propto \int P_{x \mid \Theta}(x \mid \theta) P_{T \mid \Theta}(D \mid \theta) \delta\left(\theta-\theta_{0}\right) d \theta \\
& =P_{x \Theta}\left(x \mid \theta_{0}\right)
\end{aligned}
$$

- this is identical to ML if $\theta_{0}=\theta_{M L}$

Selecting priors

- hence,
- ML is a special case of the Bayesian formulation,
- where we are absolutely confident that the ML estimate is the correct value for the parameter
- but we could use other values for θ_{0}. For example the value that maximizes the posterior

$$
\theta_{M A P}=\underset{\theta}{\arg \max } P_{\Theta \mid T}(\theta \mid D)=\underset{\theta}{\arg \max } P_{T \mid \Theta}(D \mid \theta) P_{\Theta}(\theta)
$$

- this is called the MAP estimate and makes the predictive distribution equal to

$$
P_{X \mid T}(x \mid D)=P_{X \mid \Theta}\left(x \mid \theta_{M A P}\right)
$$

- it can be useful when the true predictive distribution has no closed-form solution

Selecting priors

- the natural question is then
- "what if I don't get the prior right?"; "can I do terribly bad?"
- "how robust is the Bayesian solution to the choice of prior?"
- let's see how much the solution changes between the two extremes
- for the Gaussian problem
- absolute certainty priors: $P_{\mu}(\mu)=\delta\left(\mu-\mu_{p}\right)$
- MAP estimate: since $P_{\mu T}(\mu \mid D)=G\left(x, \mu_{n}, \sigma_{n}^{2}\right)$ we have

$$
\mu_{p}=\mu_{n}=\frac{n \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{M L}+\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{0}
$$

- ML estimate is $\mu_{p}=\mu_{M L}$
- we have seen already that these are similar unless the sample is small (MAP $=$ ML on sample with extra point)

Selecting priors

- for the Gaussian problem
- non-informative prior:
- in this case it is $P_{\mu}(\mu) \alpha 1$ or

$$
P_{\mu}(\mu)=\lim _{\sigma_{0}^{2} \rightarrow \infty} G\left(\mu, \mu_{0}, \sigma_{0}^{2}\right)
$$

- from which

$$
\begin{aligned}
& \mu_{n}=\lim _{\sigma_{0}^{2} \rightarrow \infty}\left(\frac{n \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{M L}+\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{0}\right)=\mu_{M L} \\
& \frac{1}{\sigma_{n}^{2}}=\lim _{\sigma_{0}^{2} \rightarrow \infty}\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)=\frac{n}{\sigma^{2}} \Leftrightarrow \sigma_{n}^{2}=\sigma_{M L}^{2}
\end{aligned}
$$

- and

$$
P_{X \mid T}(x \mid D)=G\left(x, \mu_{n}, \sigma^{2}+\sigma_{n}^{2}\right)=G\left(x, \mu_{M L}, \sigma^{2}\left(1+\frac{1}{n}\right)\right)
$$

Selecting priors

- in summary, for the two prior extremes
- delta prior centered on MAP:

$$
P_{X \mid T}(x \mid D)=G\left(x, \mu_{M A P}, \sigma^{2}\right) \quad \mu_{M A P}=\frac{n \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{M L}+\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{0}
$$

- delta prior centered on ML:

$$
P_{X \mid T}(x \mid D)=G\left(x, \mu_{M L}, \sigma^{2}\right)
$$

- non-informative prior

$$
P_{X \mid T}(x \mid D)=G\left(x, \mu_{M L}, \sigma^{2}\left(1+\frac{1}{n}\right)\right)
$$

- all Gaussian, "qualitatively the same":
- somewhat different parameters for small n ; equal for large n
- this indicates robustness to "incorrect" priors!

Selecting priors

- another example, problem 3.5.17 DHS (HW prob 3)
- multivariate Bernoulli (d independent Bernoulli variables)
- since Bernoulli is

$$
P_{x \mid \Theta}(x \mid \theta)=\left\{\begin{array}{cc}
\theta, & x=1 \\
1-\theta, & x=0
\end{array}=\theta^{x}(1-\theta)^{1-x}\right.
$$

- multivariate likelihood is:

$$
P_{X \Theta}(X \mid \theta)=\prod_{i=1}^{\mathrm{d}} \theta_{i}^{x_{i}}\left(1-\theta_{i}\right)^{1-x_{i}}
$$

- in (a) you show that if $D=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$ is a set of n iid samples, then

$$
P_{T \mid \Theta}(D \mid \theta)=\prod_{i=1}^{\mathrm{d}} \theta_{i}^{\mathrm{s}}\left(1-\theta_{i}\right)^{n-s_{i}}, \quad S_{i}=\sum_{j=1}^{n} x_{i}^{(j)}
$$

Selecting priors

- another example, problem 3.5.17 DHS (HW prob 3)
- in (b) you then show that if Θ is uniform (non-informative) the predictive distribution is

$$
P_{X \mid T}(x \mid D)=\prod_{i=1}^{\mathrm{d}}\left(\frac{s_{i}+1}{n+2}\right)^{x_{i}}\left(1-\frac{s_{i}+1}{n+2}\right)^{1-x_{i}}
$$

- in (d) you show that comparing with

$$
P_{X \mid \Theta}(x \mid \theta)=\prod_{i=1}^{\mathrm{d}} \theta_{i}^{x_{i}}\left(1-\theta_{i}\right)^{1-x_{i}}
$$

- this can be interpreted as:
- under Bayes, with a uniform prior, the predicted distribution is the same as the likelihood, with the parameter estimate

$$
\hat{\theta}_{i}=\frac{s_{i}+1}{n+2}
$$

Selecting priors

- let's now consider the extreme of $P_{\Theta}(\theta)=\delta(\theta-\hat{\theta})$
- ML: we know that

$$
\hat{\theta}_{i}=\frac{s_{i}}{n}
$$

- and

$$
P_{X \mid T}(x \mid D)=\prod_{i=1}^{\mathrm{d}}\left(\frac{s_{i}}{n}\right)^{x_{i}}\left(1-\frac{s_{i}}{n}\right)^{1-x_{i}}
$$

- this can be interpreted as:
- the predicted distribution is the same as the likelihood, with the parameter estimate

$$
\hat{\theta}_{i}=\frac{S_{i}}{n}
$$

Selecting priors

- MAP: given prior $P_{\Theta}=\prod_{i} P_{\Theta_{i}}\left(\theta_{i}\right)$

$$
\hat{\theta}=\underset{\theta}{\arg \max }\left\{\log P_{T \mid \Theta}(D \mid \theta)+\log P_{\Theta}(\theta)\right\}
$$

- and since

$$
P_{T \mid \Theta}(D \mid \theta)=\prod_{i=1}^{\mathrm{d}} \theta_{i}^{\mathrm{s}}\left(1-\theta_{i}\right)^{n-s_{i}}, \quad S_{i}=\sum_{j=1}^{n} x_{i}^{(j)}
$$

- this is

$$
\hat{\theta}_{i}=\underset{\theta}{\arg \max }\left\{s_{i} \log \theta_{i}+\left(n-s_{i}\right) \log \left(1-\theta_{i}\right)+\log P_{\Theta_{i}}\left(\theta_{i}\right)\right\}
$$

- i.e. the solution of

$$
\frac{s_{i}}{\theta_{i}}-\frac{\left(n-s_{i}\right)}{1-\theta_{i}}+\frac{1}{P_{\Theta_{i}}\left(\theta_{i}\right)} \frac{\partial}{\partial \theta_{i}} P_{\Theta_{i}}\left(\theta_{i}\right)=0
$$

- let's consider some specific priors

Selecting priors

- prior that favors " 1 " s

$$
P_{\Theta_{i}}(\theta)=2 \theta
$$

- MAP solution:

$$
\frac{s_{i}}{\theta_{i}}-\frac{\left(n-s_{i}\right)}{1-\theta_{i}}+\frac{1}{\theta_{i}}=0 \Leftrightarrow \hat{\theta}_{i}=\frac{s_{i}+1}{n+1}
$$

- and

$$
P_{X \mid T}(x \mid D)=\prod_{i=1}^{\mathrm{d}}\left(\frac{s_{i}+1}{n+1}\right)^{x_{i}}\left(1-\frac{s_{i}+1}{n+1}\right)^{1-x_{i}}
$$

- this can be interpreted as:
- the predicted distribution is the same as the likelihood, with the parameter estimate

$$
\hat{\theta}_{i}=\frac{s_{i}+1}{n+1}
$$

Selecting priors

- prior that favors "0"s

$$
P_{\Theta_{i}}(\theta)=2(1-\theta)
$$

- MAP solution:

$$
\frac{s_{i}}{\theta_{i}}-\frac{\left(n-s_{i}\right)}{1-\theta_{i}}-\frac{1}{1-\theta_{i}}=0 \Leftrightarrow \hat{\theta}_{i}=\frac{s_{i}}{n+1}
$$

- and

$$
P_{X \mid T}(x \mid D)=\prod_{i=1}^{\mathrm{d}}\left(\frac{s_{i}}{n+1}\right)^{x_{i}}\left(1-\frac{s_{i}}{n+1}\right)^{1-x_{i}}
$$

- this can be interpreted as:
- the predicted distribution is the same as the likelihood, with the parameter estimate

$$
\hat{\theta}_{i}=\frac{s_{i}}{n+1}
$$

Selecting priors

- in summary
- all cases are of the form $P_{X \mid T}(X \mid D)=\prod_{i=1}^{\mathrm{d}} \hat{\theta}^{x_{i}}(1-\hat{\theta})^{1-x_{i}}$
- with

Estimator	$\hat{\theta}_{i}$	\# tosses	\# "1"s	interpretation
ML	s_{i} / n	n	s_{i}	
MAP non-informative	s_{i} / n	n	s_{i}	"the same"
MAP favor "1"s	$\left(s_{i}+1\right) /(n+1)$	$n+1$	$s_{i}+1$	"add one 1 "
MAP favor "0"s	$s_{i} /(n+1)$	$n+1$	s_{i}	"add one 0"
Bayes non-informative	$\left(s_{i}+1\right) /(n+2)$	$n+2$	$s_{i}+1$	"add one of each"

- all cases qualitatively the same: "ML estimate on an extended sample with extra points that reflect the bias of the prior".

Regularization

- these are all examples of regularization
-Q: what is the point of "adding one of each?" by Bayes non-informative?
- the main problem of ML $\left(s_{i} / n\right)$ is the "empty bin" problem
- for small $\mathrm{n}, \mathrm{s}_{i}$ is likely to be zero independently of the value of θ_{i}
- this can lead to all sorts of problems, e.g. a likelihood ratio that goes to infinity
- by adding "one of each" Bayes eliminates this problem
- for richly populated bins it makes no difference, but it matters for empty bins
- note that this is consistent with the non-informative prior
- empty bins are as likely as any other value
- if we see a lot of them, we need to correct this

Regularization

- "empty bin" problem
- "why should I care?" this is unlikely if I have a large sample
- remember that "large" is always relative
- 10 bins in 1D transforms into 100 in 2D, 1000 in 3D, and 10^{d} in a d-dimensional space
- when d is large, we are always in the "small sample" regime
- regularization usually makes a tremendous difference
- example:
- histogram estimates in high-dimensional spaces
- e.g. histogram of English words for indexing web-pages
- for each page, compute histogram $C=\left(c_{1}, \ldots, c_{w}\right)$ where c_{i} is the $\#$ of times word $\mathrm{i}^{\text {th }}$ word appeared in page
- measure similarity between pages i, j with some function $d\left(C^{i}, C^{j}\right)$

Regularization

- histogram similarity:
- natural measure is the Kullback-Leibler divergence

$$
d\left(C^{i}, C^{j}\right)=\sum_{k=1}^{w} p_{k}^{i} \log \left(\frac{p_{k}^{i}}{p_{k}^{j}}\right)
$$

- where the probabilities are the counts after normalization

$$
p_{k}^{i}=c_{k}^{i} / \sum_{k} c_{k}^{i}
$$

- problem: log goes to infinity when $\mathrm{p}_{\mathrm{k}}^{\mathrm{j}}=0$!
- for low-frequency words the noisy estimates are amplified by the ratio of probabilities
- the distance measure has a large variance

Regularization

- Prob 3 on HW
- the count vector C is distributed according to a multinomial distribution

$$
P_{C}\left(c_{1}, \ldots, c_{W}\right)=\frac{n!}{\prod_{k=1}^{w} c_{k}!} \prod_{j=1}^{w} \pi_{j}^{c_{j}}
$$

- where π_{j} is the probability of word j.
- since the π_{j} are probabilities, we can't use any prior here.
- distribution over vectors $\pi=\left(\pi_{1}, \ldots, \pi_{w}\right)$ must satisfy the constraints of a probability mass function

$$
\begin{aligned}
& \pi_{j}>0 \\
& \sum_{j} \pi_{j}=1
\end{aligned}
$$

Regularization

- Prob 3 on HW
- one such distribution is the Dirichlet distribution

$$
P_{\Pi}\left(\pi_{1}, \ldots, \pi_{w}\right)=\frac{\Gamma\left(\sum_{j=1}^{w} u_{j}\right)}{\prod_{k=1}^{w} \Gamma\left(u_{j}\right)} \prod_{j=1}^{w} \pi_{j}^{u_{j}-1}
$$

- u_{j} are hyper-parameters
- $\Gamma($.$) is the gamma function$

Regularization

- Prob 3 on HW
- on HW you will show that the posterior is

$$
P_{\Pi \mid C}(\pi \mid C)=\frac{\Gamma\left(\sum_{j=1}^{w} c_{j}+u_{j}\right)}{\prod_{k=1}^{w} \Gamma\left(c_{j}+u_{j}\right)} \prod_{j=1}^{w} \pi_{j}^{c_{j}+u_{j}-1}
$$

- i.e. Dirichlet of hyper-parameters $c_{j}+u_{j}$
- the prior parameters can be seen as additional counts that regularize the predictive distribution!

