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Bayesian estimation

» last class we considered the Gaussian problem

P (x| ) =Gx,11,0%) o known

and showed that

with

P, (1) = Gut, 11y, 02)

P (| D)=Gx, p,,07)

Pur (X1D)=G (X, u,,0° +0,)
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» good example of various properties that are typical of
Bayesian parameter estimates




Properties

» regularization:
n 1

e if o.=0"then u,= — 1,UM|_ —Ho
_ 1 N X,  with X, , =
n +1 — i+1 /uo

» Bayes is equal to ML on a virtual sample with extra points

* In this case, one additional point equal to the mean of the prior
« for large n, extra point is irrelevant
o for small n, it regularizes the Bayes estimate by

 directing the posterior mean towards the prior mean

- reducing the variance of the posterior 1 _ 77 N 1
o

2 2 2
n o} 60



Conjugate priors

» note that

- the prior A, (u) = G(u, 1y, 62) is Gaussian
» the posterior p,_(u|D) =G (x, u,,0%) is Gaussian

n

» whenever this is the case (posterior in the same family as
prior) we say that

* P,(u) is a conjugate prior for the likelihood #, (x | 1)
* posterior P, (u|D) is the reproducing density

» HW: a number of likelihoods have conjugate priors

Likelihood Conjugate prior
Bernoulli Beta
Poisson Gamma

Exponential Gamma
Normal (known o) Gamma




Priors

» potential problem of the Bayesian framework

« “l don’t really have a strong belief about what the most likely
parameter configuration is”

» In these cases it is usual to adopt a non-informative prior
» the most obvious choice is the uniform distribution

Po(0) =a

» there are, however, problems with this choice

« if #is unbounded this is an improper distribution
jP®(9)d9:oo 21

 the prior is not invariant to all reparametrizations



Example

» consider @ and a new random variable » with 7 = e®

» since this is a 1-to-1 transformation it should not affect
the outcome of the inference process

» we check this by using the change of variables theorem
e ify =1f(x) then

1 )
A=z P )
. . a—XX=7’_1(,V)
» IN this case
1 1
P, (17) = —1——F»(logn) == A, (log7)
oe’ U

0=logn



Invariant non-informative priors

. . 1 .
» for uniform 7 this means that £ (7)a— , i.e. not constant

» this means that ‘77 ‘

» there is no consistency between @ and h

e a l1-to-1 transformation changes the non-informative prior into an
Informative one

» to avoid this problem the non-informative prior has to be
Invariant

» €.g. consider a location parameter:
» a parameter that simply shifts the density

e e.g. the mean of a Gaussian

» a non-informative prior for a location parameter has to be
Invariant to shifts, i.e. the transformation Y = x4+ c



Location parameters

» IN this case

'D)/(J/):| .

o(u+c)
O p=y—c
and, since this has to be valid for all c,

» hence

Py-c)=P()

» which is valid for all ¢ if and only if P () is uniform

Py —c)=Aly~0)

» non-informative prior for location is P (1) a1



Scale parameters

» a scale parameter is one that controls the scale of the
density
al X
o 'f| =
o

e.g. the variance of a Gaussian distribution

» it can be shown that, in this case, the non-informative
prior invariant to scale transformations is

P (o)==

O

» note that, as for location, this is an improper prior



Selecting priors

» non-informative priors are the end of the spectrum
where we don’t know what parameter values to favor

» at the other end, 1.e. when we are absolutely sure, the
prior becomes a delta function

P®((9) :5(‘9—90)

» IN this case

P®|r(‘9|D) o Pr|@(D|‘9)5(‘9_‘90)
and the predictive distribution is

Pyr (X | D) [ Pyo (X 0)Pr (D | 0)5(06,) 00

— X|®(X|Ho)
» this is identical to ML if , = 6,
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Selecting priors

» hence,

ML is a special case of the Bayesian formulation,

* where we are absolutely confident that the ML estimate is the
correct value for the parameter

» but we could use other values for 6,. For example the
value that maximizes the posterior

O = arg gnaxpe)v (0|D) = arg gnaX’Dn@ (D|0)F, ()

» this is called the MAP estimate and makes the predictive
distribution equal to

PX|7’ (XlD) :PX|®(X | HMAP)

» it can be useful when the true predictive distribution has
no closed-form solution
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Selecting priors

» the natural question is then

o “whatif | don’t get the prior right?”; “can I do terribly bad?”
* “how robust is the Bayesian solution to the choice of prior?”

* let’s see how much the solution changes between the two
extremes

» for the Gaussian problem
- absolute certainty priors: P, (u)=06(u— 1)

« MAP estimate: since 7, (,u|D)=G(x,,u,,,a§) we have
My = My = %, My + o )7
" nel+ ™ nel+o? "

* ML estimate is u, = sy

* we have seen already that these are similar unless the sample is
small (MAP = ML on sample with extra point)
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Selecting priors

» for the Gaussian problem

e non-informative prior:
* inthiscaseitis P (x) a1 or

Pﬂ(ﬂ):JganG(ﬂ’ﬂo’Gg)

* from which

4 = lim no; s o p \_ﬂ
- L 0, /ML
" oion nog + o’ no, +o°" ")
1 m n N 1) n 5
= = < |0, =0
o o aé] o g
e and

PX|T(X|D):G(X1/’I/7162+G§):G(X1ﬂML,GZ(1+

1

n

)
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Selecting priors

» INn summary, for the two prior extremes

o delta prior centered on MAP:

_ 2 no’ o
PXV(XlD)_G(X’ﬂMAP’O— 1 Hyp = 2 : > My T
nel+o

e delta prior centered on ML.:

PX|T(X|D):G(XHUML’O-2)

e non-informative prior

Pur (X | D) :G(XHUML’OJ(]'—F]-))

n

» all Gaussian, “qualitatively the same”:

« somewhat different parameters for small n; equal for large n

» this indicates robustness to “incorrect” priors!
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Selecting priors
» another example, problem 3.5.17 DHS (HW prob 3)

multivariate Bernoulli (d independent Bernoulli variables)

e since Bernoulli is

0, x=1 X
-7 T

 multivariate likelihood is:

d
Pro(x10)=T 67 1-6,)"
i=1

 in (a) you show that if D = {x®, ..., x("W} is a set of n iid samples,
then

d n
PoDIO) =000, 5= x
i=1
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Selecting priors
» another example, problem 3.5.17 DHS (HW prob 3)

* in (b) you then show that if @is uniform (non-informative) the
predictive distribution is

PX|r(x|D)=H(5’ +1) /(1— 5"”] |

1\ nN+2 n+2

* in (d) you show that comparing with
d
Puo(x10)=]16"1-6,) "
i=1

 this can be interpreted as:

» under Bayes, with a uniform prior, the predicted distribution is the
same as the likelihood, with the parameter estimate

S, +1
n+2

0, =

/
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Selecting priors

» let's now consider the extreme of A, (9) = 5(6?—67)
e ML: we know that

G-

n

e and

n

Purc1D)=T][ %] 12

 this can be interpreted as:

 the predicted distribution is the same as the likelihood, with the
parameter estimate

A S.
g, ==L
n




Selecting priors
« MAP: given prior P, = HP@, (6,)

0 = arg max{log Pre(D|0)+logFA, (9)}
0

 and since
d n )
Pr|®(D |1 0) :1_[‘9iS1 (1_‘9/),7_5/’ S, = ZX/(/)
i=1 /=1
e thisis

N

6. =arg max{s,. logé, +(17—5s,)log(l-6,)+log Po, (H,.)}
0

l.e. the solution of
s, (n-s)) N 1 0

/

0, 1-0, P, (600,

/

P@,(Q/):O

let's consider some specific priors
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Selecting priors

. prior that favorS ulns 2 N,
P®/_ (0) =260
« MAP solution: :1 >9
5/._(/7—5‘/.)+ 1 0 o 6)'*/:5/-4-1
0 1-6, 0, n+1
e and
s, +1 s +1)7"
x|D 1-—
X|T( | ) H( j ( /7+1]

 this can be interpreted as:

» the predicted distribution is the same as the likelihood, with the
parameter estimate

S, +1
n+1

6 -




Selecting priors

e prior that favors “0’s 2
P, (0) =2(1-0)
« MAP solution: '1 >9
5/'_(/7_5/')_ 1 -0 & A/_: 5/'
0, 1-06, 1-6, n+1
e and
d S X; S 1-x,
P,.-(xX|D)= ! f [
X'T( D) H(n+1) ( n+1]

 this can be interpreted as:

» the predicted distribution is the same as the likelihood, with the
parameter estimate

S,
n+1

0, =

/
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Selecting priors

» IN summary

e all cases are of the form

d ~or
P (x|D)=] 6" -6)"
i=1

e Wwith
Estimator é,- # tosses | # “1"s |interpretation
ML s, /n n S
MAP non-informative s;/n n S, ‘the same”
MAP favor “1”s (s, +1) / (n+1) n+1 s+l “add one 1"
MAP favor “0"s s, /(n+1) n+1 S, “add one 0"
Bayes non-informative | (S, +1)/(r7+2) n+2 | s+1 |“addone of each”

 all cases qualitatively the same: “ML estimate on an extended
sample with extra points that reflect the bias of the prior”.




Regularization

» these are all examples of regularization

» Q: what is the point of “adding one of each?” by Bayes
non-informative?

the main problem of ML (s;/ n) is the “empty bin” problem
for small n, s;is likely to be zero independently of the value of 4

this can lead to all sorts of problems, e.g. a likelihood ratio that
goes to infinity

by adding “one of each” Bayes eliminates this problem

for richly populated bins it makes no difference, but it matters for
empty bins

» note that this is consistent with the non-informative prior

empty bins are as likely as any other value
If we see a lot of them, we need to correct this
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Regularization

» “empty bin” problem

“why should | care?” this is unlikely if | have a large sample
* remember that “large” is always relative

e 10 bins in 1D transforms into 100 in 2D, 1000 in 3D, and 109 in a
d-dimensional space

 when d is large, we are always in the “small sample” regime

* reqgularization usually makes a tremendous difference

» example:

* histogram estimates in high-dimensional spaces

* e.g. histogram of English words for indexing web-pages

 for each page, compute histogram C = (c,, ..., ¢,,) where c; is the # of
times word it" word appeared in page

e measure similarity between pages i,j with some function d(C',C))
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Regularization

» histogram similarity:

* natural measure is the Kullback-Leibler divergence

dc’,.cly="Y p Iog(p’;j
) Pi

* where the probabilities are the counts after normalization

. C/.
p//( = k ;
> Ck
k

« problem: log goes to infinity when pj, = 0!

» for low-frequency words the noisy estimates are amplified by the
ratio of probabilities

» the distance measure has a large variance
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Regularization
» Prob 3 on HW

 the count vector C is distributed according to a multinomial
distribution

w

n! c,
Po(Cy..cw)=——] | =7

c, /7
Hk

* where 7 is the probability of word J.

* since the 7 are probabilities, we can’'t use any prior here.

e distribution over vectors r = (n, ..., m,) must satisfy the
constraints of a probability mass function

7z/->0

Zﬂjzl

/



Regularization
» Prob 3 on HW

* one such distribution is the Dirichlet distribution

R (..., my) =

1

S, |

=)

w

w

1BE:

HF(U/') =

k=1

u/-—l

J

* U, are hyper-parameters

I'(.) is the gamma function
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Regularization
» Prob 3 on HW

« on HW you will show that the posterior is

/4
F(ch+u/} .
j=1

pmc(ﬂlc): - - | 7[/?/+u,-—1
HF(C/ +U/) =
k=1

* l.e. Dirichlet of hyper-parameters c; + u,

 the prior parameters can be seen as additional counts that
regularize the predictive distribution!
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