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Maximum likelihood
• parameter estimation in three steps:

– 1) choose a parametric model for probabilities
to make this clear e denote the ector of parameters b Θto make this clear we denote the vector of parameters by Θ

note that this means that Θ is NOT a random variable

);( ΘxPX
note that this means that Θ is NOT a random variable

– 2) assemble D = {x1 , ..., xn} of examples drawn independently
– 3) select the parameters that maximize the probability of the data 
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• P (D;Θ) is the likelihood of parameter Θ with respect to
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• PX(D;Θ) is the likelihood of parameter Θ with respect to 
the data



Least squares
• there are interesting connections between ML estimation 

and least squares methods
• e.g. in a regression problem we have

– two random variables X and Y
– a dataset of examplesa dataset of examples 
D = {(x1,y1), … (xn,yn)}

– a parametric model of the form

– where Θ is a parameter vector, and ε a random variable that

ε+Θ= );(xfy

where Θ is a parameter vector, and ε a random variable that 
accounts for noise

– e.g. ε ~ N(0,σ2)
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Least squares
• assuming that the family of models is known, e.g.

∑Θ
K

if )( θ

– this is really just a problem of parameter estimation
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– where the data is distributed as

( )2
| ),;(,);|( σΘ=Θ xfzGxDP XZ

– note that X is always known, and the mean is a function of x and 
Θ

( )| ),;(,);|( fXZ

– in the homework, you will show that

[ ] yTT ΓΓΓ=Θ
−1*
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Least squares
• where
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• conclusion:
l t ti ti i ll j t ML ti ti d th

⎦⎣

– least squares estimation is really just ML estimation under the 
assumption of

Gaussian noise
i d d t lindependent sample
ε ~ N(0,σ2)

i b bilit k th ti li it
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• once again, probability makes the assumptions explicit



Least squares solution
• due to the connection to parameter estimation
• we can also talk about the “quality” of the least squares 

solution
• in particular, we know that

it is unbiased– it is unbiased
– variance goes to zero as the number of points increases
– it is the BLUE estimator for f(x;Θ)

• under the statistical formulation we can also see how the 
optimal estimator changes with assumptions

• ML estimation can also lead to (homework)• ML estimation can also lead to (homework)
– weighted least squares
– minimization of Lp norms
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– robust estimators



Bayesian parameter estimation
• Bayesian parameter estimation is an alternative 

framework for parameter estimation
– it turns out that the division between Bayesian and ML methods is 

quite fundamental

• it stems from a different way of interpreting probabilitiesy p g p
– frequentist vs Bayesian

• there is a long debate about which is best
thi d b t t th f h t b biliti– this debate goes to the core of what probabilities mean

• to understand it, we have to distinguish two components
– the definition of probability (this does not change)p y ( g )
– the assessment of probability (this changes)

• let’s start with a brief review of the part that does not 
change
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Probability
• probability is a language to deal with processes that are 

non-deterministic

• examples:
– if I flip a coin 100 times, how many can I expect to see heads?
– what is the weather going to be like tomorrow?
– are my stocks going to be up or down?
– am I in front of a classroom or is this just a picture of it?
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am I in front of a classroom or is this just a picture of it?



Sample space
• the most important concept is that of a sample space
• our process defines a set of events

– these are the outcomes or states of the process

• example:p
– we roll a pair of dice
– call the value on the up face at 

the nth toss xnthe n toss xn

– note that possible events such as
odd number on second throw
two sixes
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x2

two sixes
x1 = 2 and x2 = 6

– can all be expressed as combinations
of the sample space events 1
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of the sample space events 1

61 x1



Sample space
• is the list of possible events that satisfies the following 

properties:

– finest grain: all possible distinguishable 
events are listed separately

– mutually exclusive: if one event happens 

6

x2

y pp
the other does not (if x1 = 5 it cannot be 
anything else)

– collectively exhaustive: any possible 
t b d i f

1

outcome can be expressed as unions of 
sample space events

• mutually exclusive property simplifies the calculation of

61 x1

• mutually exclusive property simplifies the calculation of 
the probability of complex events

• collectively exhaustive means that there is no possible 
t t hi h t i b bilit
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outcome to which we cannot assign a probability



Probability measure
• probability of an event: 

– number expressing the chance that the event will be the outcome 
of the processof the process

• probability measure: satisfies three axioms
– P(A) ≥ 0 for any event A( ) y
– P(universal event) = 1
– if A ∩ B = ∅, then P(A+B) = P(A) + P(B)

• all of this

6

x2

• all of this 
– has to do with the definition of probability
– is the same under Bayes and frequentist 1

views

• what changes is how probabilities are assessed
61 x1
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Frequentist view
• under the frequentist view probabilities are relative 

frequencies
– I throw my dice n times
– in m of those the sum is 5
– I say that

n
msumP == )5(

• this is intimately connected with the ML method
– it is the ML estimate for the probability of a Bernoulli process with

n

it is the ML estimate for the probability of a  Bernoulli process with 
states (“5”, “everything else”)

• makes sense when we have a lot of observations
bi d i i t t b bilit
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– no bias; decreasing variance; converges to true probability



Problems
• many instances where we do not have a large number 

of observations
• consider the problem of 

crossing a street
• this is a decision problem with• this is a decision problem with 

two states
– Y = 0: “I am going to get hurt”
– Y = 1: “I will make it safely”

• optimal decision computable by Bayes decision rule
– collect some measurements that are informativecollect some measurements that are informative
– e.g. (X = {size, distance, speed} of incoming cars)
– collect examples under both states and estimate all probabilities

h hi d d lik id !
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• somehow this does not sound like a great idea!



Problems
• under the frequentist view

– you need to repeat an experiment a large number of times 
– to estimate any probabilities

• yet, people are very good at 
– estimating probabilitiesestimating probabilities 
– for problems in which it is impossible to set up such experiments

• for example:
– will I die if I join the army?
– will Democrats or Republicans win the next election?
– is there a God?
– will I graduate in two years?

• to the point where they make life-changing decisions
based on these probability estimates ( li ti i th t )
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based on these probability estimates (enlisting in the army, etc.)



Subjective probability
• this motivates an alternative definition of probabilities

– note that this has to do more with how probabilities are assessed
than ith the probabilit definition itselfthan with the probability definition itself

– we still have a sample space, a probability measure, etc
– however the probabilities are not equated to relative counts

• this is usually referred to as subjective probability
• probabilities are degrees of belief on the outcomes of the 

experimentexperiment 
– they are individual (vary from person to person)
– they are not ratios of experimental outcomes

• e.g. 
– for very religious person P(god exists) ~ 1

for casual churchgoer P(god exists) ~ 0 8 (e g accepts evolution etc )
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– for casual churchgoer P(god exists) ~ 0.8 (e.g. accepts evolution, etc.)

– for non-religious P(god exists) ~ 0



Problems
• in practice, why do we care about this?
• under the notion of subjective probability, the entire ML 

framework makes little sense
– there is a magic number that is estimated from the world and  

determines our beliefs
– to evaluate my estimates I have to run experiments over and over 

again and measure quantities like bias and variance
– this is not how people behave, when we make estimates wethis is not how people behave, when we make estimates we 

attach a degree of confidence to them, without further 
experiments

– there is only one model (the ML model) for the probability of thethere is only one model (the ML model) for the probability of the 
data, no multiple explanations

– there is no way to specify that some models are, a priori, better 
than others

16

than others



Bayesian parameter estimation
• the main difference with respect to ML is that in the 

Bayesian case Θ is a random variable
• basic concepts

– training set D = {x1 , ..., xn} of examples drawn independently
– probability density for observations given parameterprobability density for observations given parameter

i di t ib ti f t fi ti

)|(| θxPX Θ

– prior distribution for parameter configurations

that encodes prior beliefs about them

)(θΘP
that encodes prior beliefs about them

• goal: to compute the posterior distribution

)|( DP θ
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)|(| DP X θΘ



Bayes vs ML
• there are a number of significant differences between 

Bayesian and ML estimates
• D1: 

– ML produces a number, the best estimate
– to measure its goodness we need to measure bias and varianceto measure its goodness we need to measure bias and variance
– this can only be done with repeated experiments
– Bayes produces a complete characterization of the parameter 

from the single datasetfrom the single dataset
– in addition to the most

probable estimate, we
obtain a characterizationobtain a characterization
of the uncertainty

lower uncertainty
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higher uncertainty



Bayes vs ML
• D2: optimal estimate

– under ML there is one “best” estimate
– under Bayes there is no “best” estimate
– only a random variable that takes different values with different 

probabilities
– technically speaking, it makes no sense to talk about the “best” 

estimate

• D3: predictionsD3: predictions
– remember that we do not really care about the parameters 

themselves
– they are needed only in the sense that they allow us to build– they are needed only in the sense that they allow us to build 

models
– that can be used to make predictions (e.g. the BDR)

unlike ML Bayes uses ALL information in the training set to
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– unlike ML, Bayes uses ALL information in the training set  to 
make predictions



Bayes vs ML
• let’s consider the BDR under the “0-1” loss and an 

independent sample D = {x1 , ..., xn}
• ML-BDR:

– pick i if

( )θ )(|)( ** iPiPi ( )
( )θθ

θ

θ
,|maxarg  where

)(;|maxarg)(

|
*

|

iDP

iPixPxi

YXi

YiYX
i

=

=

• two steps:
– i) find θ*

θ

i) find θ
– ii) plug into the BDR

• all information not captured by θ* is lost, not used at 
d i i ti
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decision time



Bayes vs ML
• note that we know that information is lost

– e.g. we can’t even know how good of an estimate θ* is 
– unless we run multiple experiments and measure bias/variance

• Bayesian BDR
– under the Bayesian framework, everything is conditioned on theunder the Bayesian framework, everything is conditioned on the 

training data
– denote T = {X1 , ..., Xn} the set of random variables

from which the training sample D = {x1 , ..., xn} is drawng p { 1 , , n}

• B-BDR:
– pick i if

th d i i i diti d th ti t i i t

( ) )(,|maxarg)( ,|
* iPDixPxi YiTYX

i
=
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• the decision is conditioned on the entire training set



Bayesian BDR
• to compute the conditional probabilities, we use the 

marginalization equation

• note 1: when the parameter value is known, x no longer

( ) ( ) ( )∫ ΘΘ= θθθ dDiPDixPDixP iTYiTYXiTYX ,|,,|,| ,|,,|,|

note 1: when the parameter value is known, x no longer 
depends on T, e.g. X|Θ ~ N(θ,σ2)
– we can, simplify equation above into

• note 2: once again can be done in two steps (per class)

( ) ( ) ( )∫ ΘΘ= θθθ dDiPixPDixP iTYYXiTYX ,|,|,| ,|,|,|

• note 2: once again can be done in two steps (per class)
– i) find PΘ|T(θ|Di)
– ii) compute PX|Y,T(x|i, Di) and plug into the BDR
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• no training information is lost



Bayesian BDR
• in summary

– pick i if

( )
( ) ( ) ( ) θθθ dDiPixPDixPwhere

iPDixPxi YiTYX
i

|||

)(,|maxarg)( ,|
*

∫=

=

• note: 

( ) ( ) ( ) θθθ dDiPixPDixPwhere iTYYXiTYX ,|,|,|   ,|,|,| ΘΘ∫=

– as before the bottom equation is repeated for each class
– hence, we can drop the dependence on the class
– and consider the more general problem of estimatingg p g

( ) ( ) ( ) θθθ dDPxPDxP TXTX ||| ||| ΘΘ∫=
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The predictive distribution
• the distribution

( ) ( ) ( ) θθθ dDPxPDxP TXTX ||| ||| ΘΘ∫=

is known as the predictive distribution
• this follows from the fact that it allows us

( ) ( ) ( ) θθθ dDPxPDxP TXTX ||| ||| ΘΘ∫

this follows from the fact that it allows us 
– to predict the value of x
– given ALL the information available in the training set

t th t it l b itt• note that it can also be written as

( ) ( )[ ]DTxPEDxP XTTX == ΘΘ ||| ||| θ

– since each parameter value defines a model
– this is an expectation over all possible models

each model is weighted by its posterior probability given training
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– each model is weighted by its posterior probability, given training 
data



The predictive distribution
• suppose that

( ) ( ) ( ) ( )2~|and1~| σµθθθ NDPNxP ( ) ( ) ( ) ( )|| ,|        and        1,| σµθθθ NDPNxP TX ΘΘ

( )DxP |
( )DP T || θΘ

weight π1

π1
weight π2

( )DxP TX ||
|

weight π2

σ2π2
1

11

• the predictive distribution is an average of all these 

µ µ1µ2 µ µ1µ2
θ x
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p g
Gaussians ( ) ( ) ( ) θθθ dDPxPDxP TXTX ||| ||| ΘΘ∫=



The predictive distribution
• Bayes vs ML

– ML: pick one model
– Bayes: average all models

• are Bayesian predictions very different than those of ML?
– they can be, unless the prior is narrowthey can be, unless the prior is narrow

( )DP T || θΘ( )DP T || θΘ

Bayes ML very different
θmax

θθmax
θ

26

Bayes ~ ML                              very  different



The predictive distribution
• hence, ML can be seen as a special case of Bayes

– when you are very confident about the model
– picking one is good enough

• in coming lectures we will see that
– if the sample is quite large, the prior tends to be narrowif the sample is quite large, the prior tends to be narrow
– intuitive: given a lot of training data, there is little uncertainty 

about what the model is
Bayes can make a difference when there is little data– Bayes can make a difference when there is little data

– we have already seen that this is the important case since the 
variance of ML tends to go down as the sample increases

ll• overall
– Bayes regularizes the ML estimate when this is uncertain
– converges to ML when there is a lot of certainty
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MAP approximation
• this sounds good, why use ML at all?
• the main problem with Bayes is that the integral

can be quite nasty

( ) ( ) ( ) θθθ dDPxPDxP TXTX ||| ||| ΘΘ∫=

can be quite nasty
• in practice one is frequently forced to use approximations
• one possibility is to do something similar to ML, i.e. pick 

only one model
• this can be made to account for the prior by 

picking the model that has the largest posterior probability given– picking the model that has the largest posterior probability given 
the training data

( )DP TMAP |maxarg | θθ Θ=
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( )TMAP |g |
θ

Θ



MAP approximation
• this can usually be computed since

( )θθ Θ= DP TMAP |maxarg | ( )

( ) ( )θθ

θθ

θ

θ

ΘΘ

Θ

= PDP

DP

T

TMAP

|maxarg         

|maxarg

|

|

and corresponds to approximating the prior by a delta 
function centered at its maximum

( )DP T || θΘ ( )DP T || θΘ

29θMAP
θ θMAP

θ



MAP approximation
• in this case

( ) ( ) ( )dxPDxP θθθδθ|| −= ∫( ) ( ) ( )
( )MAPX

MAPXTX

xP

dxPDxP

θ

θθθδθ

|                 

||

|

||

Θ

Θ

=

−= ∫

• the BDR becomes
– pick i if

( )
( ) ( )iPiDP

iPixPxi

MAP

Y
MAP
iYX

i

||maxargwhere

)(;|maxarg)( |
*

θθθ

θ

=

=

– when compared to the ML this has the advantage of still

( ) ( )iPiDP YYTi |,|maxarg  where |,| θθθ
θ

ΘΘ=
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when compared to the ML this has the advantage of still 
accounting for the prior (although only approximately)



MAP vs ML
• ML-BDR

– pick i if ( )θ )(;|maxarg)( *
|

* iPixPxi YiYX= ( )
( )θθ

θ
,|maxarg  where

)(;|g)(

|
*

|

iDP YXi

YiYX
i

=

• Bayes MAP-BDR
– pick i if ( ) iPiPi MAP )(|)(* θ( )

( ) ( )iPiDP

iPixPxi

YYT
MAP
i

Y
MAP
iYX

i

|,|maxarg  where

)(;|maxarg)(

|,|

|

θθθ

θ

θ
ΘΘ=

=

– the difference is non-negligible only when the dataset is small

• there are better alternative approximations

θ
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The Laplace approximation
• this is a method for approximating any distribution PX(x)

– consists of approximating PX(x) by a Gaussian centered at its 
peakpeak

• let’s assume that 

1

where g(x) is an unormalized distribution (g(x) > 0 for all x)

( ) )(1 xg
Z

xPX =

– where g(x) is an unormalized distribution (g(x) > 0, for all x)
– and Z the normalization constant

∫= dxxgZ )(

• we make a Taylor series approximation of g(x) at its 
i

∫ dxxgZ )(
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Laplace approximation
• the Taylor expansion is

K+−−= 2
0 )(2)(log)(log xxcxgxg o

PX(x)

– (the first-order term is zero because x0 is a maximum) 
– with

2

2∂

x0

d i t ( ) b li d G i

0

)(log2
xx

xg
x

c
=

∂
∂

−=

– and we approximate g(x) by an unormalized Gaussian

{ }2
0 )(2exp)()(' xxcxgxg o −−=

– and then compute the normalization constant

π2
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Laplace approximation
• this can obviously be extended to the multivariate case
• the approximation is

– with A the Hessian of g(x) at x0

)()(2
1)(log)(log 00 xxAxxxgxg T

o −−−=

with A the Hessian of g(x) at x0

)(log
2

ji
ij xg

xx
A

∂∂
∂

−=

– and the normalization constant
0xxji xx

=
∂∂

( )d2( )
A

xgZ
d

o
π2)(=

34
• in physics this is also called a saddle-point approximation



Laplace approximation
• note that the approximation can be made for the 

predictive distribution

• or for the parameter posterior

( ) ( )TXTX xxGDxP || *,,| Α=

or for the parameter posterior

in which case

( ) ( )TMAPT AGDP || ,,| ΘΘ = θθθ

in which case

( ) ( ) ( ) θθθθ dAGxPDxP TMAPXTX ||| ,,|| ΘΘ∫=

• this is clearly superior to the MAP approximation

( ) ( ) ( ) θθθδθ dxPDxP MAPXTX −= ∫ Θ || ||
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( ) ( ) ( )MAPXTX ∫ Θ || ||



Other methods
• there are two other main alternatives, when this is not 

enough
– variational approximations
– sampling methods (Markov Chain Monte Carlo)

• variational approximations consist ofvariational approximations consist of 
– bounding the intractable function
– searching for the best bound

li th d i t• sampling methods consist
– designing a Markov chain that has the desired distribution as its 

equilibrium distribution
– sample from this chain

• sampling methods
converge to the true distribution
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– converge to the true distribution
– but convergence is slow and hard to detect
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