Bayesian parameter estimation

Nuno Vasconcelos
UCSD
Maximum likelihood

• parameter estimation in three steps:
 – 1) choose a parametric model for probabilities
 to make this clear we denote the vector of parameters by Θ

\[P_X(x; \Theta) \]

note that this means that Θ is NOT a random variable

– 2) assemble $D = \{x_1, ..., x_n\}$ of examples drawn independently

– 3) select the parameters that maximize the probability of the data

\[\Theta^* = \arg \max_{\Theta} P_X(D; \Theta) \]

\[= \arg \max_{\Theta} \log P_X(D; \Theta) \]

• $P_X(D; \Theta)$ is the likelihood of parameter Θ with respect to the data
Least squares

• there are interesting connections between ML estimation and least squares methods
• e.g. in a regression problem we have
 – two random variables X and Y
 – a dataset of examples
 \(D = \{(x_1, y_1), \ldots, (x_n, y_n)\} \)
 – a parametric model of the form
 \[
 y = f(x; \Theta) + \varepsilon
 \]
 – where \(\Theta \) is a parameter vector, and \(\varepsilon \) a random variable that accounts for noise
 – e.g. \(\varepsilon \sim N(0, \sigma^2) \)
Least squares

• assuming that the family of models is known, e.g.

\[f(x; \Theta) = \sum_{i=0}^{K} \theta_i x^i \]

– this is really just a problem of parameter estimation
– where the data is distributed as

\[P_{Z|X}(D | x; \Theta) = G(z, f(x; \Theta), \sigma^2) \]

– note that \(X \) is always known, and the mean is a function of \(x \) and \(\Theta \)
– in the homework, you will show that

\[\Theta^* = \left(\Gamma^T \Gamma \right)^{-1} \Gamma^T y \]
Least squares

• where

\[
\Gamma = \begin{bmatrix}
1 & \ldots & x_1^K \\
\vdots & & \vdots \\
1 & \ldots & x_n^K
\end{bmatrix}
\]

• conclusion:
 - least squares estimation is really just ML estimation under the assumption of
 - Gaussian noise
 - independent sample
 - \(\varepsilon \sim N(0, \sigma^2) \)

• once again, probability makes the assumptions explicit
Least squares solution

• due to the connection to parameter estimation
• we can also talk about the “quality” of the least squares solution
• in particular, we know that
 – it is unbiased
 – variance goes to zero as the number of points increases
 – it is the BLUE estimator for $f(x; \Theta)$
• under the statistical formulation we can also see how the optimal estimator changes with assumptions
• ML estimation can also lead to (homework)
 – weighted least squares
 – minimization of L_p norms
 – robust estimators
Bayesian parameter estimation

• Bayesian parameter estimation is an alternative framework for parameter estimation
 – it turns out that the division between Bayesian and ML methods is quite fundamental
• it stems from a different way of interpreting probabilities
 – frequentist vs Bayesian
• there is a long debate about which is best
 – this debate goes to the core of what probabilities mean
• to understand it, we have to distinguish two components
 – the definition of probability (this does not change)
 – the assessment of probability (this changes)
• let’s start with a brief review of the part that does not change
Probability

• probability is a language to deal with processes that are non-deterministic

• examples:
 – if I flip a coin 100 times, how many can I expect to see heads?
 – what is the weather going to be like tomorrow?
 – are my stocks going to be up or down?
 – am I in front of a classroom or is this just a picture of it?
Sample space

• the most important concept is that of a sample space
• our process defines a set of events
 – these are the outcomes or states of the process

• example:
 – we roll a pair of dice
 – call the value on the up face at the nth toss \(x_n\)
 – note that possible events such as
 ▪ odd number on second throw
 ▪ two sixes
 ▪ \(x_1 = 2\) and \(x_2 = 6\)
 – can all be expressed as combinations of the sample space events
Sample space

• is the list of possible events that satisfies the following properties:

 – finest grain: all possible distinguishable events are listed separately
 – mutually exclusive: if one event happens the other does not (if \(x_1 = 5 \) it cannot be anything else)
 – collectively exhaustive: any possible outcome can be expressed as unions of sample space events

• mutually exclusive property simplifies the calculation of the probability of complex events
• collectively exhaustive means that there is no possible outcome to which we cannot assign a probability
Probability measure

• probability of an event:
 – number expressing the chance that the event will be the outcome of the process

• probability measure: satisfies three axioms
 – $P(A) \geq 0$ for any event A
 – $P(\text{universal event}) = 1$
 – if $A \cap B = \emptyset$, then $P(A+B) = P(A) + P(B)$

• all of this
 – has to do with the definition of probability
 – is the same under Bayes and frequentist views

• what changes is how probabilities are assessed
Frequentist view

• under the frequentist view probabilities are relative frequencies
 – I throw my dice \(n \) times
 – in \(m \) of those the sum is 5
 – I say that

\[
P(sum = 5) = \frac{m}{n}
\]

• this is intimately connected with the ML method
 – it is the ML estimate for the probability of a Bernoulli process with states (“5”, “everything else”)

• makes sense when we have a lot of observations
 – no bias; decreasing variance; converges to true probability
Problems

• many instances where we do not have a large number of observations
• consider the problem of crossing a street
• this is a decision problem with two states
 – Y = 0: “I am going to get hurt”
 – Y = 1: “I will make it safely”
• optimal decision computable by Bayes decision rule
 – collect some measurements that are informative
 – e.g. (X = {size, distance, speed} of incoming cars)
 – collect examples under both states and estimate all probabilities
• somehow this does not sound like a great idea!
Problems

• under the frequentist view
 – you need to repeat an experiment a large number of times
 – to estimate any probabilities
• yet, people are very good at
 – estimating probabilities
 – for problems in which it is impossible to set up such experiments
• for example:
 – will I die if I join the army?
 – will Democrats or Republicans win the next election?
 – is there a God?
 – will I graduate in two years?
• to the point where they make life-changing decisions based on these probability estimates (enlisting in the army, etc.)
Subjective probability

• this motivates an alternative definition of probabilities
 – note that this has to do more with how probabilities are assessed than with the probability definition itself
 – we still have a sample space, a probability measure, etc
 – however the probabilities are not equated to relative counts

• this is usually referred to as subjective probability

• probabilities are degrees of belief on the outcomes of the experiment
 – they are individual (vary from person to person)
 – they are not ratios of experimental outcomes

• e.g.
 – for very religious person $P(\text{god exists}) \sim 1$
 – for casual churchgoer $P(\text{god exists}) \sim 0.8$ (e.g. accepts evolution, etc.)
 – for non-religious $P(\text{god exists}) \sim 0$
Problems

• in practice, why do we care about this?
• under the notion of subjective probability, the entire ML framework makes little sense
 – there is a magic number that is estimated from the world and determines our beliefs
 – to evaluate my estimates I have to run experiments over and over again and measure quantities like bias and variance
 – this is not how people behave, when we make estimates we attach a degree of confidence to them, without further experiments
 – there is only one model (the ML model) for the probability of the data, no multiple explanations
 – there is no way to specify that some models are, a priori, better than others
Bayesian parameter estimation

• the main difference with respect to ML is that in the Bayesian case Θ is a random variable
• basic concepts
 – training set $D = \{x_1, ..., x_n\}$ of examples drawn independently
 – probability density for observations given parameter $P_{X|\Theta}(x | \theta)$
 – prior distribution for parameter configurations $P_\Theta(\theta)$ that encodes prior beliefs about them
• goal: to compute the posterior distribution $P_{\Theta|X}(\theta | D)$
Bayes vs ML

• there are a number of significant differences between Bayesian and ML estimates

• D₁:
 – ML produces a number, the best estimate
 – to measure its goodness we need to measure bias and variance
 – this can only be done with repeated experiments
 – Bayes produces a complete characterization of the parameter from the single dataset
 – in addition to the most probable estimate, we obtain a characterization of the uncertainty
Bayes vs ML

• D₂: optimal estimate
 – under ML there is one "best" estimate
 – under Bayes there is no "best" estimate
 – only a random variable that takes different values with different probabilities
 – technically speaking, it makes no sense to talk about the "best" estimate

• D₃: predictions
 – remember that we do not really care about the parameters themselves
 – they are needed only in the sense that they allow us to build models
 – that can be used to make predictions (e.g. the BDR)
 – unlike ML, Bayes uses ALL information in the training set to make predictions
Bayes vs ML

- Let’s consider the BDR under the “0-1” loss and an independent sample $\mathcal{D} = \{x_1, \ldots, x_n\}$

- ML-BDR:
 - Pick i if
 \[
 i^* (x) = \arg \max_i P_{X|Y} (x | i; \theta_i^*) P_Y (i)
 \]
 where $\theta_i^* = \arg \max_{\theta} P_{X|Y} (D | i, \theta)$

- Two steps:
 - i) Find θ^*
 - ii) Plug into the BDR

- All information not captured by θ^* is lost, not used at decision time
Bayes vs ML

• note that we know that information is lost
 – e.g. we can’t even know how good of an estimate \(\theta^* \) is
 – unless we run multiple experiments and measure bias/variance

• Bayesian BDR
 – under the Bayesian framework, everything is conditioned on the training data
 – denote \(T = \{X_1, \ldots, X_n\} \) the set of random variables from which the training sample \(\mathcal{D} = \{x_1, \ldots, x_n\} \) is drawn

• B-BDR:
 – pick \(i \) if

\[
i^* (x) = \arg \max_i P_{X|Y,T} (x \mid i, D_i) P_Y (i)
\]

• the decision is conditioned on the entire training set
Bayesian BDR

• to compute the conditional probabilities, we use the marginalization equation

\[P_{X|Y,T}(x \mid i, D_i) = \int P_{X|\Theta,Y,T}(x \mid \theta, i, D_i)P_{\Theta|Y,T}(\theta \mid i, D_i)d\theta \]

• note 1: when the parameter value is known, \(x \) no longer depends on \(T \), e.g. \(X \mid \Theta \sim N(\theta, \sigma^2) \)

 – we can, simplify equation above into

\[P_{X|Y,T}(x \mid i, D_i) = \int P_{X|\Theta,Y}(x \mid \theta, i)P_{\Theta|Y,T}(\theta \mid i, D_i)d\theta \]

• note 2: once again can be done in two steps (per class)

 – i) find \(P_{\Theta|T}(\theta \mid D_i) \)
 – ii) compute \(P_{X|Y,T}(x \mid i, D_i) \) and plug into the BDR

• no training information is lost
Bayesian BDR

• in summary
 – pick i if

\[
i^* (x) = \arg \max_i P_{X|Y,T}(x \mid i, D_i)P_Y(i)
\]

where \(P_{X|Y,T}(x \mid i, D_i) = \int P_{X|\Theta}(x \mid i, \theta)P_{\Theta|Y,T}(\theta \mid i, D_i)d\theta\)

• note:
 – as before the bottom equation is repeated for each class
 – hence, we can drop the dependence on the class
 – and consider the more general problem of estimating

\[
P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta)P_{\Theta|T}(\theta \mid D)d\theta
\]
The predictive distribution

• the distribution

\[P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta)P_{\Theta|T}(\theta \mid D)d\theta \]

is known as the predictive distribution

• this follows from the fact that it allows us
 – to predict the value of x
 – given ALL the information available in the training set

• note that it can also be written as

\[P_{X|T}(x \mid D) = E_{\Theta|T}[P_{X|\Theta}(x \mid \theta) \mid T = D] \]

 – since each parameter value defines a model
 – this is an expectation over all possible models
 – each model is weighted by its posterior probability, given training data
The predictive distribution

• suppose that

\[P_{X|\Theta}(x | \theta) \sim N(\theta,1) \quad \text{and} \quad P_{\Theta|T}(\theta | D) \sim N(\mu, \sigma^2) \]

• the predictive distribution is an average of all these Gaussians

\[
P_{X|T}(x | D) = \int P_{X|\Theta}(x | \theta)P_{\Theta|T}(\theta | D)d\theta
\]
The predictive distribution

• Bayes vs ML
 – ML: pick one model
 – Bayes: average all models

• are Bayesian predictions very different than those of ML?
 – they can be, unless the prior is narrow

\[P_{\theta|T}(\theta | D) \]

\[\theta_{\text{max}} \]

Bayes \sim ML

very different
The predictive distribution

• hence, ML can be seen as a special case of Bayes
 – when you are very confident about the model
 – picking one is good enough
• in coming lectures we will see that
 – if the sample is quite large, the prior tends to be narrow
 – intuitive: given a lot of training data, there is little uncertainty about what the model is
 – Bayes can make a difference when there is little data
 – we have already seen that this is the important case since the variance of ML tends to go down as the sample increases
• overall
 – Bayes regularizes the ML estimate when this is uncertain
 – converges to ML when there is a lot of certainty
MAP approximation

• this sounds good, why use ML at all?
• the main problem with Bayes is that the integral

\[P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta) P_{\Theta|T}(\theta \mid D) d\theta \]

can be quite nasty
• in practice one is frequently forced to use approximations
• one possibility is to do something similar to ML, i.e. pick only one model
• this can be made to account for the prior by
 – picking the model that has the largest posterior probability given the training data

\[\theta_{MAP} = \arg \max_{\theta} P_{\Theta|T}(\theta \mid D) \]
MAP approximation

- this can usually be computed since

\[
\theta_{MAP} = \arg \max_{\theta} P_{\Theta|T}(\theta | D) = \arg \max_{\theta} P_{T|\Theta}(D | \theta)P_{\Theta}(\theta)
\]

and corresponds to approximating the prior by a delta function centered at its maximum
MAP approximation

- in this case

\[P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta) \delta(\theta - \theta_{MAP}) \, d\theta = P_{X|\Theta}(x \mid \theta_{MAP}) \]

- the BDR becomes
 - pick \(i \) if

\[i^*(x) = \arg \max_{i} P_{X|Y}(x \mid i; \theta_{i}^{MAP}) P_{Y}(i) \]

where \(\theta_{i}^{MAP} = \arg \max_{\theta} P_{T|Y,\Theta}(D \mid i, \theta) P_{\Theta|Y}(\theta \mid i) \)

- when compared to the ML this has the advantage of still accounting for the prior (although only approximately)
MAP vs ML

• ML-BDR
 – pick \(i \) if

\[
i^*(x) = \arg \max_i P_{X|Y}(x | i; \theta_i^*) P_Y(i)
\]

where \(\theta_i^* = \arg \max_{\theta} P_{X|Y}(D | i, \theta) \)

• Bayes MAP-BDR
 – pick \(i \) if

\[
i^*(x) = \arg \max_i P_{X|Y}(x | i; \theta_i^{MAP}) P_Y(i)
\]

where \(\theta_i^{MAP} = \arg \max_{\theta} P_{T|Y,\Theta}(D | i, \theta) P_{\Theta|Y}(\theta | i) \)

 – the difference is non-negligible only when the dataset is small

• there are better alternative approximations
The Laplace approximation

• this is a method for approximating any distribution $P_X(x)$
 – consists of approximating $P_X(x)$ by a Gaussian centered at its peak

• let’s assume that

\[
P_X(x) = \frac{1}{Z} g(x)
\]

– where $g(x)$ is an unnormalized distribution ($g(x) > 0$, for all x)
– and Z the normalization constant

\[
Z = \int g(x) dx
\]

• we make a Taylor series approximation of $g(x)$ at its maximum x_0
Laplace approximation

• the Taylor expansion is

\[
\log g(x) = \log g(x_0) - \frac{c}{2} (x - x_0)^2 + \ldots
\]

– (the first-order term is zero because \(x_0\) is a maximum)

– with

\[
c = -\frac{\partial^2 \log g(x)}{\partial x^2} \bigg|_{x=x_0}
\]

– and we approximate \(g(x)\) by an unnormalized Gaussian

\[
g'(x) = g(x_0) \exp\left\{-\frac{c}{2} (x - x_0)^2\right\}
\]

– and then compute the normalization constant

\[
Z = g(x_0) \sqrt{\frac{2\pi}{c}}
\]
Laplace approximation

- this can obviously be extended to the multivariate case
- the approximation is

\[
\log g(x) = \log g(x_0) - \frac{1}{2} (x - x_0)^T A(x - x_0)
\]

- with \(A \) the Hessian of \(g(x) \) at \(x_0 \)

\[
A_{ij} = -\frac{\partial^2}{\partial x_i \partial x_j} \log g(x) \bigg|_{x=x_0}
\]

- and the normalization constant

\[
Z = g(x_0) \sqrt{\left(\frac{2\pi}{|A|}\right)^d}
\]

- in physics this is also called a saddle-point approximation
Laplace approximation

• note that the approximation can be made for the predictive distribution

\[P_{X|T}(x \mid D) = G(x, x^*, A_{X|T}) \]

• or for the parameter posterior

\[P_{\Theta|T}(\theta \mid D) = G(\theta, \theta_{MAP}, A_{\Theta|T}) \]

in which case

\[P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta)G(\theta, \theta_{MAP}, A_{\Theta|T})d\theta \]

• this is clearly superior to the MAP approximation

\[P_{X|T}(x \mid D) = \int P_{X|\Theta}(x \mid \theta)\delta(\theta - \theta_{MAP})d\theta \]
Other methods

• there are two other main alternatives, when this is not enough
 – variational approximations
 – sampling methods (Markov Chain Monte Carlo)

• variational approximations consist of
 – bounding the intractable function
 – searching for the best bound

• sampling methods consist
 – designing a Markov chain that has the desired distribution as its equilibrium distribution
 – sample from this chain

• sampling methods
 – converge to the true distribution
 – but convergence is slow and hard to detect
Any questions?