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Recall
last class, we will have “Cheetah Day”
what:
• 4 teams, average of 6 people
• each team will write a report on the 4 

cheetah problems
• each team will give a presentation on one 

of the problems

I am waiting to hear on the teams
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Plan for today
last time we started talking about mixture models
we introduced the basics of EM
today to motivate EM:
• “classification-maximization”
• which is a general case of “K-means”

we will then
• introduce EM
• solve EM for the case of learning Gaussian mixtures

next class:
• proof that EM maximizes likelihood of incomplete data



Mixture density estimate
we have seen that EM is a framework for ML estimation 
with missing data
canonical example:
• want to classify vehicles into 

commercial/private
• X: vehicle weight
• multimodal density because there 

is a hidden variable Z (type of car)
z in {compact, sedan, station wagon, pick up, van}

• for a given car type the weight is approximately Gaussian (or has 
some other parametric form)

• the density is a “mixture of Gaussians”



mixture model
two types of random variables
• Z – hidden state variable
• X – observed variable

observations sampled with a 
two-step procedure
• a state (class) is sampled from the

distribution of the hidden variable

PZ(z)   → zi

• an observation is drawn from the class conditional density for 
the selected state

PX|Z(x|zi)   → xi

PX|Z(x|0) PX|Z(x|1) PX|Z(x|K)…

PZ(z)

zi

xi
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mixture model
the sample consists of pairs (xi,zi)

D = {(x1,z1), …, (xn,zn)}
but we never get to see the zi

e.g. bridge example:
• sensor only registers weight
• the car class was certainly there, but it is lost by the sensor
• for this reason Z is called hidden

the pdf of the observed data is # of mixture components

component “weight”

cth “mixture component”
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The basics of EM
as usual, we start from an iid sample D = {x1,…,xN}
goal is to find parameters Ψ* that maximize likelihood with 
respect to D

the set
Dc = {(x1,z1), …, (xN,zN)}

is called the complete data
the set 

D = {x1, …, xN}
is called the incomplete data



Complete vs incomplete data
in general, the problem would be trivial if we had access 
to the complete data
we have illustrated this with the specific example of
• Gaussian mixture of C components
• parameters Ψ = {(π1,µ1,Σ1), …,(πC,µC,ΣC)}

and shown that, 
• given the complete data Dc, we only need to split the training set 

according to the labels zi

D1 = {xi|zi=1},    D2 = {xi|zi=2},   … , DC = {xi|zi=C}

• and solve, for each c,



Learning with complete data
the solution is

hence, all the hard work seems to be in figuring out what 
the zi are
the EM algorithm does this iteratively



Learning with incomplete data (EM)
the basic idea is quite simple
1. start with an initial parameter estimate Ψ(0)

2. E-step: given current parameters Ψ(i) and observations in D, 
“guess” what the values of the zi are

3. M-step: with the new zi, we have a complete data problem, 
solve this problem for the parameters, i.e. compute Ψ(i+1)

4. go to 2. 

this can be summarized as

estimate
parameters

fill in class
assignments

zi

E-step

M-step



Classification-maximization
the question is how do we get the zi in the E-step?
we will look at this soon, when we derive EM
for now let’s start with a simpler algorithm, that I would 
call “Classification-Maximization”
the idea is the following
• after the M-step we have an estimate of all the parameters, i.e. 

an estimate for the densities that compose the mixture
• we want to find the class-assignments zi (recall that zi=k if xi is a 

sample from the kth component)
• but this is a classification  problem, and we know how to solve 

those: just use the BDR

the steps are as follows
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Classification-maximization
C-step:
• given estimates Ψ (i) = {Ψ (i)1, …, Ψ (i)C }

• determine zi by the BDR

• split the training set according to the labels zi

D1 = {xi|zi=1},    D2 = {xi|zi=2},   … , DC = {xi|zi=C}

M-step:
• as before, determine the parameters of each class 

independently

12



For Gaussian mixtures
C-step:
•

• split the training set according to the labels zi

D1 = {xi|zi=1},    D2 = {xi|zi=2},   … , DC = {xi|zi=C}

M-step:
•
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K-means
when covariances are identity and priors uniform
C-step:
•
• split the training set according to the labels zi

D1 = {xi|zi=1},    D2 = {xi|zi=2},   … , DC = {xi|zi=C}

M-step:
•

this is the K-means algorithm, aka generalized Loyd
algorithm, aka LBG algorithm in the vector quantization 
literature:
• “assign points to the closest mean; recompute the means”
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K means
why do we care?
• it is optimal if you want to minimize the expected value of the 

squared error
• it is still the best way to initialize EM

problems:
• how many clusters?

• various methods available, Bayesian information criterion, Akaike
information criterion, minimum description length

• guessing can work pretty well

• local minimum only
• how do I initialize?

• random can be pretty bad
• mean splitting can be significantly better
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mean splitting
for K = 1 we just need the mean of all points (µ1)
to initialize means for K = 2 perturb the mean randomly 
• µ1

2 = µ1

• µ2
2 = (1+ε) µ1 ε << 1

then run K means with K = 2
initial means for K = 4
• µ1

4 = µ1
2

• µ2
4 = (1+ε) µ1

2

• µ3
4 =  µ2

2

• µ4
4 = (1+ε) µ2

2

then run K means with K = 4
etc ….
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Empty clusters
can be a source of headaches
at the end of each iteration of K means
• check the number of elements in each cluster
• if too low, throw the cluster away
• reinitialize the mean with a perturbed version of that of the most 

populated cluster

OK, this is k-means. What about EM?
“filing in” the zi with the BDR seems intuitive, but
• Q1: what about problems that are not about classification? 
• the missing data does not need to be class labels, it could be a

continuous random variable
• Q2: how do I know that this converges to anything interesting?
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Two open questions
Questions
• Q1: what about problems that are not about classification? 
• Q2: how do I know that this converges to anything interesting?

we will look at Q2 in the next class

Q1: EM suggests
• do the most intuitive operation that is ALWAYS possible
• don’t worry about the zi directly
• “estimate the likelihood of the complete data by its expected 

value given the observed data” (E-step)
• “then maximize this expected value” (M-step)
• this leads to the so-called Q-function



The Q function
is defined as

and is a bit tricky:
• it is the expected value of likelihood with respect to complete data

(joint X and Z)
• given that we observed incomplete data (X=D)

• note that the likelihood is a function of Ψ (the parameters that we 
want to determine)

• but to compute the expected value we need to use the parameter 
values from the previous iteration (because we need a 
distribution for Z|X)

the EM algorithm is, therefore, as follows



Expectation-maximization
E-step:
• given estimates Ψ (n) = {Ψ (n)

1, …, Ψ (n)
C }

• compute expected log-likelihood of complete data

M-step:
• find parameter set that maximizes this expected log-likelihood

let’s make this more concrete by looking at the mixture
case



Expectation-maximization
to derive an EM algorithm you need to do the following
1. write down the likelihood of the COMPLETE data
2. E-step: write down the Q function, i.e. its expectation given the 

observed data
3. M-step: solve the maximization, deriving a closed-form solution if 

there is one
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