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Recall

» last class, we will have “Cheetah Day”
» what:

* 4 teams, average of 6 people

« each team will write a report on the 4
cheetah problems

e each team will give a presentation on one
of the problems

» | am waiting to hear on the teams




Plan for today

» last time we started talking about mixture models
» we introduced the basics of EM
» today to motivate EM:

 “classification-maximization”

* which is a general case of “K-means”
» we will then

e introduce EM

« solve EM for the case of learning Gaussian mixtures
» next class:

e proof that EM maximizes likelihood of incomplete data



Mixture density estimate

» we have seen that EM is a framework for ML estimation
with missing data

» canonical example:

« want to classify vehicles into
commercial/private

« X: vehicle weight

* multimodal density because there
IS a hidden variable Z (type of car)

z in {compact, sedan, station wagon, pick up, van}

« for a given car type the weight is approximately Gaussian (or has
some other parametric form)

« the density is a “mixture of Gaussians”



mixture model

» two types of random variables
e Z — hidden state variable

e X — observed variable

» observations sampled with a
two-step procedure

» a state (class) is sampled from the
distribution of the hidden variable

P,(z2) — z

P,(2)
Zi

PX|Z(X|O)| PX|Z(X|1)| "
X

Pxiz(X|K]

« an observation is drawn from the class conditional density for

the selected state

Pyz(X|Zz) — X



mixture model

» the sample consists of pairs (x;,z;)

D = {(Xlizl)’ e (Xn’zn)}
but we never get to see the z,

» e.g. bridge example:

e sensor only registers weight
 the car class was certainly there, but it is lost by the sensor
 for this reason Z is called hidden

» the pdf of the observed data Is s of mi
of mixture components

% ‘\ component “weight”
o \
= Z X |7 (X[c)me

Px (%)

cth “mixture component”



The basics of EM

» as usual, we start from an iid sample D = {X,,...,X\}

» goal is to find parameters ¥ that maximize likelihood with
respectto D

WU* = arg muej\xPX(D;\lf)

= arg mu?foX|Z(D|z; W)Y Py (z, W)dz
» the set
D, ={(X,Z4), ..., (X\Zp)}
Is called the complete data
» the set
D = {Xq, ..., Xp}
IS called the incomplete data



Complete vs incomplete data

» in general, the problem would be trivial if we had access
to the complete data

» we have lillustrated this with the specific example of
» Gaussian mixture of C components
o parameters ¥'={(r;,141,2)), - (7, e 26)}

» and shown that,

« given the complete data D_, we only need to split the training set
according to the labels z

D! ={xlz=1}, D*={xlz=2}, ... ,D®={xlz=C}
 and solve, for each c,
(ma, e, %) = arg max G(D, u, 3X)m

Tk, 2



Learning with complete data

» the solution is

« _ Hx € DY}
7TC —
N
He = : > Xi
- 1
y ‘{XZ S DC}‘ i|Xi€DC
1
S o= Soo(x - ) (x — i)t
¢ ‘{XZ S Dc}‘ ’i|Xi€DC c c

» hence, all the hard work seems to be in figuring out what
the z; are

» the EM algorithm does this iteratively



Learning with incomplete data (EM)

» the basic idea is quite simple

1. start with an initial parameter estimate 9

2. E-step: given current parameters ¥ and observations in D,
“guess” what the values of the z; are

3. M-step: with the new z;, we have a complete data problem,
solve this problem for the parameters, i.e. compute #*1

4, goto 2.
» this can be summarized as

— Estep >

estimate fill in class

assignment

parameters




Classification-maximization

» the question is how do we get the z, in the E-step?
» we will look at this soon, when we derive EM

» for now let’s start with a simpler algorithm, that | would
call “Classification-Maximization”

» the idea is the following

« after the M-step we have an estimate of all the parameters, i.e.
an estimate for the densities that compose the mixture

« we want to find the class-assignments z (recall that z=Kk if x; is a
sample from the k" component)

* but this is a classification problem, and we know how to solve
those: just use the BDR

» the steps are as follows
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Classification-maximization

» C-step:
e (given estimates 70 ={y0,, ..., 70.}
e determine z by the BDR

zp = arg max Px|z (xl

 split the training set according to the labels z
D' = {x|z=1}, D?={xlz=2}, ... ,D®={xlz=C}
» M-step:
* as before, determine the parameters of each class
iIndependently

\IJ((f‘H) = arg T}axPX|Z(DC|C,\IJ)7T
, 7T

C; q;é’”) w((;i),l c{1,...
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For Gaussian mixtures

» C-step:
T e ) (20) o)
! g max > X] — Mc c X] — Mc

1 . .
—§log Zgb) + log WCZ)} Aed{l,...,n}
 split the training set according to the labels z,
D! ={x|z=1}, D?={x|z=2}, ... , D¢ ={x]|z=C}
» M-step:
: x; € D¢ : 1
(OSSR | 65 1 LG .
n |{X’L €D }| i|x;€DC
11 1 : : T
D — L (- WD) (x - D)
|{Xi €D }| i|x;€DC
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K-means

» when covariances are identity and priors uniform

» C-step:
. 2 = argmcionl—u((f)HQ, le{l,...,n}
 gplit the training set according to the labels z,
D' ={xl|z=1}, D?={xlz=2}, ... ,D®={xl|z=C}
» M-step: .
B e T

’I:|XZ'€DC

» this is the K-means algorithm, aka generalized Loyd

algorithm, aka LBG algorithm in the vector quantization
literature:

e “assign points to the closest mean; recompute the means”
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)

Auton’s Graphics =
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K-means (thanks to Andrew Moore, CMU)

- Auton®s Graphics L] ]

K-means -
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K-means (thanks to Andrew Moore, CMU)
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K-means (thanks to Andrew Moore, CMU)
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K means

» why do we care?

 itis optimal if you want to minimize the expected value of the
squared error

o itis still the best way to initialize EM

» problems:

 how many clusters?

e various methods available, Bayesian information criterion, Akaike
information criterion, minimum description length

e guessing can work pretty well
e local minimum only
* how do I initialize?
e random can be pretty bad
* mean splitting can be significantly better
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mean splitting

» for K = 1 we just need the mean of all points (z!)
» to initialize means for K = 2 perturb the mean randomly
ot =t
o 1= (1+g pt e<<1
» then run K means with K = 2
» initial means for K = 4
© =t
o Wt =1+ w?
© Mgt =t
oyt = (18
» then run K means with K = 4
> etc ....
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Empty clusters

» can be a source of headaches

» at the end of each iteration of K means

 check the number of elements in each cluster
 if too low, throw the cluster away

 reinitialize the mean with a perturbed version of that of the most
populated cluster

» OK, this is k-means. What about EM?

» “filing In” the z; with the BDR seems intuitive, but

* Q,: what about problems that are not about classification?

» the missing data does not need to be class labels, it could be a
continuous random variable

* Q,: how do | know that this converges to anything interesting?

22



Two open questions

» Questions

* Q,: what about problems that are not about classification?
* Q,: how do | know that this converges to anything interesting?

» we will look at Q, in the next class

» Q.. EM suggests
e do the most intuitive operation that is ALWAYS possible

don’t worry about the z; directly

“estimate the likelihood of the complete data by its expected
value given the observed data” (E-step)

“then maximize this expected value” (M-step)

this leads to the so-called Q-function



The Q function

» IS defined as
Q(\U, \U(n)) = Ez|X’\|;(n) ['Og PX,Z(Da {Zla SR 7ZN}; \U)‘D}

» and Is a bit tricky:

 itis the expected value of likelihood with respect to complete data
(joint X and 2)

* given that we observed incomplete data (X=D)

* note that the likelihood is a function of ¥ (the parameters that we
want to determine)

e but to compute the expected value we need to use the parameter
values from the previous iteration (because we need a
distribution for Z|X)

» the EM algorithm is, therefore, as follows



Expectation-maximization

» E-step:
e given estimates Y™ ={y® , ..., ¥©_ }
« compute expected log-likelihood of complete data

Q(\U; \U(n)) = E2|X’\U(n) {'Og PX,Z(D7 {Zla SR ZN}, \IJ)"D}

» M-step:

* find parameter set that maximizes this expected log-likelihood

wntl) — g m\lajle(\IJ;\lf(”))

» let’'s make this more concrete by looking at the mixture
case



Expectation-maximization

» to derive an EM algorithm you need to do the following
— 1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the
observed data

3. M-step: solve the maximization, deriving a closed-form solution if
there is one








