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Recall
last class, we will have “Cheetah Day”
what:what:
• 4 teams, average of 6 people
• each team will write a report on the 4 p

cheetah problems
• each team will give a presentation on one 

of the problemsp

I am waiting to hear on the teams
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Plan for today
we have been talking about mixture models
last time we introduced the basics of EMlast time we introduced the basics of EM
today we study the application of EM for ML estimation of 
mixture parameters p

t lnext class:
• proof that EM maximizes likelihood of incomplete data
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mixture model
two types of random variables
• Z – hidden state variable

PZ(z)

zZ – hidden state variable
• X – observed variable

observations sampled with a 

zi

p
two-step procedure
• a state (class) is sampled from the

distribution of the hidden variable
PX|Z(x|0) PX|Z(x|1) PX|Z(x|K)…

distribution of the hidden variable

PZ(z)   →   zi
xi

• an observation is drawn from the class conditional density for 
the selected state
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PX|Z(x|zi)   → xi
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mixture model
the sample consists of pairs (xi,zi)

D = {(x z ) (x z )}D = {(x1,z1), …, (xn,zn)}
but we never get to see the zi

the pdf of the observed data is
# of mixture components

component “weight”

cth “mixture component”
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The basics of EM
as usual, we start from an iid sample D = {x1,…,xN}
goal is to find parameters Ψ* that maximize likelihood withgoal is to find parameters Ψ that maximize likelihood with 
respect to D

the setthe set
Dc = {(x1,z1), …, (xN,zN)}

is called the complete datais called the complete data
the set 

D = {x1, …, xN}{ 1, , N}
is called the incomplete data
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Learning with incomplete data (EM)
the basic idea is quite simple
1 start with an initial parameter estimate Ψ(0)1. start with an initial parameter estimate Ψ( )

2. E-step: given current parameters Ψ(i) and observations in D, 
“guess” what the values of the zi are

3. M-step: with the new zi, we have a complete data problem, 
solve this problem for the parameters, i.e. compute Ψ(i+1)

4. go to 2. 

this can be summarized as

E-step

estimate
parameters

fill in class
assignments

zi

p

i
M-step
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Classification-maximization
C-step:
• given estimates Ψ (i) = {Ψ (i) Ψ (i) }given estimates Ψ ( ) = {Ψ ( )

1, …, Ψ ( )
C }

• determine zi by the BDR

• split the training set according to the labels zi
1 2 CD1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

M-step:
as before determine the parameters of each class• as before, determine the parameters of each class 
independently
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For Gaussian mixtures
C-step:
•

• split the training set according to the labels zi

D1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

M-step:
•
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K-means
when covariances are identity and priors uniform
C step:C-step:
•
• split the training set according to the labels zip g g i

D1 = {xi|zi=1},    D2 = {xi|zi=2},   …   , DC = {xi|zi=C}

M-step:
•

this is the K-means algorithm aka generalized Loydthis is the K-means algorithm, aka generalized Loyd 
algorithm, aka LBG algorithm in the vector quantization 
literature:
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• “assign points to the closest mean; recompute the means”



The Q function
is defined as

and is a bit tricky:
• it is the expected value of likelihood with respect to complete data

(joint X and Z)
• given that we observed incomplete data (X=D)g p ( )

• note that the likelihood is a function of Ψ (the parameters that we 
want to determine)
b t t t th t d l d t th t• but to compute the expected value we need to use the parameter 
values from the previous iteration (because we need a 
distribution for Z|X)

the EM algorithm is, therefore, as follows
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Expectation-maximization
E-step:
• given estimates Ψ (n) = {Ψ (n) Ψ (n) }given estimates Ψ ( ) = {Ψ ( )

1, …, Ψ ( )
C }

• compute expected log-likelihood of complete data

M-step:
• find parameter set that maximizes this expected log-likelihood

let’s make this more concrete by looking at the mixture
casecase
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Expectation-maximization
to derive an EM algorithm you need to do the following
1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data
2. E-step: write down the Q function, i.e. its expectation given the 

observed data
3. M-step: solve the maximization, deriving a closed-form solution if 

there is one
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EM for mixtures (step 1)
the first thing we always do in a EM problem is 
• compute the likelihood of the COMPLETE datacompute the likelihood of the COMPLETE data

very neat trick to use when z is discrete (classes)
• instead of using z in {1, 2, ..., C}g { , , , }
• use a binary vector of size equal to the # of classes

• where z = j in the z in {1, 2, ..., C} notation, now becomeswhere z  j in the z in {1, 2, ..., C} notation, now becomes
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EM for mixtures (step 1)
we can now write the complete data likelihood as

for example, if z = k in the z in {1, 2, ..., C} notation,

the advantage is thatthe advantage is that

becomes LINEAR in the components zj !!!
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The assignment vector trick
this is similar to something that we used already
Bernoulli random variableBernoulli random variable
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EM for mixtures (step 1)
for the complete iid dataset  Dc = {(x1,z1), …, (xN,zN)}

and the complete data log-likelihood is

this does not depend on z and simply becomes a 
constant for the expectation that we have to compute in 
the E-step p
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Expectation-maximization
to derive an EM algorithm you need to do the following
1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data
2. E-step: write down the Q function, i.e. its expectation given the 

observed data
3. M-step: solve the maximization, deriving a closed-form solution if 

there is one

important  E-step advice:p p
• do not compute terms that you do not need
• at the end of the day we only care about the parameters
• terms of Q that do not depend on the parameters are useless, 

e.g. in
Q = f(z,Ψ) + log(sin z)

th t d l f l ( i ) t b diffi lt d ithe expected value of log(sin z) appears to be difficult and is 
completely unnecessary, since it is dropped in the M-step
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EM for mixtures (step 2)
once we have the complete data likelihood 

i.e. to compute the Q function we only need to compute 

note that this expectation can only be computed 
because we use Ψ(n)because we use Ψ
note that the Q function will be a function of both Ψ and 
Ψ(n)
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EM for mixtures (step 2)
since zij is binary and only depends on xi

the E-step reduces to computing the posterior 
probability of each point under each class!probability of each point under each class!
defining 

the Q function is 

20



Expectation-maximization
to derive an EM algorithm you need to do the following
1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the 
observed data

3. M-step: solve the maximization, deriving a closed-form solution if 
there is one
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EM vs CM
let’s compare this with the CM algorithm
• the C-stepthe C-step

assigns each point to the class of largest posterior
• the E-step

assigns the point to all classes with weight given by the posterior

for this, EM is said to make “soft-assignments”for this, EM is said to make soft assignments
• it does not commit to any of the classes (unless the posterior is 

one for that class), i.e. it is less greedy
• no longer partition space into rigid cells, but now the boundaries 

are soft 
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EM vs CM
what about the M-steps?
• for CMfor CM

• for EM

these are the same if we threshold the hij to make, for 
each i, maxj hij = 1 and all other hij = 0
M t th t th diff f i tM-steps the same up to the difference of assignments
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EM for Gaussian mixtures
in summary: 
• CM = EM  + hard assignments
• CM special case, cannot be better

let’s look at the special case of Gaussian mixtures
E-step: 
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M-step for Gaussian mixtures
M-step:

important note: 
• in the M-step, the optimization must be subject to whatever p, p j

constraint may hold
• in particular, we always have the constraint
• as usual we introduce a Lagrangian• as usual we introduce a Lagrangian
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M-step for Gaussian mixtures
Lagrangian

setting derivatives to zero
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M-step for Gaussian mixtures
leads to the update equations

comparing to those of CMp g

they are the same up to hard vs soft assignments.ey a e e sa e up o a d s so ass g e s
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Expectation-maximization
note that the procedure is the same for all mixtures
1 write down the likelihood of the COMPLETE data1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the 
observed data

3. M-step: solve the maximization, deriving a closed-form solution if 
there is one
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Expectation-maximization
E.g. for a mixture of exponential distributions
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M-step for exponential mixtures
M-step:
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M-step for exponential mixtures
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EM algorithm
note, however, that EM is much more general than this 
recipe for mixturesp
it can be applied for any problem where we have 
observed and hidden random variables 
here is a very simple example
• X observer Gaussian variable, X~ N(µ,1), 
• Z hidden exponential variable
• It is known that Z is independent of X
• sample D = {x1 x } of iid observations from Xsample D  {x1, …, xn} of iid observations from X

note that the assumption of independence does not 
really make sense (why?) 
how does this affect EM?
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Example
toy model: X iid, Z iid, Xi ~ N(µ,1), Zi ~ λe-λz,
X independent of Z
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Example

this makes sense:
• since hidden variables Z are independent of observed X
• ML estimate of µ is always the same: the sample mean, no 

dependence on zidependence on zi

• ML estimate of λ is always the initial estimate λ(0): since the 
observations are independent of the zi we have no information on 
what λ should be other than initial guess
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what λ should be, other than initial guess.

note that model does not make sense, not EM solution
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