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Recall

» last class, we will have “Cheetah Day”
» Wwhat:

e 4 teams, average of 6 people

» each team will write a report on the 4
cheetah problems

« each team will give a presentation on one
of the problems

» | am waiting to hear on the teams




Plan for today

» we have been talking about mixture models
» last time we introduced the basics of EM

» today we study the application of EM for ML estimation of
mixture parameters

» hext class:

« proof that EM maximizes likelihood of incomplete data



mixture model

» two types of random variables
« Z — hidden state variable

e X — observed variable

» observations sampled with a
two-step procedure

» a state (class) is sampled from the
distribution of the hidden variable

P,(z) — z

P(2)

Pxiz(x|0)

* | Pxjz(XIK}

e an observation is drawn from the class conditional density for

the selected state

Pyz(X|z) — X



mixture model

» the sample consists of pairs (x;,z;)

D = {(Xlizl)’ e (Xn’zn)}
but we never get to see the z,

» the pdf of the observed data is

¢ # of mixture components

(P P

c=1 component “weight”
o \
— Z PX|Z(X|C)7TC

c=1

Px (x)

cth “mixture component”



The basics of EM

» as usual, we start from an iid sample D = {X,,...,X\}

» goal is to find parameters ¥ that maximize likelihood with
respect to D

w* = arg muej]xPX(D; W)

arg ij]PX\Z(mZi W) Py (z, W)dz

» the set
D, ={(X1,Z1)s ..., (XN»ZN)}
Is called the complete data
» the set
D ={Xq, ..., Xy}
IS called the incomplete data



Learning with incomplete data (EM)

» the basic idea is quite simple

1. start with an initial parameter estimate ¥°)

2. E-step: given current parameters ¥V and observations in D,
“guess” what the values of the z; are

3. M-step: with the new z;,, we have a complete data problem,
solve this problem for the parameters, i.e. compute #i+1)

4. go to 2.
» this can be summarized as

estimate

parameters




Classification-maximization

» C-step:
« given estimates 70O ={yw0, ..., ¥w0i.}
e determine z; by the BDR

z = arg max Px |z (xl

 split the training set according to the labels z,
D' ={xlz=1}, D*={x|z=2}, ... ,D®={x|z=C}
» M-step:
« as before, determine the parameters of each class
Independently

\IJ((erl) = arg TjaXPX|Z(DC|C,\U)7T
NI

c; w(@) ) 1eql,. ..



For Gaussian mixtures

» C-step: - .
1 . . — .
* z; = argmax {—2 (Xl — ug”) (Z@) (XZ — ug’))
1 . .
—§log Z((;z) + log m@} de{l,...,n}
 split the training set according to the labels z,
D' ={xlz=1}, D*={x|z=2}, ... ,D®={x|z=C}
» M-step:
: , € D° ; 1
SV LES 4 LD Y x
n |{XZ €D }| i|x;€DC
(i+1) _ 1 ( (7:+1)> ( (7:+1)>T
> = X; — U X; —
’ {x; € D} Z.|XZZ€DC b P



K-means

» when covariances are identity and priors uniform
» C-step:

.z = argmcionl—ugi)HQ, le{l,...,n}
 gsplit the training set according to the labels z,
D' ={xlz=1}, D*={x|z=2}, ... ,D®={x|z=C}
» M-step:
(i+1) _ 1
[ ] /J/ — X :
‘ |{Xz S Dc}l ’L'|XZZ€:DC '

» this is the K-means algorithm, aka generalized Loyd

algorithm, aka LBG algorithm in the vector quantization
literature:

*assign points to the closest mean; recompute the means”
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The Q function

» IS defined as
Q(\U, \U(n)) = Ez|X,w(n) {'Og PX,Z(Da {Zlv SR ZN}, \U)|D}

» and is a bit tricky:

* it is the expected value of likelihood with respect to complete data
(Joint X and Z)

* given that we observed incomplete data (X=D)

* note that the likelihood is a function of ¥ (the parameters that we
want to determine)

* but to compute the expected value we need to use the parameter
values from the previous iteration (because we need a
distribution for Z|X)

» the EM algorithm is, therefore, as follows
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Expectation-maximization

» E-step:
« given estimates ¥ ={y®O, .., ¥".}
e compute expected log-likelihood of complete data

Q(W1 \U(n)) = E2|X’\|;(n) {'Og PX,Z(Da {Zla L 7ZN}; \IJ)‘D}

» M-step:

« find parameter set that maximizes this expected log-likelinood

wntl) — g m\lejle(\IJ;llf(”))

» let’'s make this more concrete by looking at the mixture
case
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Expectation-maximization

» to derive an EM algorithm you need to do the following
— 1. write down the likelihood of the COMPLETE data

2. E-step: write down the Q function, i.e. its expectation given the
observed data

3. M-step: solve the maximization, deriving a closed-form solution if
there is one
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EM for mixtures (step 1)

» the first thing we always do in a EM problem is
« compute the likelihood of the COMPLETE data

» very neat trick to use when z is discrete (classes)

* instead ofusingzin{l, 2, ..., C}

* use a binary vector of size equal to th

1
0]
Z € 0]

0

\

0
1
0

0

0 0
0 0
1], 0
0 1]

e # of classes

« wherez=jinthezin{l, 2, ..., C} notation, now becomes

z:ejz

| 0

0

1 (jthposition)
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EM for mixtures (step 1)

» we can now write the complete data likelihood as
Px 7(x,z; V) = PX|Z(X|z; V) Py(z;, V)

C .
— H {Px|z(X|eJ,W)7TJ} J
j=1
» for example, ifz=kinthe zin {1, 2, ..., C} notation,
Px 7(x,k, V) = Pxz(x e, V)
1
= | Pxpz(xley, W)m 11 Pxz(xlej, V)
» the advantage is that da

0

|Og PX,Z(X7 /A \U) — Z IOg {nyz(}qej, W)?Tj}

j=1
» becomes LINEAR in the components z !!!
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The assignment vector trick

» this is similar to something that we used already

» Bernoulli random variable

Pz(z) :{

» can be written as

P
1-p z=0

.= P

0

» Or, Using Z €+ 1

g -

1
0

> instead of z {0,1}, as

J

P,(z)=p*(1-p)~



EM for mixtures (step 1)

» for the complete iid dataset D, = {(x;,zy), ..., (Xn,Zn)}

N

PX,Z(Da{Z]_a"'aZN};w) — H PX,Z(X’iaz’i;w)
1=1
N C

— H H [PX|Z(X7;|ej,\U)’7Tj}Zij

i=1j=1
» and the complete data log-likelinood is

log Px z(D,{z1,...,z2n} W) = ) zflog [sz(Xﬂej@
,] ____»

» this does not depend on z and simply becomes a
constant for the expectation that we have to compute in
the E-step
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Expectation-maximization

» to derive an EM algorithm you need to do the following

1.

— 2.

write down the likelihood of the COMPLETE data

E-step: write down the Q function, i.e. its expectation given the
observed data

M-step: solve the maximization, deriving a closed-form solution if
there is one

» important E-step advice:

do not compute terms that you do not need
at the end of the day we only care about the parameters

terms of Q that do not depend on the parameters are useless,
e.g. in

Q=1(z,¥) + log(sin z)
the expected value of log(sin z) appears to be difficult and is
completely unnecessary, since it is dropped in the M-step
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EM for mixtures (step 2)

» once we have the complete data likelihood
Q(\U, \Ij(n)) — EZ|X;\U(n) {Iog PX,Z(D7 {Z]_, ce e ZN}; W)|D}

— ZEZ|X;\U(”) [Z’U|D] log [PX|Z(X7;|€]', \U)T('j}
]
» I.e. to compute the Q function we only need to compute

Ezp(;w(n) [Z’LJ|D]7 \V/i, .]

» note that this expectation can only be computed
because we use ¥

» note that the Q function will be a function of both ¥ and
YAn)
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EM for mixtures (step 2)

» since z; Is binary and only depends on X
Ezxwmlzii Pl = Pzx (2 = 1, W)y = Pyix (ejlx;; wi™)

» the E-step reduces to computing the posterior
probability of each point under each class!

» defining
hij = Pzx (ejx; W)

» the Q function is

Q(W; wM) = 3 hylog {PX|Z(X7j|ejaw)7Tj}
1,J
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Expectation-maximization

» to derive an EM algorithm you need to do the following
1. write down the likelihood of the COMPLETE data

log Px z(D,{z1,...,2x}, W) = > zjlog [PX|Z(Xi|eja W)Wj}
B,J
2. E-step: write down the Q function, i.e. its expectation given the
observed data

hij = Pzx(ejlx; w™)

QW w™) = 3 hijlog [Pxg(xilej, W]
6J
—» 3. M-step: solve the maximization, deriving a closed-form solution if
there is one

]
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EM vs CM

» let’'s compare this with the CM algorithm
« the C-step

z; = arg max Pz, x (ej\xi; \U(”))
J

assigns each point to the class of largest posterior
* the E-step
hij = Pgzix(ej]x;)
assigns the point to all classes with weight given by the posterior
» for this, EM is said to make “soft-assignments”

e it does not commit to any of the classes (unless the posterior is
one for that class), i.e. it is less greedy

e no longer partition space into rigid cells, but now the boundaries
are soft
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EM vs CM

» what about the M-steps?

« forCM
\U§n+1) = arg muaj\xPX|Z(Dj|ej,\U)7r
= arg max > l09[Px |z (x;]ej, V)]
ilz;=3
= arg mua)xz 02;=4109[Px |z (x;lej, V)]
« for EM ‘
wntl) — arg mﬁthij log [PX|Z(XZ'|ej,\U)7Tj}

ij
» these are the same if we threshold the h; to make, for
each I, max; hy =1 and all other h; =0

» M-steps the same up to the difference of assignments
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EM for Gaussian mixtures

» In summary:

« CM=EM + hard assignments
« CM special case, cannot be better

» let’s look at the special case of Gaussian mixtures
» E-step:
hij = Pgzx(ejlx; w™)
G (0.1, ) 2
216 (x0o 0 )
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M-step for Gaussian mixtures

» M-step:
wntl) — 5eg muaj]thij log [Q (Xfu g Uj) 77]1
]
_ hij(x; — 1i)? | hij 2
= argmin)_ 5 + —7logoj — hijlog
Vo 20; 2

» Important note:

* In the M-step, the optimization must be subject to whatever
constraint may hold
e In particular, we always have the constraint ZW j =1

. ) J
e as usual we introduce a Lagrangian

hii(x; — N')Q P s
L = Z LY 2202 I+ 27’7 log 0% — hjjlog ;| + A ij—l
i] J J
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M-step for Gaussian mixtures

» Lagrangian

. 2
L =% i (Xi — 145) + 2”Iog : hwlogw]]—l—A(Zw]—l)

i] 2‘7 j
» Setting derivatives to zero

oL _ _Zhij(xiz_ﬂj)zo

a,uj' i O'j

oL X; 2 R

@ _ _Z{ zg( 1 ,Uj) O_g} —0
J J J

L

oyt a0

om; i TJ

oL

Ini— 1 =
=3 %:77] 0
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M-step for Gaussian mixtures

» leads to the update equations

(n+1) _ 22ihijXi (n+1) 1
2 = 7. mp =) hyg
Zz 1) n-y
i hij (xi — 1)
O_2(n—|—1) _ i Mg\ Xq — [y
/ > hij
» comparing to those of CM
(nt1) _ {x: € DY (nt1) 1 |
Te N He ‘{Xz c Dc}l i|XiZ€DC X4
(n+1) _ 1 D) (o D)
2 ¢ — {x; € D°Y| i|XZZ€:DC (Xz He ) (Xz (2% )

» they are the same up to hard vs soft assignments.
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Expectation-maximization

» note that the procedure is the same for all mixtures
1. write down the likelihood of the COMPLETE data

log Px z(D,{z1,...,2x}, W) = > zjlog [PX|Z(Xi|eja W)Wj}
B,J
2. E-step: write down the Q function, i.e. its expectation given the
observed data

hij = Pzx(ejlx; w™)

QW w™) = 3 hijlog [Pxg(xilej, W]
6J
3. M-step: solve the maximization, deriving a closed-form solution if
there is one

]
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Expectation-maximization

» E.g. for a mixture of exponential distributions
C
Py (X) = Z”iﬁf.e%x
=1

1. E-step: write down the Q function, I.e. its expectation given the
observed data

_ ﬂj/lje_/ljxi
hy =P (J1%) =—

> m e
c=1

2. M-step: solve the maximization, deriving a closed-form solution if
there is one

Q(w; winy — > hijlog [PX|Z(Xz'|ej,W)7Tj}
1,J
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M-step for exponential mixtures

» M-step:
P =argmax ) h, Iog[ﬂj/lje_ﬂ“jx‘ ]
b 4 ij

= arg\;nin Zh” (/Ij X, — Iog[nj/ijD
ij

» the Lagragian is

L=Y"h,(2,x —logA, —logz, )+ K[sz —1}
ij j



M-step for exponential mixtures

> L= h (2, —log A, —log 7z, ) + K[an —1}
] J

and has minimum at
h. X.

oL (1 i=z‘: -
PV hik X; __j:O 7 Zhik
oA T U A i
iz—zi+lf=0 K:Zhik
or, — T, J
oL Zhik
—=>»7,-1=0 T, =<
0K J hik

ij




EM algorithm

» note, however, that EM is much more general than this
recipe for mixtures

» it can be applied for any problem where we have
observed and hidden random variables

» here is a very simple example

« X observer Gaussian variable, X~ N(u,1),

e Z hidden exponential variable

e Itis known that Z is independent of X

« sample D ={xy, ..., X} of iid observations from X

» note that the assumption of independence does not
really make sense (why?)

» how does this affect EM?
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Example

» toy model: X iid, Z iid, X; ~ N(u,1), Z ~ 1e*?,
X independent of Z
PQV W) = B oo [109 P 2(D. {21, 2n ) W)ID)
(z), — p)?

N
= Eyx.y —Ek: 5 - log2m — Azk:zk—l—]\flog A|D

(zp — )% N

(wp —w)? N
= _Ek: 2 —EIOQQW—A%:EZk;w(n)[Zk]-I-Nlog>\

2
Tl — N
— _Ekj( kQ'u) —5I0927r—N>\EZ;W(n)[z]—I—N|09>\

(2, —w)* N A
_ X — N— 4+ Nlog A
zk: 5 5 log 27 RO + N log
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Example

Wt — g m\ﬁlx Q(WV; \If(”))
2
)y . (e —p) N A
WQ(W; Wiy = 2/@: 5 5 log 27 N)\(n) + N log X
oQ (nt1) 1 0Q (nt1) — \(n)
= 0 <|u - zk:afk N 0&

» this makes sense:

* since hidden variables Z are independent of observed X

ML estimate of « is always the same: the sample mean, no
dependence on z

« ML estimate of 1 is always the initial estimate L©: since the
observations are independent of the z, we have no information on
what A should be, other than initial guess.

» note that model does not make sense, not EM solution
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