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Expectation-maximization
we have seen that EM is a framework for ML estimation 
with missing data
i.e. problems where we have, two types of random 
variables
• X observed random variable
• Z hidden random variable

goal: 
• given iid sample D = {x1,…,xn}

• find parameters Ψ* that maximize likelihood with respect to D



3

Expectation-maximization
the set 

D = {x1, …, xn}
is called the incomplete data
the set

Dc = {(x1,z1), …, (xn,zn)}

is called the complete data
we never get to see it, otherwise the problem would be 
trivial (standard ML)
EM solves the problem by iterating between two steps
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Expectation-maximization
the basic idea is quite simple
1. start with an initial parameter estimate Ψ(0)

2. E-step: given current parameters Ψ(i) and observations in D, 
“guess” what the values of the zi are

3. M-step: with the new zi, we have a complete data problem, 
solve this problem for the parameters, i.e. compute Ψ(i+1)

4. go to 2. 

this can be summarized as

estimate
parameters

fill in class
assignments

zi

E-step

M-step
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The Q function
main idea: don’t know what complete data likelihood is, 
but can compute its expected value given observed data
this is the Q function

and is a bit tricky:
• it is the expected value of likelihood with respect to complete data

(joint X and Z)
• given that we observed incomplete data (X)
• note that the likelihood is a function of Ψ (the parameters that we 

want to determine)
• but to compute the expected value we need to use the parameter 

values from the previous iteration (because we need a 
distribution for Z|X)
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Expectation-maximization
E-step:
• given estimates Ψ (n) = {Ψ (n)

1, …, Ψ (n)
C }

• compute expected log-likelihood of complete data

M-step:
• find parameter set that maximizes this expected log-likelihood

let’s make this more concrete by looking at a toy 
example
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Example
toy model: X iid, Z iid, Xi ~ N(µ,1), Zi ~ λe-λz,
X independent of Z
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Example

this makes sense:
• since hidden variables Z are independent of observed X
• ML estimate of µ is always the same: the sample mean, no 

dependence on zi

• ML estimate of λ is always the initial estimate λ(0): since the 
observations are independent of the zi we have no information on 
what λ should be, other than initial guess.

note that model does not make sense, not EM solution
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EM for mixtures
we have also seen a more serious example
ML estimation of the parameters of a mixture

we noted that the right way to represent Z is to use a 
binary vector of size equal to the # of classes

in which case complete data log-likelihood is linear on zij
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EM for mixtures
the Q function becomes 

i.e. to compute it we only need to find 

and since zij is binary and only depends on xi

the E-step reduces to computing the posterior 
probability of each point under each class!
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Expectation-maximization
and the EM algorithm reduces to
1. E-step: Q function

2. M-step: solve the maximization, deriving a closed-form solution if 
there is one

under whatever constraints need to be considered, e.g. 
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Convergence of EM
so far we have shown that EM
• makes intuitive sense
• leads to intuitive update equations

the obvious question is: “how do we know that it 
converges to something useful?”
it turns out that the proof is frustratingly simple
• “it takes longer to understand what each term means than to do 

the proof itself”

the only tool that we really need is Jensen’s inequality
since this is such a useful inequality, let’s go over it in 
some detail
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Concave functions
a function f(x) is concave in (a,b) if for all x1,x2 in (a,b)
and λ in [0,1]

f(x2)

f(x1)

x1 x2
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Jensen’s inequality
if f(x) is concave and X a random variable then

the proof is easy for discrete distributions, where it can 
be done by induction
1. assume X has two states with probability p1, p2. If f is concave, 

by definition

2. assume that the inequality holds for all random variables of n 
states, i.e.
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Jensen’s inequality
assume

then for a r.v. with n+1 states

and from the definition of concavity
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Jensen’s inequality

in summary:
• inequality holds for r.v. with two states
• given that it holds for n states it also holds for n+1 states
• hence, by induction, it follows that for all discrete distributions 

and concave f(.)

the result generalizes for the continuous case, but the 
proof is more complicated 
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EM convergence
we are now ready to show that EM converges
recall: the goal is to maximize
using

this can be written as

taking expectations on both sides and using the fact that 
the LHS does not depend on Z
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EM convergence
and plugging in the definition of the Q function

where we have also introduced
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EM convergence
the key to proving convergence is this equation

note, in particular, that
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EM convergence
but, by definition of the M-step

it follows that

and since

we have
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EM convergence
we have

if 

but, from

we have
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EM convergence
and, since the log is a concave function, by Jensen’s



23

EM convergence
this shows that

i.e. the log-likelihood of the incomplete data can only 
increase from iteration to iteration
hence the algorithm converges
note that there is no guarantee of convergence to a 
global minimum, only local
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Geometric interpretation
one can also derive a geometric interpretation from

by noting that

is of the form
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Geometric interpretation
is of the form

where KL[p||q] is the Kullback-Leibler divergence 
between p and q, and H[p] the entropy of p
it can be shown that these two quantities are never 
negative, from which                                   and 
since
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Geometric interpretation
we have  

which means that the Q function is a lower bound to the 
log-likelihood of the 
observed data
this allows an 
interpretation of the 
EM steps as
• E-step: lower-bound the 

observed log-likelihood
• M-step: maximize the 

lower bound 
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Geometric interpretation
consider next the difference between cost and bound

which can be written as

with

hence
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Geometric interpretation
note that since
• by definition of M-step:
• by non-negativity of KL:

it follows that
EM converges without
need for step sizes
this is not the case
for gradient ascent 
which uses the 
linear approximation
if we move too far,
there will be overshoot
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Extensions
note that in the proof we have really only used the fact
that

this means that 
• in M-step we do not necessarily need to maximize the Q-function
• any step that increases it is sufficient

Generalized EM-algorithm
• E-step: compute

• M-step: pick Ψ(n+1) such that
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Extensions
Generalized EM-algorithm
• E-step: compute

• M-step: pick Ψ(n+1) such that

very useful when M-step is itself non-trivial:
• e.g. if there is no closed-form solution one has to resort to 

numerical methods, like gradient ascent
• can be computationally intensive, lots of iterations per M-step
• in these cases, it is usually better to just perform a few iterations 

and move on to the next E-step
• no point in precisely optimizing M-step if everything is going to 

change when we compute the new E-step
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MAP parameter estimates
so far we have concentrated on ML estimation
EM can be equally applied to obtain MAP estimates, with 
a straightforward extension
recall that for MAP the goal is

this is not very different from ML, we just multiply by 
PΨ(Ψ)
still a problem of estimation from incomplete data, with
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MAP parameter estimates
and there is a complete data posterior

the E step is now to compute

note that the last term does not depend on Ψ
does not affect M-step, we can drop it
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MAP parameter estimates
hence the E-step does not really change
E step: compute

and the M-step becomes

this is the MAP-EM algorithm
note that M-step looks like a standard Bayesian estimate 
procedure, and typically is
e.g. for mixtures, it is equivalent to computing Bayesian 
estimates for each component, under “soft-assignments”
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MAP parameter estimates
in result, the estimates are similar to standard Bayesian 
estimates, but with 
• each point contributing to the parameters of all components
• contribution weighted by the assignment probability

but the important fact is that all the properties of Bayesian 
estimates still apply
• conjugate priors
• interpretation as additional, properly biased data, etc.

this is a reason why our study of Bayesian estimation 
with simple models was so important
• while a Gaussian is a fairly weak model
• most densities can be approximated by a mixture of Gaussians
• with EM we can generalize all we did quite easily
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