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Expectation-maximization

» we have seen that EM is a framework for ML estimation
with missing data

» i.e. problems where we have, two types of random
variables

X observed random variable
e Z hidden random variable

» goal:
° given lid sample D = {X,...,X.}

« find parameters ¥ that maximize likelihood with respect to D

WU* = arg muej\xPX(D;\lf)

= arg mu?foX|Z(D|z; W)Y Py (z, W)dz



Expectation-maximization

» the set
D ={Xq, ..., X}
IS called the incomplete data
» the set
Dc = {(Xlizl)’ "ty (Xnizn)}
IS called the complete data

» We never get to see it, otherwise the problem would be
trivial (standard ML)

» EM solves the problem by iterating between two steps



Expectation-maximization

» the basic idea is quite simple

1. start with an initial parameter estimate 9

2. E-step: given current parameters ¥ and observations in D,
“guess” what the values of the z; are

3. M-step: with the new z;, we have a complete data problem,
solve this problem for the parameters, i.e. compute #*1

4, goto 2.
» this can be summarized as

— Estep >

estimate fill in class

assignment

parameters




The Q function

» main idea: don’t know what complete data likelihood is,
but can compute its expected value given observed data

» this is the Q function
QW) =B,y i [109 Px 7(D, {21, 2n b W)|D)

» and is a bit tricky:

 itis the expected value of likelihood with respect to complete data
(joint X and 2)

e given that we observed incomplete data (X)

* note that the likelihood is a function of ¥ (the parameters that we
want to determine)

e but to compute the expected value we need to use the parameter
values from the previous iteration (because we need a
distribution for Z|X)



Expectation-maximization

» E-step:
e given estimates Y™ ={y® , ..., ¥©_ }
« compute expected log-likelihood of complete data

Q(\U, \U(n)) = EZ|X,\U(”) ['Og PX,Z(D7 {Zlv SR 7ZN}; \U)"D}

» M-step:

* find parameter set that maximizes this expected log-likelihood

wntl) — g m\lajle(\IJ;\lf(”))

» let’'s make this more concrete by looking at a toy
example



Example

» toy model: X iid, Z iid, X; ~ N(u,1), Z, ~ 1e~,
X Independent of Z

QW W) = B ooy [109 Px 2(D, {21, 2n ) WD)

2
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Example

p Wyntl) — arg m\s\x QWV; \U(”))
2
)y . (e —p) N A
Q(W; wi)y = zk: 5 5 log 27 N)\(n) + Nlog \
0Q _ (n+1) _ 1 0Q _ (n+1) _ y(n)
E_m_o@u _nzkjmk Sy =0\ =\

» this makes sense:

* since hidden variables Z are independent of observed X

* ML estimate of «is always the same: the sample mean, no
dependence on z,

« ML estimate of 1 is always the initial estimate A(9: since the
observations are independent of the z, we have no information on
what 4 should be, other than initial guess.

» note that model does not make sense, not EM solution



EM for mixtures

» We have also seen a more serious example

» ML estimation of the parameters of a mixture
C

> Py z.(x|c; We)me

c=1
» we noted that the right way to represent Z is to use a
binary vector of size equal to the # of classes

Px(x; V)

[ 0

Z € {e17 s 760} ej = 1 (jthposition)

0
» In which case complete data log-likelihood is linear on z;

log Px 7(D,{z1,...,zZn}; V) = > z;; 109 [PX|Z(Xi|ej7 W)Wj}
0]



EM for mixtures

» the Q function becomes

p— ZEZ|X;\U(”) [ZZJ|D] Iog [PX|Z(X7;|ej, \U)ﬂ']}
2¥}
» I.e. to compute it we only need to find

Z|1X;w(n)

» and since z; is binary and only depends on x;

EZ|X;\IJ(n) [sz|D] — PZ|X(Z7Lj — 1|X7;; \U(n)) = PZ|X(ej|X7L; \U(n))

» the E-step reduces to computing the posterior
probability of each point under each class!
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Expectation-maximization

» and the EM algorithm reduces to
1. E-step: Q function
hij = Pzix(ejlx; w™)

F(w; w(n)) — Z hi;log {PX|Z(XZ'|€J', llf)wj}

@]
2. M-step: solve the maximization, deriving a closed-form solution if
there is one
wntl)  — g mua}thij log [PX|Z(X,L'|€]', \If)wj}

ij
under whatever constraints need to be considered, e.qg.

> m =1
;
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Convergence of EM

» so far we have shown that EM

e makes intuitive sense
« leads to intuitive update equations

» the obvious question is: “how do we know that it
converges to something useful?”

» it turns out that the proof is frustratingly simple

« ‘it takes longer to understand what each term means than to do
the proof itself”

» the only tool that we really need is Jensen’s inequality

» since this is such a useful inequality, let’'s go over it in
some detall
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Concave functions

» a function f(x) is concave in (a,b) if for all x;,x, in (a,b)
and A 1in [0,1]

flAz1 + (1 = Nzo] > Af(z1) + (1 = A) f(x2)

f(x,) b flxz1 + (1 — N)zo]
() 4 (1= N f(a)

f(Xl) ...........................

Az1 + (1 — A)zo




Jensen’s inequality

» if f(x) is concave and X a random variable then

Elf(z)] < f(E[=z])

» the proof is easy for discrete distributions, where it can
be done by induction

1. assume X has two states with probability p,, p,. If f is concave,
by definition

Elf(z)] = pi1f(z1) + pof(z2)
< flpiz1 + pozo] = f(E[x])

2. assume that the inequality holds for all random variables of n

states, i.e. " "
> pif(z) < f (Z Piﬂfz‘)
1=1 1=1
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Jensen’s inequality

> assume » pf(z;) < f (Z pi%)
1=1 1=1
» then for ar.v. with n+1 states

n+1
Elf(x)] = Z pif(z;) = Z pif(x;) _I_pn—l—lf(wn—l—l)

1=1 1=

= (1= pnt1) Z ; _;Hlf(w@-) + Pt 1/ (Tnt1)

n

p.
> . : ﬂfz) + ppy1f(Tp41)

< (]-_pn—l—l)f(

and from the definition of concavity

Elf(z)] < ((1—pn+1)2

T; + pn—l—lxn—l—l)
pn—l—l



Jensen’s inequality

x; + pn+133n+1)
pn—l—l

» Elf(z)] < f ((1 — Pn+1) Z

n—+1
Fl1 D pizi | = f(E[=])
i—1
» N summary:
e Inequality holds for r.v. with two states

e given that it holds for n states it also holds for n+1 states

* hence, by induction, it follows that for all discrete distributions
and concave f(.)

Elf(z)] < f(E[x])

» the result generalizes for the continuous case, but the
proof is more complicated
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EM convergence

» we are now ready to show that EM converges
» recall: the goal is to maximize log Px(D; W)
» using

Px 7(D,z; V) = Py x(z|D; V) Px (D; W)
» this can be written as
log Px(D; V) = log Px 7(D,z;, V)—log PZ|X(z|D; W)

» taking expectations on both sides and using the fact that
the LHS does not depend on Z

log Px(D; W) = EZ|X;w(n)[|Og Px 7(D,z; W)|D]
EZ|X;\U(”’) [Iog PZ|X(Z|D; \U)|D]
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EM convergence

» and plugging in the definition of the Q function
log Px(D; \U) = EZ|X;W(n) [Iog nyz(D, Z, \U)‘D]
— Ezix.wm[109 P x (z|D; W) D]

= QW) + H(ww)

» where we have also introduced

H(Wwwn) = (w109 Py x (2/D; W)|D]

_EZ|X;\U
— —/PZ|X;w(n)(Z|D; W) log Pyix (z|D; W)dz




EM convergence

» the key to proving convergence is this equation

log Px(D; W) = QW) + H(wjwd)

» note, In particular, that

og Px(D; w1y _log Py (D; wM) =
— Q(\u(n-l-l)‘w(n)) + H(\IJ(”+1)|\U(”))
— QW™ (Y 4 () gy
= Q(wnt1) gy _ oy )y n)
_|_H(\|;(n—|—1)‘\|;(n)) _ H(\p(’n)‘\p(n))




EM convergence
» Dbut, by definition of the M-step
wntl) — aeg mu?x Q(\U|\U(”))

» It follows that

Q(\U(n—l-l) |\|;(n)) > Q(\U(”) |\|;(n))

» and since
log Px (D; \u(”‘|‘1)) — log Px (D; \IJ(”)) =
— Q(\U(n+1)|\|1(n)) _ Q(\lj(n)|\|j(n))
+ WO W)y _ gep())yn)
we have
log Px (D; \IJ(”‘|‘1)) > log Px(D; \IJ(”))




EM convergence

» we have
log Px (D; Wt 1)) > log Py (D; w(™)
» If

H(w(?’b—l-l) |\If(n)) > H(W(n) |\|j(n))

» but, from
H(W[W™) =~y 109 Pyyx (z|D; W)
we have
H(\U(n—l-l)‘w(n)) _ H(\Ij(n)|\|j(n))
Py, x (z|D; wnt1))
—LEyxyn |109 |




EM convergence

» and, since the log is a concave function, by Jensen’s

Elf(z)] < f(E[=z])

> g (wrtD gy g wn) |y

Py x (z|D; wntl))

— _EZ|X-\U(n) log |
’ Pyx (2| D; W)
= I Bzxw Py x (z/D; w(n)

Py x (z|D; wintl))
Py x (z|D; W)

= 109 [ Pyixyon (@D W)

= —logl =0



EM convergence

» this shows that

log Py (D; W)y > jog Py (D; W)

» I.e. the log-likelihood of the incomplete data can only
Increase from iteration to iteration

» hence the algorithm converges

» note that there Is no guarantee of convergence to a
global minimum, only local
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Geometric Interpretation

» one can also derive a geometric interpretation from

» Dby noting that
H(w|w)) = —Eyx.ym (109 Pgx (2D; W)|D]
— —fPZ|X;w(n)(z\D; W) log Py x (2|D; W)dz
» Is of the form

HWWM) = — [ pu(2) 109 p(2)dz

_ pn(z)
= /pn(Z) log o(2) dz — /pn(Z) l0g pn(z)dz




Geometric Interpretation

» isS of the form
HWWM) = — [ pu(2) 1og p(2)dz

. pn(z)
— /Pn(z) log 2(2) dz — /Pn(z) l0g pn(z)dz

= KL[pnl||p] + Hpn]

» where KL[p||q] is the Kullback-Leibler divergence
between p and g, and H[p] the entropy of p

» It can be shown that these two auantities are never
negative, from which H(W|w{™) > 0 and

» Since
log Px(D; W) = Q(w|w™) 4 H(wjw)



Geometric Interpretation

» We have

log Px(D; W) > Q(w|wm)

» which means that the Q function is a lower bound to the

log-likelihood of the log Px (D: W)

observed data

» this allows an
Interpretation of the
EM steps as

 E-step: lower-bound the
observed log-likelihood

e M-step: maximize the
lower bound

Q <\|;(n—|—1)‘\|;(n)>

-log Px (D; \IJ(”+1)>

Q (wmw™)

gy ()
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Geometric Interpretation

» consider next the difference between cost and bound
log Px(D; W) — Q(wwW) = H(w|w)
» Which can be written as
Hww) = KLpy||p] + Hlpn]
with
pn(z) = Pyx(2/D; W) p(z) = Pyx(z|D; W)

» hence
H(w(n+1)|w(n)) _ H(\IJ(”’)|\IJ(”)) _
= KL[pn|lpn+1] + Hlpn] — KL[pn|lpn] — H|pn]
= KL[pn|lpp+11 20




Geometric Interpretation

» note that since
« by definition of M-step: Q(w ™D W)y > gw )|y )
+ by non-negativity of KL:H (W (" T W)y > pr g () jys(n))y
» it follows that|log Px (D; w1 > log Px (D; wi™))

» EM converges without

need for step sizes R
P H <\|;(73-|—1)|\|;(i)

» this is not the case
for gradient ascent T
which uses the |f_2\<w( Iv)

linear approximation > \/
Q

» if we move too far,
there will be overshoot

\ H (W(i)yw(i)>
RN

28
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Extensions

» note that in the proof we have really only used the fact
that

@(W(n—l—l)|w(n)) > Q(w(n)|\|}(n))
» this means that

e In M-step we do not necessarily need to maximize the Q-function
e any step that increases it is sufficient

» Generalized EM-algorithm

e E-step: compute
Q(w|win)) = Ezix:wm 109 PX|z(D; 2, W)|D]
e M-step: pick "1 such that

Q(\u(n—l—l) |\lf(n)) > Q(W(n) |\|;(’nf))

29



Extensions

» Generalized EM-algorithm
e E-step: compute
Q(W|wM)y = Ezx:wmll0g Pxz(D, z; W)|D]
e M-step: pick ¥ such that
Q(w(n—|—1)|\u(n)) > Q(W(n)|\lf(n))

» very useful when M-step is itself non-trivial:

* e.qg. if there is no closed-form solution one has to resort to
numerical methods, like gradient ascent

« can be computationally intensive, lots of iterations per M-step

* Inthese cases, it is usually better to just perform a few iterations
and move on to the next E-step

* No point in precisely optimizing M-step If everything is going to
change when we compute the new E-step
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MAP parameter estimates

» SO far we have concentrated on ML estimation

» EM can be equally applied to obtain MAP estimates, with
a straightforward extension

» recall that for MAP the goal is
w* = arg max Py x(V[D)

= arg muaj]x PX|W(D|\IJ)PW(\IJ)

» this is not very different from ML, we just multiply by
P« ¥)

» still a problem of estimation from incomplete data, with

Pxp(DIW) = [ Pxz.u(Dlz, W) Py (7] W)dz
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MAP parameter estimates

» and there Is a complete data posterior

Py x z(V[D, z)
» the E step iIs now to compute

Eyx wllog Pyx z(W|D, 2)|D, wM] =
= Ezx,wll0g Px 7y (D, 2[W) D, wiM] +
+Eyx wllog Py (W)|D, W] —
—Egzx wllog Px 7(D,z)|D, win)]
= Q(WWM) 4 log Py (V) -
— Egzxwllog Px z(D,z)|D, w(m)]
» note that the last term does not depend on ¥
» does not affect M-step, we can drop it
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MAP parameter estimates

» hence the E-step does not really change

» E step: compute
QUUIWM)Y = By x llog Px 7y (D,z|W)|D, WM
» and the M-step becomes

wntl) — geg max {Q(\UW(”)) + log Pw(W)}

» this is the MAP-EM algorithm

» note that M-step looks like a standard Bayesian estimate
procedure, and typically is

» e.g. for mixtures, it is equivalent to computing Bayesian
estimates for each component, under “soft-assignments”
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MAP parameter estimates

» in result, the estimates are similar to standard Bayesian
estimates, but with

« each point contributing to the parameters of all components
« contribution weighted by the assignment probability

» but the important fact is that all the properties of Bayesian
estimates still apply

e conjugate priors
 Interpretation as additional, properly biased data, etc.

» this is a reason why our study of Bayesian estimation
with simple models was so important

* while a Gaussian is a fairly weak model
* most densities can be approximated by a mixture of Gaussians
« with EM we can generalize all we did quite easily
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