Nuno Vasconcelos ECE Department, UCSD

- we have seen that EM is a framework for ML estimation with missing data
- i.e. problems where we have, two types of random variables
 - X observed random variable
 - Zhidden random variable
- ► goal:
 - given iid sample $D = \{x_1, \dots, x_n\}$
 - find parameters Ψ^* that maximize likelihood with respect to D

$$\Psi^{\star} = \arg \max_{\Psi} P_{\mathbf{X}}(\mathcal{D}; \Psi)$$

= $\arg \max_{\Psi} \int P_{\mathbf{X}|Z}(\mathcal{D}|z; \Psi) P_{Z}(z; \Psi) dz$

the set

$$D = \{x_1, \ldots, x_n\}$$

is called the incomplete data

▶ the set

$$D_c = \{(x_1, z_1), \ldots, (x_n, z_n)\}$$

is called the complete data

- we never get to see it, otherwise the problem would be trivial (standard ML)
- EM solves the problem by iterating between two steps

- the basic idea is quite simple
 - 1. start with an initial parameter estimate $\Psi^{(0)}$
 - **2. E-step:** given current parameters $\Psi^{(i)}$ and observations in *D*, "guess" what the values of the z_i are
 - **3. M-step:** with the new z_i , we have a complete data problem, solve this problem for the parameters, i.e. compute $\Psi^{(i+1)}$
 - 4. go to 2.
- this can be summarized as

The Q function

- main idea: don't know what complete data likelihood is, but can compute its expected value given observed data
- this is the Q function

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(i)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$

- ▶ and is a bit tricky:
 - it is the expected value of likelihood with respect to complete data (joint X and Z)
 - given that we observed incomplete data (X)
 - note that the likelihood is a function of Ψ (the parameters that we want to determine)
 - but to compute the expected value we need to use the parameter values from the previous iteration (because we need a distribution for Z|X)

► E-step:

- given estimates $\Psi^{(n)} = \{\Psi^{(n)}, \dots, \Psi^{(n)}_{C}\}$
- compute expected log-likelihood of complete data

$$Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$$

► M-step:

• find parameter set that maximizes this expected log-likelihood

$$\Psi^{(n+1)} = \arg \max_{\Psi} Q(\Psi; \Psi^{(n)})$$

let's make this more concrete by looking at a toy example

Example

► toy model: X iid, Z iid, $X_i \sim N(\mu, 1), Z_i \sim \lambda e^{-\lambda z}, X$ independent of Z

 $\mathbf{P}_{Q}(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$ $= E_{Z|\mathbf{X};\Psi^{(n)}} \left| -\sum_{k} \frac{(x_k - \mu)^2}{2} - \frac{N}{2} \log 2\pi - \lambda \sum_{k} z_k + N \log \lambda |\mathcal{D}| \right|$ $= -\sum_{k} \frac{(x_{k} - \mu)^{2}}{2} - \frac{N}{2} \log 2\pi - \lambda \sum_{k} E_{Z|\mathbf{X}; \Psi(n)}[z_{k}|x_{k}] + N \log \lambda$ $= -\sum_{n} \frac{(x_k - \mu)^2}{2} - \frac{N}{2} \log 2\pi - \lambda \sum_{k} E_{Z_k; \Psi(n)}[z_k] + N \log \lambda$ $= -\sum_{k} \frac{(x_{k} - \mu)^{2}}{2} - \frac{N}{2} \log 2\pi - N\lambda E_{Z;\Psi(n)}[z] + N \log \lambda$ $= -\sum_{k=1}^{\infty} \frac{(x_k - \mu)^2}{2} - \frac{N}{2} \log 2\pi - N \frac{\lambda}{\lambda(n)} + N \log \lambda$

Example

$$\Psi^{(n+1)} = \arg \max_{\Psi} Q(\Psi; \Psi^{(n)})$$

$$Q(\Psi; \Psi^{(n)}) = -\sum_{k} \frac{(x_{k} - \mu)^{2}}{2} - \frac{N}{2} \log 2\pi - N \frac{\lambda}{\lambda^{(n)}} + N \log \lambda$$

$$\frac{\partial Q}{\partial \mu} = 0 \Leftrightarrow \mu^{(n+1)} = \frac{1}{n} \sum_{k} x_{k}$$

$$\frac{\partial Q}{\partial \lambda} = 0 \Leftrightarrow \lambda^{(n+1)} = \lambda^{(n)}$$

- this makes sense:
 - since hidden variables Z are independent of observed X
 - ML estimate of μ is always the same: the sample mean, no dependence on z_i
 - ML estimate of λ is always the initial estimate λ⁽⁰⁾: since the observations are independent of the z_i we have no information on what λ should be, other than initial guess.

note that model does not make sense, not EM solution

EM for mixtures

▶ we have also seen a more serious example

ML estimation of the parameters of a mixture

$$P_{\mathbf{X}}(\mathbf{x}; \mathbf{\Psi}) = \sum_{c=1}^{C} P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}|c; \mathbf{\Psi}_{c}) \pi_{c}$$

we noted that the right way to represent Z is to use a binary vector of size equal to the # of classes

$$\mathbf{z} \in \{\mathbf{e}_1, \dots, \mathbf{e}_C\} \qquad \mathbf{e}_j = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{1} & (j^{th} position) \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

▶ in which case complete data log-likelihood is linear on z_{ii}

$$\log P_{\mathbf{X},Z}(\mathcal{D}, \{\mathbf{z}_1, \dots, \mathbf{z}_n\}; \Psi) = \sum_{i,j} z_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

EM for mixtures

- ► the Q function becomes $Q(\Psi; \Psi^{(n)}) = E_{Z|\mathbf{X}; \Psi^{(n)}} \left[\log P_{\mathbf{X}, Z}(\mathcal{D}, \{z_1, \dots, z_N\}; \Psi) | \mathcal{D} \right]$ $= \sum_{i,j} E_{Z|\mathbf{X}; \Psi^{(n)}} [z_{ij}|\mathcal{D}] \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$
- ▶ i.e. to compute it we only need to find

$$E_{Z|\mathbf{X};\boldsymbol{\Psi}^{(n)}}[z_{ij}|\mathcal{D}], \ \forall i,j$$

• and since z_{ii} is binary and only depends on x_i

 $E_{\mathbf{Z}|\mathbf{X};\boldsymbol{\Psi}^{(n)}}[z_{ij}|\mathcal{D}] = P_{\mathbf{Z}|\mathbf{X}}(z_{ij}=1|\mathbf{x}_i;\boldsymbol{\Psi}^{(n)}) = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i;\boldsymbol{\Psi}^{(n)})$

the E-step reduces to computing the posterior probability of each point under each class!

- and the EM algorithm reduces to
 - 1. E-step: Q function

$$h_{ij} = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{e}_j|\mathbf{x}_i; \Psi^{(n)})$$
$$Q(\Psi; \Psi^{(n)}) = \sum_{i,j} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

2. M-step: solve the maximization, deriving a closed-form solution if there is one

$$\Psi^{(n+1)} = \arg \max_{\Psi} \sum_{ij} h_{ij} \log \left[P_{\mathbf{X}|\mathbf{Z}}(\mathbf{x}_i|\mathbf{e}_j, \Psi) \pi_j \right]$$

under whatever constraints need to be considered, e.g.

$$\sum_j \pi_j = 1$$

Convergence of EM

- so far we have shown that EM
 - makes intuitive sense
 - leads to intuitive update equations
- the obvious question is: "how do we know that it converges to something useful?"
- it turns out that the proof is frustratingly simple
 - "it takes longer to understand what each term means than to do the proof itself"
- the only tool that we really need is Jensen's inequality
- since this is such a useful inequality, let's go over it in some detail

Concave functions

.

αΓ \

• a function f(x) is concave in (a,b) if for all x_1, x_2 in (a,b)and λ in [0,1]

· ·

01

14

N

 $\lambda \lambda \alpha l$

\

Jensen's inequality

• if f(x) is concave and X a random variable then

$$E[f(x)] \leq f(E[x])$$

- the proof is easy for discrete distributions, where it can be done by induction
 - 1. assume X has two states with probability p_1 , p_2 . If f is concave, by definition

$$E[f(x)] = p_1 f(x_1) + p_2 f(x_2)$$

$$\leq f[p_1 x_1 + p_2 x_2] = f(E[x])$$

2. assume that the inequality holds for all random variables of n states, i.e. \sqrt{n}

$$\sum_{i=1}^{n} p_i f(x_i) \leq f\left(\sum_{i=1}^{n} p_i x_i\right)$$

Jensen's inequality

► assume
$$\sum_{i=1}^{n} p_i f(x_i) \leq f\left(\sum_{i=1}^{n} p_i x_i\right)$$

then for a r.v. with n+1 states

$$E[f(x)] = \sum_{i=1}^{n+1} p_i f(x_i) = \sum_{i=1}^{n} p_i f(x_i) + p_{n+1} f(x_{n+1})$$

= $(1 - p_{n+1}) \sum_{i=1}^{n} \frac{p_i}{1 - p_{n+1}} f(x_i) + p_{n+1} f(x_{n+1})$
 $\leq (1 - p_{n+1}) f\left(\sum_{i=1}^{n} \frac{p_i}{1 - p_{n+1}} x_i\right) + p_{n+1} f(x_{n+1})$

and from the definition of concavity

$$E[f(x)] \leq f\left((1-p_{n+1})\sum_{i=1}^{n}\frac{p_i}{1-p_{n+1}}x_i+p_{n+1}x_{n+1}\right)$$

Jensen's inequality

•
$$E[f(x)] \leq f\left((1-p_{n+1})\sum_{i=1}^{n} \frac{p_i}{1-p_{n+1}}x_i + p_{n+1}x_{n+1}\right)$$

= $f\left(\sum_{i=1}^{n+1} p_i x_i\right) = f(E[x])$

▶ in summary:

- inequality holds for r.v. with two states
- given that it holds for n states it also holds for n+1 states
- hence, by induction, it follows that for all discrete distributions and concave f(.)

$$E[f(x)] \leq f(E[x])$$

the result generalizes for the continuous case, but the proof is more complicated

- we are now ready to show that EM converges
- recall: the goal is to maximize $\log P_{\mathbf{X}}(\mathcal{D}; \Psi)$
- using

$$P_{\mathbf{X},\mathbf{Z}}(\mathcal{D},\mathbf{z};\Psi) = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi)P_{\mathbf{X}}(\mathcal{D};\Psi)$$

- this can be written as $\log P_{\mathbf{X}}(\mathcal{D}; \Psi) = \log P_{\mathbf{X}, \mathbf{Z}}(\mathcal{D}, \mathbf{z}; \Psi) - \log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D}; \Psi)$
- taking expectations on both sides and using the fact that the LHS does not depend on Z

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) = E_{\mathbf{Z}|\mathbf{X}; \Psi(n)}[\log P_{\mathbf{X}, \mathbf{Z}}(\mathcal{D}, \mathbf{z}; \Psi)|\mathcal{D}] - E_{\mathbf{Z}|\mathbf{X}; \Psi(n)}[\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D}; \Psi)|\mathcal{D}]$$

and plugging in the definition of the Q function

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) = E_{\mathbf{Z}|\mathbf{X}; \Psi(n)}[\log P_{\mathbf{X}, \mathbf{Z}}(\mathcal{D}, \mathbf{z}; \Psi)|\mathcal{D}]$$

- $E_{\mathbf{Z}|\mathbf{X}; \Psi(n)}[\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D}; \Psi)|\mathcal{D}]$
= $Q(\Psi|\Psi^{(n)}) + H(\Psi|\Psi^{(n)})$

where we have also introduced

$$H(\Psi|\Psi^{(n)}) = -E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}[\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi)|\mathcal{D}]$$

= $-\int P_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}(\mathbf{z}|\mathcal{D};\Psi^{(n)})\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi)d\mathbf{z}$

the key to proving convergence is this equation

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) = Q(\Psi | \Psi^{(i)}) + H(\Psi | \Psi^{(i)})$$

note, in particular, that

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n+1)}) - \log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n)}) =$$

$$= Q(\Psi^{(n+1)}|\Psi^{(n)}) + H(\Psi^{(n+1)}|\Psi^{(n)})$$

$$-[Q(\Psi^{(n)}|\Psi^{(n)}) + H(\Psi^{(n)}|\Psi^{(n)})]$$

$$= Q(\Psi^{(n+1)}|\Psi^{(n)}) - Q(\Psi^{(n)}|\Psi^{(n)})$$

$$+H(\Psi^{(n+1)}|\Psi^{(n)}) - H(\Psi^{(n)}|\Psi^{(n)})$$

- but, by definition of the M-step $\Psi^{(n+1)} = \arg \max_{\Psi} Q(\Psi | \Psi^{(n)})$
- it follows that

$$Q(\Psi^{(n+1)}|\Psi^{(n)}) \geq Q(\Psi^{(n)}|\Psi^{(n)})$$

and since

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n+1)}) - \log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n)}) = Q(\Psi^{(n+1)}|\Psi^{(n)}) - Q(\Psi^{(n)}|\Psi^{(n)}) + H(\Psi^{(n+1)}|\Psi^{(n)}) - H(\Psi^{(n)}|\Psi^{(n)})$$

we have

 $\log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n+1)}) \geq \log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n)})$

we have

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n+1)}) \geq \log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n)})$$

if
$$H(\Psi^{(n+1)}|\Psi^{(n)}) \geq H(\Psi^{(n)}|\Psi^{(n)})$$

▶ but, from

$$H(\Psi|\Psi^{(n)}) = -E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}[\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi)|\mathcal{D}]$$

we have

$$H(\Psi^{(n+1)}|\Psi^{(n)}) - H(\Psi^{(n)}|\Psi^{(n)})$$

= $-E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}} \left[\log \frac{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n+1)})}{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n)})} |\mathcal{D} \right]$

► and, since the log is a concave function, by Jensen's
E[f(x)] ≤ f(E[x])

$$H(\Psi^{(n+1)}|\Psi^{(n)}) - H(\Psi^{(n)}|\Psi^{(n)})$$

$$= -E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}} \left[\log \frac{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n+1)})}{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n)})} |\mathcal{D} \right]$$

$$\geq -\log E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}} \left[\frac{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n+1)})}{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n)})} |\mathcal{D} \right]$$

$$= -\log \int P_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}(\mathbf{z}|\mathcal{D};\Psi^{(n)}) \frac{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n+1)})}{P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi^{(n)})} d\mathbf{z}$$

$$= -\log 1 = 0$$

this shows that

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n+1)}) \geq \log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n)})$$

- i.e. the log-likelihood of the incomplete data can only increase from iteration to iteration
- hence the algorithm converges
- note that there is no guarantee of convergence to a global minimum, only local

one can also derive a geometric interpretation from

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) = Q(\Psi | \Psi^{(n)}) + H(\Psi | \Psi^{(n)})$$

by noting that

$$H(\Psi|\Psi^{(n)}) = -E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}[\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi)|\mathcal{D}]$$

= $-\int P_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}(\mathbf{z}|\mathcal{D};\Psi^{(n)})\log P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D};\Psi)d\mathbf{z}$

• is of the form $H(\Psi|\Psi^{(n)}) = -\int p_n(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}$ $= \int p_n(\mathbf{z}) \log \frac{p_n(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z} - \int p_n(\mathbf{z}) \log p_n(\mathbf{z}) d\mathbf{z}$

- is of the form $H(\Psi|\Psi^{(n)}) = -\int p_n(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}$ $= \int p_n(\mathbf{z}) \log \frac{p_n(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z} - \int p_n(\mathbf{z}) \log p_n(\mathbf{z}) d\mathbf{z}$ $= KL[p_n||p] + H[p_n]$
- where KL[p||q] is the Kullback-Leibler divergence between p and q, and H[p] the entropy of p
- it can be shown that these two quantities are never negative, from which $H(\Psi|\Psi^{(n)}) \ge 0$ and
- since

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) = Q(\Psi | \Psi^{(n)}) + H(\Psi | \Psi^{(n)})$$

we have

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) \geq Q(\Psi | \Psi^{(n)})$$

- which means that the Q function is a lower bound to the log-likelihood of the $\log P_X(\mathcal{D}; \Psi)$ observed data
- this allows an interpretation of the EM steps as
 - E-step: lower-bound the observed log-likelihood
 - M-step: maximize the lower bound

 $Q\left(\Psi^{(n+1)}|\Psi^{(n)}\right) = \log P_{\mathbf{X}}\left(\mathcal{D};\Psi^{(n+1)}\right)$ $Q\left(\Psi^{(n)}|\Psi^{(n)}\right) = \log P_{\mathbf{X}}\left(\mathcal{D};\Psi^{(n)}\right)$ $Q\left(\Psi^{(n)}|\Psi^{(n)}\right) = \Psi^{(n+1)}\Psi^{(n)}$

• consider next the difference between cost and bound $\log P_{T}(\mathcal{D}, W) = O(W|W^{(n)}) = H(W|W^{(n)})$

$$\log P_{\mathbf{X}}(\mathcal{D}; \Psi) - Q(\Psi | \Psi^{(n)}) = H(\Psi | \Psi^{(n)})$$

which can be written as

$$H(\Psi|\Psi^{(n)}) = KL[p_n||p] + H[p_n]$$
 with

$$p_n(\mathbf{z}) = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D}; \mathbf{\Psi}^{(n)}) \qquad p(\mathbf{z}) = P_{\mathbf{Z}|\mathbf{X}}(\mathbf{z}|\mathcal{D}; \mathbf{\Psi})$$

► hence $H(\Psi^{(n+1)}|\Psi^{(n)}) - H(\Psi^{(n)}|\Psi^{(n)}) =$

- $= KL[p_n||p_{n+1}] + H[p_n] KL[p_n||p_n] H[p_n]$
- $= KL[p_n||p_{n+1}] \ge 0$

- note that since
 - by definition of M-step: $Q(\Psi^{(n+1)}|\Psi^{(n)}) \geq Q(\Psi^{(n)}|\Psi^{(n)})$
 - by non-negativity of KL: $H(\Psi^{(n+1)}|\Psi^{(n)}) \ge H(\Psi^{(n)}|\Psi^{(n)})$
- it follows that $\log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n+1)}) \geq \log P_{\mathbf{X}}(\mathcal{D}; \Psi^{(n)})$
- EM converges without need for step sizes
- this is not the case for gradient ascent which uses the linear approximation
- if we move too far, there will be overshoot

Extensions

note that in the proof we have really only used the fact that

$$Q(\Psi^{(n+1)}|\Psi^{(n)}) \ge Q(\Psi^{(n)}|\Psi^{(n)})$$

- this means that
 - in M-step we do not necessarily need to maximize the Q-function
 - any step that increases it is sufficient
- Generalized EM-algorithm
 - E-step: compute $Q(\Psi|\Psi^{(n)}) = E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}[\log P_{\mathbf{X}|\mathbf{Z}}(\mathcal{D},\mathbf{z};\Psi)|\mathcal{D}]$
 - M-step: pick $\Psi^{(n+1)}$ such that

$$Q(\Psi^{(n+1)}|\Psi^{(n)}) \ge Q(\Psi^{(n)}|\Psi^{(n)})$$

Extensions

Generalized EM-algorithm

• E-step: compute

 $Q(\Psi|\Psi^{(n)}) = E_{\mathbf{Z}|\mathbf{X};\Psi^{(n)}}[\log P_{\mathbf{X}|\mathbf{Z}}(\mathcal{D},\mathbf{z};\Psi)|\mathcal{D}]$

• M-step: pick $\Psi^{(n+1)}$ such that $Q(\Psi^{(n+1)}|\Psi^{(n)}) \ge Q(\Psi^{(n)}|\Psi^{(n)})$

- very useful when M-step is itself non-trivial:
 - e.g. if there is no closed-form solution one has to resort to numerical methods, like gradient ascent
 - can be computationally intensive, lots of iterations per M-step
 - in these cases, it is usually better to just perform a few iterations and move on to the next E-step
 - no point in precisely optimizing M-step if everything is going to change when we compute the new E-step

- ▶ so far we have concentrated on ML estimation
- EM can be equally applied to obtain MAP estimates, with a straightforward extension
- recall that for MAP the goal is

$$\begin{split} \Psi^* &= \arg \max_{\Psi} P_{\Psi|\mathbf{X}}(\Psi|\mathcal{D}) \\ &= \arg \max_{\Psi} P_{\mathbf{X}|\Psi}(\mathcal{D}|\Psi) P_{\Psi}(\Psi) \end{split}$$

- ▶ this is not very different from ML, we just multiply by $P_{\Psi}(\Psi)$
- still a problem of estimation from incomplete data, with

$$P_{\mathbf{X}|\Psi}(\mathcal{D}|\Psi) = \int P_{\mathbf{X}|\mathbf{Z},\Psi}(\mathcal{D}|\mathbf{z},\Psi)P_{\mathbf{Z}|\Psi}(\mathbf{z}|\Psi)d\mathbf{z}$$

► and there is a complete data posterior

$$P_{\Psi|X,Z}(\Psi|D, z)$$

► the E step is now to compute
 $E_{Z|X,\Psi}[\log P_{\Psi|X,Z}(\Psi|D, z)|D, \Psi^{(n)}] =$
 $= E_{Z|X,\Psi}[\log P_{X,Z|\Psi}(D, z|\Psi)|D, \Psi^{(n)}] +$
 $+E_{Z|X,\Psi}[\log P_{\Psi}(\Psi)|D, \Psi^{(n)}] -$
 $-E_{Z|X,\Psi}[\log P_{X,Z}(D, z)|D, \Psi^{(n)}]$
 $= Q(\Psi|\Psi^{(n)}) + \log P_{\Psi}(\Psi) -$
 $- E_{Z|X,\Psi}[\log P_{X,Z}(D, z)|D, \Psi^{(n)}]$
► note that the last term does not depend on Ψ
► does not affect M-step, we can drop it

- hence the E-step does not really change
- E step: compute

 $Q(\Psi|\Psi^{(n)}) = E_{\mathbf{Z}|\mathbf{X},\Psi}[\log P_{\mathbf{X},\mathbf{Z}|\Psi}(\mathcal{D},\mathbf{z}|\Psi)|\mathcal{D},\Psi^{(n)}]$

and the M-step becomes

$$\Psi^{(n+1)} = \arg \max_{\Psi} \left\{ Q(\Psi | \Psi^{(n)}) + \log P_{\Psi}(\Psi) \right\}$$

- this is the MAP-EM algorithm
- note that M-step looks like a standard Bayesian estimate procedure, and typically is
- e.g. for mixtures, it is equivalent to computing Bayesian estimates for each component, under "soft-assignments"

- In result, the estimates are similar to standard Bayesian estimates, but with
 - each point contributing to the parameters of all components
 - contribution weighted by the assignment probability
- but the important fact is that all the properties of Bayesian estimates still apply
 - conjugate priors
 - interpretation as additional, properly biased data, etc.
- this is a reason why our study of Bayesian estimation with simple models was so important
 - while a Gaussian is a fairly weak model
 - most densities can be approximated by a mixture of Gaussians
 - with EM we can generalize all we did quite easily

