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Bayesian decision theory

» recall that we have

e Y —state of the world
e X —observations
e g(x) —decision function
* L[g(x),y] — loss of predicting y with g(x)
» Bayes decision rule is the rule that minimizes the risk

Risk=E, , [L(X,Y)]

» given x, it consists of picking the prediction of
minimum conditional risk

M

g (x)=argmin > R, (i| x)L[g(x),i]

g(x) i=1




MAP rule

» for the “0-1" loss

1,
Lig(). y]={O IO

» the optimal decision rule is the maximum a-posteriori
probability rule

g*(x)=argmaxP,, (1]x)

» the associated risk is the probabillity of error of this
rule (Bayes error)

» There is no other decision function with lower error



MAP rule

» by application of simple mathematical laws (Bayes
rule, monotonicity of the log)

» we have shown that the following three decision
rules are optimal and equivalent

+ 1) [ (x)=argmax B (7 x)

- 2) [0 =argmadpy, (x19,0)]

* 3 |7 (x) =argmax[log P, (x | ) +log A, (/)]‘

e 1)is usually hard to use, 3) is frequently easier than 2)



Example

» the Bayes decision rule is usually highly infuitive

» we have used an example from communications

e q bitis fransmitted by a source, corrupted by noise, and
received by a decoder

Y X
—| channel |—

 Q:what should the optimal decoder do to recover Y¢



Example

» This was modeled as a classification problem with
Gaussian classes
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BDR

» for which the optimal decision boundary is a
threshold

e pick “0" if X<ﬂ1;ﬂo
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BDR

» what is the point of going through all the mathe

now we know that the intuitive threshold is actually optimal,
and in which sense it is optimal (minimum probability or

error)
the Bayesian solution keeps us honest.

it forces us to make all our assumptions explicit

assumptions we have made

e uniform class probabilities

PO=RO®=%

« Gaussianity Poy (X[1) =G(X, 14,0,)

e the variance is the same under the two states

* noise is additive

o, =0, Vi

X=Y+¢

even for a trivial problem, we have made lofs of

assumptions



BDR

» what if the class probabilities are not the same®e
e e.g.codingscheme 7=11111110

* in this case Py(1) >> P(0O)
 how does this change the optimal decision rule?

i (x)=arg _max{log Py (X]1)+log R, (i)}

1 _(X—#i)2
= argmax| log e 2 t+logP, (i)

i 270"

= arg max{—% log(275°) - (= p4)° +log R, (i)}

i 20'2

—arg _min{(xz“ﬁ)2 “log P, (i)}

i O



BDR

e or i"<:arg_rnin{(xz_ﬂ‘)2 —log P, (i)}

2
|

= arg min (x2 —2Xu; + ,uiz —20° log R, (1))
=arg min(-2xy; + " =202 log R, (i)

e the optimal decision is, therefore
e pick Oif
—2Xpy + py. — 202 log R, (0) < —2Xu, + 11,° —25% log P, (1)
R (0)
R @)

2X (4 = M) < “w _fuo2 +20° log
e or, pick O if

2
X < lul +/’IO + o Iog PY (O)
2 My — Hy P (1)




BDR

» what is the role of the prior for class probabilities?

M1+ Uo o’ Py (0)
x < + lo
2 H1 — Ho gPY(l)

e the prior moves the threshold up or down, in an infuitive
way

Py(0)>Py(1) : threshold increases

since 0 has higher probability, we care more about errors on
the O side

by using a higher threshold we are making it more likely to pick
0

if Py(0)=1, all we care about is Y=0, the threshold becomes
infinite

we never say |

e how relevant is the priore
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BDR

» how relevant is the priore

e it is weighed by the inverse of the normalized distance
between the means

H— Hy ’
LY @s’ropce be’ryveen the means
o in units of variance

e if the classes are very far apart, the prior makes no
difference

* this is the easy situation, the observations are very clear, Bayes
says “forget the prior knowledge”

e if the classes are exactly equal (same mean) the prior gets
infinite weight

* in this case the observations do not say anything about the
class, Bayes says “forget about the data, just use the
knowledge that you started with”

e even if that means “always say 0" or “always say 1"



The Gaussian classifier

» this is one example of a Gaussian classifier
e in practice we rarely have only one variable

e typically X = (X, ..., X)) is a vector of observations

» the BDR for this case Is equivalent, but more
Interesting

» the main difference is in the class-conditional
distributions, which are multivariate Gaussian
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The Gaussian classifier

» N this case

x|Y(X|I \/(2 ;L B |eXp{_%(X_ﬂi)Tzil(X_ﬂi)}

 the BDR

/() =argmaxfiog £y, (x| 1) +10g A1)

e becomes

/" (x)=arg max{—%(x—,u,)TE,l(X—y,)

—% log(27)° [, +log A, (/')}




The Gaussian classifier
» this can be written as

i"(x) =argmin[d, (x, 1) + ]

with

d,(x,y)=(x-y) = (x-y)

a, =log(2r)?|Z,|-2log B, ()

. 1 _
i*(x) = argmax | = (x — u) "5 (x = ko)
l

1
— S log(2m)* 12| + log By (0]

discriminant:

» the optimal rule is to assign x to the closest class
» closest is measured with the Mahalanobis distance

di(x.y)

» tO which a constant is added to account for class prior

15




The Gaussian classifier
» first special case of inferest:

* classes have the same covariance, |

> =3, Vi T

» the BDR becomes \ O

i"(x) =argmin[d (x, ) + o]

e with .
same metric for

d(x,y)=(x—-y)' = (x-y)l—  allclosses

q : constant, not function
o = Iog(}@ ‘2‘ —2log R, (| ofi can be dropped
_ S




The Gaussian classifier

» iNn detall

1“(x) = argmin[(x — ,ui)TZ_l(x — ;) — 2log Py (i)]

= argmin[x"2 7 0 — xTE 7y — T2 0+ "2y — 21og Py (1)

l

= argmin[x"= " x — 2p, 7S 7 + T2y — 2log Py (D)

l

1
= argmax u; Tt x—z,uiTZ_l.ui + log Py (i)
l T ’ _
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: % Ty—1 1 Ty—1 .
i*(x) = argmax |y;" 2 X Hi 7w +log Py (i)
i T

The Gaussian classifier

» in summary, when classes have equal covariance,

"(x) = argmaxg;(x) discriminant:
L Py (1lx) = 0.5
* with _
gi(x):WiTX+WiO ‘ O
Wi — z_1:ui _ O
1 T -1 .
Wio = o X +log R (1)

e the BDR is a linear function or a linear discriminant






