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Bayesian decision theory

recall that we have

• Y – state of the world

• X – observations

• g(x)  – decision function

• L[g(x),y] – loss of predicting y with g(x)

Bayes decision rule is the rule that minimizes the risk

given x, it consists of picking the prediction of 
minimum conditional risk
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MAP rule

for the “0-1” loss

the optimal decision rule is the maximum a-posteriori 
probability rule

the associated risk is the probability of error of this 
rule (Bayes error)

there is no other decision function with lower error
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MAP rule

by application of simple mathematical laws (Bayes 
rule, monotonicity of the log)

we have shown that the following three decision 
rules are optimal and equivalent

• 1)

• 2)

• 3)

• 1) is usually hard to use, 3) is frequently easier than 2)
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Example

the Bayes decision rule is usually highly intuitive

we have used an example from communications

• a bit is transmitted by a source, corrupted by noise, and 
received by a decoder

• Q: what should the optimal decoder do to recover Y?
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Example

this was modeled as a classification problem with 
Gaussian classes

• or, graphically,
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BDR

for which the optimal decision boundary is a 
threshold

• pick “0” if
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BDR
what is the point of going through all the math?

• now we know that the intuitive threshold is actually optimal, 
and in which sense it is optimal (minimum probability or 
error)

• the Bayesian solution keeps us honest.

• it forces us to make all our assumptions explicit

• assumptions we have made

• uniform class probabilities

• Gaussianity

• the variance is the same under the two states

• noise is additive

• even for a trivial problem, we have made lots of 
assumptions
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BDR

what if the class probabilities are not the same?

• e.g. coding scheme  7 = 11111110

• in this case PY(1) >> PY(0)

• how does this change the optimal decision rule?
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BDR

• or

• the optimal decision is, therefore

• pick 0 if

• or, pick 0 if
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BDR
what is the role of the prior for class probabilities?

• the prior moves the threshold up or down, in an intuitive
way

• PY(0)>PY(1) : threshold increases

• since 0 has higher probability, we care more about errors on 
the 0 side

• by using a higher threshold we are making it more likely to pick 
0

• if PY(0)=1, all we care about is Y=0, the threshold becomes 
infinite

• we never say 1

• how relevant is the prior?

• it is weighed by 

𝑥 <
𝜇1 + 𝜇0
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BDR
how relevant is the prior?

• it is weighed by the inverse of the normalized distance 
between the means

• if the classes are very far apart, the prior makes no 
difference

• this is the easy situation, the observations are very clear, Bayes 
says “forget the prior knowledge”

• if the classes are exactly equal (same mean) the prior gets 
infinite weight

• in this case the observations do not say anything about the 
class, Bayes says “forget about the data, just use the 
knowledge that you started with”

• even if that means “always say 0” or “always say 1”
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The Gaussian classifier

this is one example of a Gaussian classifier

• in practice we rarely have only one variable

• typically X = (X1, …, Xn) is a vector of observations

the BDR for this case is equivalent, but more 
interesting 

the main difference is in the class-conditional 
distributions, which are multivariate Gaussian
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The Gaussian classifier
in this case

• the BDR

• becomes
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The Gaussian classifier
this can be written as

with

the optimal rule is to assign x to the closest class

closest is measured with the Mahalanobis distance
di(x,y)

to which a constant is added to account for class prior 
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The Gaussian classifier
first special case of interest:

• classes have the same covariance,

the BDR becomes

• with
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The Gaussian classifier

in detail

𝑖∗(𝑥) = argmin
𝑖

(𝑥 − 𝜇𝑖)
𝑇Σ−1(𝑥 − 𝜇𝑖) − 2 log 𝑃𝑌 (𝑖)

= argmin
𝑖

𝑥𝑇Σ−1𝑥 − 𝑥𝑇Σ−1𝜇𝑖 − 𝜇𝑖
𝑇Σ−1𝑥 + 𝜇𝑖

𝑇Σ−1𝜇𝑖 − 2 log𝑃𝑌 (𝑖)

= argmin
𝑖

𝑥𝑇Σ−1𝑥 − 2𝜇𝑖
𝑇Σ−1𝑥 + 𝜇𝑖

𝑇Σ−1𝜇𝑖 − 2 log 𝑃𝑌 (𝑖)

= argmax
𝑖

𝜇𝑖
𝑇Σ−1

𝑤𝑖
𝑇

𝑥−
1

2
𝜇𝑖

𝑇Σ−1𝜇𝑖 + log 𝑃𝑌 (𝑖)

𝑤𝑖0
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The Gaussian classifier

in summary, when classes have equal covariance,

• with

• the BDR is a linear function or a linear discriminant

𝑖∗(𝑥) = argmax
𝑖

𝑔𝑖(𝑥)
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