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Bayesian decision theory

» recall that we have

« Y — state of the world

o X — observations

* g(x) —decision function

* L[g(x),y] — loss of predicting y with g(x)

» Bayes decision rule is the rule that minimizes the risk

Risk = E,., [L(X,Y)]

» for the “O-1" loss

L, g(x)=y

L[g(x),y]={O 0=y



MAP rule

» the optimal decision rule can be written as

* 1) |i"(x)=argmax A, (/| x)

. 2) |i"(x) =arg r_nax[PW (X |1)A (1))

c 3) /'*()() = arg r_nax[log /D)(ly (x|7)+logh, (/)J

» we have started to study the case of Gaussian classes

wa(X“):

1 T -1
_Z(x=u)' SN x-u




The Gaussian classifier

discriminant:

» BDR can be written as Pys(I11x) = 0.5
/"(x)=argmin|d,(x, 1) +a;] | \
with | O
a, ()= 5 (x-y)] | O

a, =log(27)°|2,| - 2log A, (/)

» the optimal rule is to assign x to the closest class
» closest iIs measured with the Mahalanobis distance di(x,y)

» t0 which the « constant is added to account for the class
prior



The Gaussian classifier

_ discriminant:
»If 2. =2, VI then Pyx(11x) = 0.5

i"(x) =argmax g, (x)

e with _ O

gi(x):WiTX+Wio ' O
Wi :Z_lﬂi |

1 Tw-1 -
Wio oM X +1og R (1)

 the BDR is a linear function or a linear discriminant



Geometric interpretation

» classes I,] share a boundary if

« there is a set of x such that _ O
g; (X) = 9;(X)

e Or

(Wi — W, )Tx+(wio —Wjo):O

(Z_lyi —2_1,111- )T X +

1 _ L1 _ :
_EﬂiTz 1/Ui +log R, (')"’Eﬂsz 111’lj —log PY(J)) =0



Geometric interpretation

» note that
1 1 \J
(Z JTARD) ,uj) X+

1 - L1 ~ .
(—Eﬂﬁz 110G, )+ - 1175, ~log PY<J>j 0

e can be written as

1
(4, — 1, ) = —ELMTZV!,- —p; £, —2log

40
AU

)
)~

» Next, we use
,UiTz_lﬂi _ﬂsz_lﬂj =
S = S g Sy — S =




Geometric interpretation

» which can be written as
T =y =
T By ey =
27— )+ (= ) =
7 (= ) g T~ ) =
(i + 1) 27 (et — )

» using this in

(u —u,-)Tle——EﬂiTzlﬂi —pt; £y —2log >




Geometric interpretation

» leads to

(21, - 1 )Tle—EL(ﬂi + ) 711, - 1)~ 2l0g ~ ) +j =0

2 P (1))
W' X+b=0
w=2" (g — p)
| N> u —u. i
oo it ay) X (u ﬂ,)+log P (i) O
2 R (J)
» this is the equation of the - O

hyper-plane of parameters
w and b




Geometric interpretation

» Which can also be written as

(/_ﬂj)rzlx_%[(ﬂ,w,) s 4{yy, - 1)~ 2l0g /’j(</>)jo
T <1 M+ (:U/_:Uj) P, (/)
—u.l's — I
b=ss) [X 2 ln = ) AU
> or
w’ (x —x,)=0
sz_l(/_ﬂj)
,u,-+,uj (/ ,u/) Py(/)
_ _ |
T a2 wny) ARG




Geometric interpretation

» this is the equation of the hyper-plane

« of normal vector w

 that passes through Xx,

w’ (x—x,)=0

W = Z:_1(/u/' _/uj)
.+
XO — ILII 2/1/ .
optimal decision .
boundary for Gaussian (’U’T _,le/ ) log T (/_)
classes, equal covariance (ﬂ/ —ﬂj) ) (ﬂ/ —,Uj) R (/)
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Geometric interpretation

» special case 1)

Y=o/

» optimal boundary has

Hi —H;

2
O

X :'u/+luj _ 52 (/u/_luj) log A (/)
- B )

W =

° 2

4y 2 1
:'u/ 'u/_ o 2|Og'D)/(/.)
2 ,u,-—,ujH A (/)

(ﬂ/ —ﬂ,-)




Geometric interpretation

» this is
H, —H;
w=——>~
/ ”
M T, o’
vector along o=~ 2
the line through Hi _ﬂ/H

#and g

Gaussian classes,
equal covariance &l
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Geometric interpretation

» for equal prior probabilities (P(i) = Py() )

optimal boundary:

- plane through midpoint
between y; and

- orthogonal to the line
that joins w; and

W =

Hi —H;

XO_

2
O

M+

mid-point between

Gaussian classes,
equal covariance &l
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Geometric interpretation

» different prior probabilities (P, (i) # Py() )

W =

Hi—H;
o2
M Tl o
2 ﬂ/‘ﬂj”z

A ()
A (/)

(ﬂ/ _ﬂ/)

1

A ()

X, moves along
— line through

pand g

>-log

'\ H“/ _ﬂ/H
0_2

A ()

Gaussian classes,
equal covariance &l
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Geometric interpretation

» what is the effect of the prior? (P,(i) # P(j) )

M T H,

2
O

Xy = >

2
/U/_,UjH

X, moves away from g if Py (1)>P())
making it more likely to pick |

Gaussian classes,
equal covariance &l
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Geometric interpretation

» what is the strength of this effect? (P, (i) # P,() )

W — H, _zluj
o
L+ 1 o2 P, (/) “iInversely
X, = > ! _ - log Py( .) (ﬂ/ —ﬂj) proportional
‘,U/ _ﬂjH av) — to the distance

between means
In units of
standard
deviation”

L og 2| Gaussian classes,
w-ml AU equal covariance &2l
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Geometric interpretation

» note the similarities with scalar case, where

4y 2
X<ﬂ’ ﬂ’+ o IogPy(O)

2 Hi—H, P, (1)

# While here we have

w’ (x —x,)=0
W::U/_Zﬂj
O
oy M T jog BO)
; ;
2 ] AU

(ﬂ/ _ﬂ/)

* hyper-plane is the high-dimensional version of the threshold!
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Geometric interpretation

Pl

» boundary
hyper-plane
In1, 2,
and 3D

» for various
prior
configurations

o
N
o
i
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Geometric interpretation

» special case Ii)

IPED)
» optimal boundary
w’ (x-x,)=0
W:Z_l(ﬂ/ _:Uj)
_ Mt M 1 oa X (,
o 2 (4, — J =g, —ﬂ,) > A (/) Z ﬂ’)

* X, basically the same, strength of the prior inversely proportional
to Mahalanobis distance between means

e w is multiplied by X1, which changes its direction and the slope of
the hyper-plane
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Geometric interpretation

» equal but arbitrary covariance

Gaussian classes,
equal covariance X




Geometric interpretation

» In the homework you will show that the separating plane
IS tangent to the pdf iso-contours at X,

Gaussian classes,
equal covariance X

» reflects the fact that the natural distance is now Mahalanobis
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Geometric interpretation

» boundary hyper-
plane
n1, 2,
and 3D

» for various prior
configurations
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Geometric interpretation

» what about the generic case where covariances are
different?

e In this case

/" (x) =argmin|d, (x, 4,) +a,]

/

d,(x,y)=(x-y) 7 (x-y)
a, =log(27)?|Z,|-2log A, (1)

* there is not much to simplify
g;(x)=(x —1,)" Z;"(x — ;) + log
= xS x =2x"3 7w + ) 3, + log

Dy

—2logF, (/)

Dy

—2log /A, (/)
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Geometric interpretation

» and

) =x"S x=2x"3 0. + 0" u +lo
g/ / / lLl/ lLl/ / lLl/ g

2y

—2log/h, (/)

 which can be written as

g.(xX)=x"W x+w] x+w,
W, =3

W, = _Zz;lzu/

Wio= ﬂ/rz;lﬂ/ +log

s,

—2log A, (/)

» for 2 classes the decision boundary is hyper-quadratic

« this could mean hyper-plane, pair of hyper-planes, hyper-
spheres, hyper-elipsoids, hyper-hyperboloids, etc.
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The sigmoid

» we have derived all of this from the log-based BDR

/I (x) =arg maxllog /D)(|y (x|7)+logh, (/)J

» when there are only two classes, it is also interesting to
look at the original definition

/" (x) =argmax g, (x)

/

Py X11)A (1)
Py (X)

) Py (X 1A, ()
Py (X [0)P, (0)+ Py (x DA, (1)

with g/(X):’DHX(/lX):




The sigmoid

» note that this can be written as

i"(x)=argmax g, (x) _ 1
" PR, DA
g,(x) =1-g,(x) P,y (X |0)A,(0)

» and, for Gaussian classes, the posterior probabilities are

1
go(x) =
) 1+expld, (X — u,) —d, (X — 1) + g —t, }

» where, as before, a.(x,y)=(x —J/)Tzlfl(x ~Y)
a, =log(27)°|2,| - 2log A, (/)




The sigmoid

» the posterior

1

go(X) —

1+ eXp{do (X — 4y) =0, (X — 1) + _0‘1}

» IS a sigmoid and looks like this

A
el
R

]

il Iy
i

Bl

"
(
ik

(s
AN

o
W

discriminant:
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The sigmoid

» the sigmoid appears in neural networks

 itis the true posterior for Gaussian problems where the

pix (."i}

p(C/x)

covariances are the same

Likelihoods
0.4

Posteriors with equal priors

Equal variances

Single boundary
at

halfway
between means
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The sigmoid

» but not necessarily when the covariances are different

Likelihoods
0.4 T

pi(x ("1.}

Variances are different

p(C [x)

Two boundaries
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Bayesian decision theory

» advantages:

BDR is optimal and cannot be beaten
Bayes keeps you honest

models reflect causal interpretation of the problem, this is how we
think

natural decomposition into “what we knew already” (prior) and
“what data tells us” (CCD)

no need for heuristics to combine these two sources of info
BDR is, almost invariably, intuitive

Bayes rule, chain rule, and marginalization enable modularity,
and scalability to very complicated models and problems

» problems:

BDR is optimal only insofar the models are correct.
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