The Gaussian classifier

Nuno Vasconcelos

ECE Department, UCSD

Bayesian decision theory

- recall that we have
- Y - state of the world
- X-observations
- $g(x)$ - decision function
- $L[g(x), y]$ - loss of predicting y with $g(x)$
- Bayes decision rule is the rule that minimizes the risk

$$
\text { Risk }=E_{X, Y}[L(X, Y)]
$$

- for the "0-1" loss

$$
L[g(x), y]= \begin{cases}1, & g(x) \neq y \\ 0, & g(x)=y\end{cases}
$$

MAP rule

- the optimal decision rule can be written as
- 1) $i^{*^{*}}(x)=\arg \max P_{Y \mid X}(i \mid x)$
- 2) $i^{*}(X)=\underset{i}{\arg \max }\left[P_{X Y}(x \mid i) P_{Y}(i)\right]$
- 3) $i^{*}(X)=\underset{i}{\arg \max }\left[\log P_{X Y}(X \mid i)+\log P_{Y}(i)\right]$
- we have started to study the case of Gaussian classes

$$
P_{X \mid Y}(x \mid i)=\frac{1}{\sqrt{(2 \pi)^{d}\left|\Sigma_{i}\right|}} \exp \left\{-\frac{1}{2}\left(x-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(x-\mu_{i}\right)\right\}
$$

The Gaussian classifier

- BDR can be written as

$$
i^{*}(x)=\underset{i}{\arg \min }\left[d_{i}\left(x, \mu_{i}\right)+\alpha_{i}\right]
$$

with

$$
d_{i}(x, y)=(x-y)^{T} \Sigma_{i}^{-1}(x-y)
$$

$$
\alpha_{i}=\log (2 \pi)^{d}\left|\Sigma_{i}\right|-2 \log P_{Y}(i)
$$

discriminant:
$P_{Y \mid X}(1 \mid \boldsymbol{x})=0.5$

- the optimal rule is to assign x to the closest class
- closest is measured with the Mahalanobis distance $d_{i}(x, y)$
- to which the α constant is added to account for the class prior

The Gaussian classifier

- If $\Sigma_{i}=\Sigma, \forall i$ then

$$
i^{*}(x)=\arg \max g_{i}(x)
$$

- with

$$
\begin{aligned}
& g_{i}(x)=w_{i}^{T} x+w_{i 0} \\
& w_{i}=\Sigma^{-1} \mu_{i} \\
& w_{i 0}=-\frac{1}{2} \mu_{i}^{T} \Sigma^{-1} \mu_{i}+\log P_{Y}(i)
\end{aligned}
$$

> discriminant:

$$
\begin{aligned}
& \text { discriminant: } \\
& P_{Y \mid X}(1 \mid \boldsymbol{x})=0.5
\end{aligned}
$$

- the BDR is a linear function or a linear discriminant

Geometric interpretation

- classes i,j share a boundary if
- there is a set of x such that

$$
g_{i}(x)=g_{j}(x)
$$

- or

$$
\begin{aligned}
& \left(w_{i}-w_{j}\right)^{T} x+\left(w_{i 0}-w_{j 0}\right)=0 \\
& \left(\Sigma^{-1} \mu_{i}-\Sigma^{-1} \mu_{j}\right)^{T} x+ \\
& \left(-\frac{1}{2} \mu_{i}^{T} \Sigma^{-1} \mu_{i}+\log P_{Y}(i)+\frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j}-\log P_{Y}(j)\right)=0
\end{aligned}
$$

Geometric interpretation

- note that

$$
\begin{aligned}
& \left(\Sigma^{-1} \mu_{i}-\Sigma^{-1} \mu_{j}\right)^{T} x+ \\
& \left(-\frac{1}{2} \mu_{i}^{T} \Sigma^{-1} \mu_{i}+\log P_{Y}(i)+\frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j}-\log P_{Y}(j)\right)=0
\end{aligned}
$$

- can be written as

$$
\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1} x-\frac{1}{2}\left(\mu_{i}^{T} \Sigma^{-1} \mu_{i}-\mu_{j}^{T} \Sigma^{-1} \mu_{j}-2 \log \frac{P_{Y}(i)}{P_{Y}(j)}\right)=0
$$

- next, we use
$\mu_{i}{ }^{T} \Sigma^{-1} \mu_{i}-\mu_{j}{ }^{T} \Sigma^{-1} \mu_{j}=$
$\mu_{i}^{T} \Sigma^{-1} \mu_{i}-\mu_{i}^{T} \Sigma^{-1} \mu_{j}+\mu_{i}^{T} \Sigma^{-1} \mu_{j}-\mu_{j}^{T} \Sigma^{-1} \mu_{j}=$

Geometric interpretation

- which can be written as

$$
\begin{aligned}
& \mu_{i}^{T} \Sigma^{-1} \mu_{i}-\mu_{j}^{T} \Sigma^{-1} \mu_{j}= \\
& \mu_{i}^{T} \Sigma^{-1} \mu_{i}-\mu_{i}^{T} \Sigma^{-1} \mu_{j}+\mu_{i}^{T} \Sigma^{-1} \mu_{j}-\mu_{j}^{T} \Sigma^{-1} \mu_{j}= \\
& \mu_{i}^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)+\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1} \mu_{j}= \\
& \mu_{i}^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)+\mu_{j}^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)= \\
& \left(\mu_{i}+\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)
\end{aligned}
$$

- using this in

$$
\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1} x-\frac{1}{2}\left(\mu_{i}^{T} \Sigma^{-1} \mu_{i}-\mu_{j}^{T} \Sigma^{-1} \mu_{j}-2 \log \frac{P_{Y}(i)}{P_{Y}(j)}+\right)=0
$$

Geometric interpretation

- leads to

$$
\underbrace{\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1} x-\frac{1}{2}\left(\left(\mu_{i}+\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)-2 \log \frac{P_{Y}(i)}{P_{Y}(j)}+\right)=0}
$$

$$
\begin{aligned}
& w^{T} x+b=0 \\
& w=\Sigma^{-1}\left(\mu_{i}-\mu_{j}\right) \\
& b=-\frac{\left(\mu_{i}+\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)}{2}+\log \frac{P_{Y}(i)}{P_{Y}(j)}
\end{aligned}
$$

- this is the equation of the hyper-plane of parameters w and b

Geometric interpretation

- which can also be written as

$$
\begin{aligned}
& \left(\mu_{i}-\mu_{j}\right)^{\top} \Sigma^{-1} x-\frac{1}{2}\left(\left(\mu_{i}+\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)-2 \log \frac{P_{Y}(i)}{P_{Y}(j)}\right)=0 \\
& \left(\mu_{i}-\mu_{j}\right)^{\top} \Sigma^{-1}\left(x-\frac{\mu_{i}+\mu_{j}}{2}+\frac{\left(\mu_{i}-\mu_{j}\right)}{\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)} \log \frac{P_{Y}(i)}{P_{Y}(j)}\right)=0
\end{aligned}
$$

- or

$$
\begin{array}{|l|}
w^{T}\left(x-x_{0}\right)=0 \\
w=\Sigma^{-1}\left(\mu_{i}-\mu_{j}\right) \\
x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{\left(\mu_{i}-\mu_{j}\right)}{\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)} \log \frac{P_{Y}(i)}{P_{Y}(j)} \\
\hline
\end{array}
$$

Geometric interpretation

- this is the equation of the hyper-plane
- of normal vector w
- that passes through x_{0}

optimal decision boundary for Gaussian classes, equal covariance

$$
\begin{array}{|l|}
W=\Sigma^{-1}\left(\mu_{i}-\mu_{j}\right) \\
x_{0}=\frac{\mu_{i}+\mu_{j}}{2}- \\
\frac{\left(\mu_{i}-\mu_{j}\right)}{\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)} \log \frac{P_{Y}(i)}{P_{Y}(j)}
\end{array}
$$

Geometric interpretation

- special case i)

$$
\Sigma=\sigma^{2} /
$$

- optimal boundary has

$$
\begin{aligned}
W & =\frac{\mu_{i}-\mu_{j}}{\sigma^{2}} \\
x_{0} & =\frac{\mu_{i}+\mu_{j}}{2}-\sigma^{2} \frac{\left(\mu_{i}-\mu_{j}\right)}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \log \frac{P_{Y}(i)}{P_{Y}(j)} \\
& =\frac{\mu_{i}+\mu_{j}}{2}-\frac{\sigma^{2}}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right)
\end{aligned}
$$

Geometric interpretation

\rightarrow this is
$w=\frac{\mu_{i}-\mu_{j}}{\sigma^{2}}$
$x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{\sigma^{2}}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right)$
vector along
the line through
μ_{i} and μ_{j}

Geometric interpretation

- for equal prior probabilities $\left(\mathrm{P}_{\mathrm{Y}}(\mathrm{i})=\mathrm{P}_{\mathrm{Y}}(\mathrm{j})\right)$
optimal boundary:
- plane through midpoint between μ_{i} and μ_{j}
- orthogonal to the line that joins μ_{i} and μ_{j}

Geometric interpretation

- different prior probabilities $\left(\mathrm{P}_{\mathrm{Y}}(\mathrm{i}) \neq \mathrm{P}_{\mathrm{Y}}(\mathrm{j})\right.$)

$$
x_{0}=\frac{\mu_{i}-\mu_{j}}{\sigma^{2}}
$$

Geometric interpretation

- what is the effect of the prior? $\left(\mathrm{P}_{\mathrm{Y}}(\mathrm{i}) \neq \mathrm{P}_{\mathrm{Y}}(\mathrm{j})\right)$

$$
x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{\sigma^{2}}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right)
$$

x_{0} moves away from μ_{i} if $\mathrm{P}_{\mathrm{Y}}(\mathrm{i})>\mathrm{P}_{\mathrm{Y}}(\mathrm{j})$ making it more likely to pick i

Gaussian classes, equal covariance σ^{2} I

Geometric interpretation

- what is the strength of this effect? $\left(\mathrm{P}_{\mathrm{Y}}(\mathrm{i}) \neq \mathrm{P}_{\mathrm{Y}}(\mathrm{j})\right)$

$$
\begin{array}{ll}
w=\frac{\mu_{i}-\mu_{j}}{\sigma^{2}} \\
x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{\sigma^{2}}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right) & \begin{array}{l}
\text { "inversely } \\
\text { proportional } \\
\text { to the distance }
\end{array} \\
\begin{array}{l}
\text { between means } \\
\text { in units of }
\end{array} \\
\text { standard } \\
\text { deviation" }
\end{array}
$$

Geometric interpretation

- note the similarities with scalar case, where

$$
x<\frac{\mu_{i}+\mu_{j}}{2}+\frac{\sigma^{2}}{\mu_{i}-\mu_{j}} \log \frac{P_{Y}(0)}{P_{Y}(1)}
$$

- while here we have

$$
\begin{aligned}
& W^{T}\left(x-x_{0}\right)=0 \\
& w=\frac{\mu_{i}-\mu_{j}}{\sigma^{2}} \\
& x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{\sigma^{2}}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right)
\end{aligned}
$$

- hyper-plane is the high-dimensional version of the threshold!

Geometric interpretation

- boundary hyper-plane in 1, 2, and 3D

- for various prior configurations

Geometric interpretation

- special case ii)

$$
\Sigma_{i}=\Sigma
$$

- optimal boundary

$$
\begin{array}{|l|}
w^{T}\left(x-x_{0}\right)=0 \\
w=\Sigma^{-1}\left(\mu_{i}-\mu_{j}\right) \\
x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{1}{\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right)
\end{array}
$$

- x_{0} basically the same, strength of the prior inversely proportional to Mahalanobis distance between means
- w is multiplied by Σ^{-1}, which changes its direction and the slope of the hyper-plane

Geometric interpretation

- equal but arbitrary covariance

$$
\begin{aligned}
& W=\Sigma^{-1}\left(\mu_{i}-\mu_{j}\right) \\
& x_{0}=\frac{\mu_{i}+\mu_{j}}{2}-\frac{1}{\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)} \log \frac{P_{Y}(i)}{P_{Y}(j)}\left(\mu_{i}-\mu_{j}\right)
\end{aligned}
$$

Geometric interpretation

- in the homework you will show that the separating plane is tangent to the pdf iso-contours at x_{0}

- reflects the fact that the natural distance is now Mahalanobis

Geometric interpretation

- boundary hyperplane in 1, 2, and 3D
- for various prior configurations

Geometric interpretation

- what about the generic case where covariances are different?
- in this case

$$
i^{*}(x)=\arg \min \left[d_{i}\left(x, \mu_{i}\right)+\alpha_{i}\right]
$$

$$
d_{i}(x, y)=(x-y)^{T} \Sigma_{i}^{-1}(x-y)
$$

$$
\alpha_{i}=\log (2 \pi)^{d}\left|\Sigma_{i}\right|-2 \log P_{Y}(i)
$$

- there is not much to simplify

$$
\begin{aligned}
& g_{i}(x)=\left(x-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(x-\mu_{i}\right)+\log \left|\Sigma_{i}\right|-2 \log P_{Y}(i) \\
& \quad=x^{T} \Sigma_{i}^{-1} x-2 x^{T} \Sigma_{i}^{-1} \mu_{i}+\mu_{i}^{T} \Sigma_{i}^{-1} \mu_{i}+\log \left|\Sigma_{i}\right|-2 \log P_{Y}(i)
\end{aligned}
$$

Geometric interpretation

- and

$$
g_{i}(x)=x^{\top} \Sigma_{i}^{-1} x-2 x^{\top} \Sigma_{i}^{-1} \mu_{i}+\mu_{i}^{\top} \Sigma_{i}^{-1} \mu_{i}+\log \left|\Sigma_{i}\right|-2 \log P_{Y}(i)
$$

- which can be written as

$$
\begin{array}{|l|}
g_{i}(x)=x^{T} W_{i} x+W_{i}^{T} x+W_{i 0} \\
W_{i}=\Sigma_{i}^{-1} \\
w_{i}=-2 \Sigma_{i}^{-1} \mu_{i} \\
w_{i 0}=\mu_{i}^{T} \Sigma_{i}^{-1} \mu_{i}+\log \left|\Sigma_{i}\right|-2 \log P_{y}(i) \\
\hline
\end{array}
$$

- for 2 classes the decision boundary is hyper-quadratic
- this could mean hyper-plane, pair of hyper-planes, hyperspheres, hyper-elipsoids, hyper-hyperboloids, etc.

Geometric interpretation

- in 2 and 3D:

The sigmoid

- we have derived all of this from the log-based BDR

$$
i^{*}(x)=\arg \max \left[\log P_{X Y}(x \mid i)+\log P_{Y}(i)\right]
$$

- when there are only two classes, it is also interesting to look at the original definition
with $\begin{array}{r}i^{*}(x)=\underset{i}{\arg \max } g_{i}(x) \\ g_{i}(x)=P_{Y \mid X}(i \mid x)=\frac{P_{X \mid Y}(x \mid i) P_{Y}(i)}{P_{X}(x)} \\ =\frac{P_{X \mid Y}(X \mid i) P_{Y}(i)}{P_{X \mid Y}(X \mid 0) P_{Y}(0)+P_{X \mid Y}(x \mid 1) P_{Y}(1)}\end{array}$

The sigmoid

- note that this can be written as

$$
\begin{aligned}
& \begin{array}{l}
i^{*}(x)=\underset{i}{\arg \max } g_{i}(x) \\
g_{1}(x)=1-g_{0}(x)
\end{array} g_{0}(x)=\frac{1}{1+\frac{P_{X \mid Y}(x \mid 1) P_{Y}(1)}{P_{X \mid Y}(x \mid 0) P_{Y}(0)}} \text { } \quad \text { } \\
& \hline
\end{aligned}
$$

- and, for Gaussian classes, the posterior probabilities are

$$
g_{0}(x)=\frac{1}{1+\exp \left\{d_{0}\left(x-\mu_{0}\right)-d_{1}\left(x-\mu_{1}\right)+\alpha_{0}-\alpha_{1}\right\}}
$$

\Rightarrow where, as before, $d_{i}(x, y)=(x-y)^{T} \Sigma_{i}^{-1}(x-y)$

$$
\alpha_{i}=\log (2 \pi)^{d}\left|\Sigma_{i}\right|-2 \log P_{Y}(i)
$$

The sigmoid

- the posterior

$$
g_{0}(x)=\frac{1}{1+\exp \left\{d_{0}\left(x-\mu_{0}\right)-d_{1}\left(x-\mu_{1}\right)+\alpha_{0}-\alpha_{1}\right\}}
$$

- is a sigmoid and looks like this

The sigmoid

- the sigmoid appears in neural networks
- it is the true posterior for Gaussian problems where the covariances are the same

Equal variances

Posteriors with equal priors

Single boundary at
halfway
between means

The sigmoid

- but not necessarily when the covariances are different

Variances are different

Two boundaries

Bayesian decision theory

- advantages:
- BDR is optimal and cannot be beaten
- Bayes keeps you honest
- models reflect causal interpretation of the problem, this is how we think
- natural decomposition into "what we knew already" (prior) and "what data tells us" (CCD)
- no need for heuristics to combine these two sources of info
- BDR is, almost invariably, intuitive
- Bayes rule, chain rule, and marginalization enable modularity, and scalability to very complicated models and problems
- problems:
- BDR is optimal only insofar the models are correct.

