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Bayesian decision theory

* recall that we have
— Y — state of the world
— X — observations
— g(Xx) — decision function
— L[g(x),y] — loss of predicting y with g(x)
e Bayes decision rule is the rule that minimizes the risk

Risk = E,,, [L(X.Y)]

e for the “0-1" loss
1,
Hatoyl={p o0

« optimal decision rule is the maximum a-posteriori
probability rule



MAP rule

e we have shown that it can be implemented in any of the
three following ways

- |/f(x)=argmax?,, (/] x)

_2) |7 (x)=argmax|P,, (x /)P, ()]

- 3) |/ (x)=argmax|log P, (x |/)+logh, (/)]

/

* by introducing a “model” for the class-conditional
distributions we can express this as a simple equation
— e.g. for the multivariate Gaussian
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The Gaussian classifier

discriminant:

e the solution is Py(1lx) = 0.5
/"(x)=argmin[d, (x, 1) +e,] | \
with | ()
d,(x )= -y -] | S

a, =log(27)°|2,| - 2log A, (/)

 the optimal rule is to assign x to the closest class
» closest is measured with the Mahalanobis distance d,(x,y)
« can be further simplified in special cases



Geometric interpretation

 for Gaussian classes, equal covariance o2l
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Geometric interpretation

 for Gaussian classes, equal but arbitrary covariance
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Bayesian decision theory

« advantages:
— BDR is optimal and cannot be beaten
— Bayes keeps you honest

— models reflect causal interpretation of the problem, this is how
we think

— natural decomposition into “what we knew already” (prior) and
“what data tells us” (CCD)

— no need for heuristics to combine these two sources of info
— BDR is, almost invariably, intuitive
— Bayes rule, chain rule, and marginalization enable modularity,
and scalability to very complicated models and problems
e problems:
— BDR is optimal only insofar the models are correct.



Implementation

« we do have an optimal solution
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 but in practice we do not know the values of the

parameters u, 2, P, 1)

— we have to somehow estimate these values
— this is OK, we can come up with an estimate from a training set
— e.g. use the average value as an estimate for the mean

W:i_l(Ai_/}j)
iy 1 0020 (5 _4)
AR PR S A ﬂ,)ogP(J)( 2




Important

e warning: at this point all optimality claims for the BDR
cease to be valid!! ;

« the BDR is guaranteed
to achieve the minimum
loss when we use the |
true probabilities

 when we “plug in” the
probability estimates, i
we could be ] | o
implementing T e e e
a classifier that is quite distant from the optimal
— e.g. if the Py (x|i) look like the example above

— | could never approximate them well by parametric models (e.g.
Gaussian)




Maximum likelihood

* this seems pretty serious
— how should | get these probabilities then?

o we rely on the maximum likelihood (ML) principle
e this has three steps:

— 1) we choose a parametric model for all probabilities

— to make this clear we denote the vector of parameters by ® and
the class-conditional distributions by

Pey (X]1;0)

— note that this means that @ is NOT a random variable (otherwise
it would have to show up as subscript)

— It is simply a parameter, and the probabilities are a function of this
parameter
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Maximum likelihood

e three steps:

— 2) we assemble a collection of datasets
oW = {x,0, ..., x,0} set of examples drawn independently from

class i

— 3) we select the parameters of class i to be the ones that
maximize the probability of the data from that class

®, =argmax P, (D(‘) i; @))
®

=argmax log P, (D(‘) i; @))
®

— like before, it does not really make any difference to maximize
probabilities or their logs
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Maximum likelihood

e since
— each sample oY is considered independently
— parameter @ estimated only from sample o0

e we simply have to repeat the procedure for all classes
e so, from now on we omit the class variable

®" =argmaxP, (D;0)

O

= argmax log P, (D;®)

C

e the function P,(D; ) is called the likelihood of the
parameter ®@ with respect to the data

e or simply the likelihood function
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Maximum likelihood

* Note that the |Ik€|lh00d Likelihood Function Surface
function Is a function
of the parameters @

* It does not have the
same shape as the
density itself *e;f;-

. e.g. the likelihood “

function of a Gaussian %%,
o

is not bell-shaped # »;ﬁ
e

e the likelihood is o
defined only after we
have a sample

-

P, (d;0) =

1 exp{_ (d —#)2}
\J(2r)o? 20°
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Maximum likelihood

e given a sample, to obtain ML estimate we need to solve

® =argmax P, (D;0)

C

 when @is a scalar this is high-school calculus

fixi=0 fly =0,
flixy=0
fixy<0 fin=0
fix)=0 fixi=0 3‘;[[? i%h Fix <0,
fir =0 Y= f'x<0
FAX IR IR inflection point

e We have a maximum when
— first derivative Is zero
— second derivative is negative
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The gradient

* In higher dimensions, the generalization of the derivative
IS the gradient

 the gradient of a function f(w) at z Is

of o
Vi(z) = ((Z),---, (2)
aWO aWn—l J
 the gradient has a nice geometric
Interpretation

— It points in the direction of maximum f(x,y)
growth of the function

— which makes it perpendicular to the

contours where the function Is constant ‘
Vf (X01 y

Vi (X, )
15




The gradient

note that if V1 =0
— there is no direction of growth

— also - =0, and there is no direction of
decrease

— we are either at a local minimum or maximum
or “saddle” point ‘

conversely, at local min or max or saddle :
point M
— no direction of growth or decrease

- =0
this shows that we have a critical point if
andonly if =0 .
to determine which type we need second ./
order conditions

min

saddle



The Hessian

e the extension of the second-order derivative is the

Hessian matrix

9%
OX¢

()

Vf(x) =
o0°f
_8)(,7_18)(0
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o°f (x)

0X,0X, 4

o°f
0X ;1

()

— at each point X, gives us the quadratic function

X'VF(x)x

that best approximates f(x)
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The Hessian

 this means that, when gradient is
zero at x, we have ) max

— a maximum when function can be
approximated by an “upwards-facing”
guadratic

— a minimum when function can be
approximated by a “downwards-facing”
guadratic

— a saddle point otherwise
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The Hessian

 for any matrix M, the function

x"Mx

° IS
— upwards facing quadratic when M
IS negative definite

— downwards facing quadratic when M
IS positive definite
— saddle otherwise
* hence, all that matters is the positive
definiteness of the Hessian

e we have a maximum when Hessian
IS negative definite

max

min .
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Maximum likelihood

e In summary, given a sample, we need to solve

®" =argmax P, (D;0)

® max

* the solutions are the parameters .
such that

VP, (D;0)=0

0'V P, (D;0)0 <0, VOecR"

* note that you always have to check the second-order
condition!
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Maximum likelihood

e |let’'s consider the Gaussian example

_ L (5
f(T}_ 'I'TT\/%E

, T} of iIndependent points

e given a sample {T, ...
e the likelihood is

N —
— 1 _J.<E—_T)
LTy, ds, ..., 9|1 o) =L = e *\ T
( 1, L2, f"n| T) ELTT\/E
o1 =E ()
(opv2m)N
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Maximum likelihood

e and the log-likelihood Is

=1 or

A=InL = —ﬁ ln(2r) — Nlnop — —Z (T T)

 the derivative with respect to the mean is zero when

e Or

 note that this is just the sample mean
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Maximum likelihood

e and the log-likelihood Is

A=InL = —ﬁ ln(2r) — Nlnop — —Z (T T)
i=1 o1

 the derivative with respect to the variance is zero when

- = == (T; sz =
. Or dr:rT aT {T%ﬂ P
1
- 2 ; 2
or = 2 Li—T)
T =1

e note that this is just the sample variance



Maximum likelihood

Likelihood Function Surface

e example:
— if sample is {10,20,30,40,50}

_ 1N
T:EZT;

i=1

10 + 20 + 30 + 40 + 50
3]

=1

1 & _
b = EZ(SF.E—T)E

B \/(10 —30)2 + (20 — 30)2 + (30 — 30)2 + (40 — 30)2 + (50 — 30)2
- 5

= 14.1421 24



Homework

« show that the Hessian is negative definite

0'V P, (D;0)0 <0, VOecR"

* show that these formulas can be generalized to the vector
case
— o0 ={x,0 ..., x,} set of examples from class i
— the ML estimates are

1 / 1 / /
== 2 X0 | (2= 2 (G =) =)
/

/

 note that the ML solution is usually intuitive
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Estimators

 when we talk about estimators, it is important to keep In

mind that

— an estimate is a number

— an estimator is a random variable

6="F(X,....X.)

e an estimate is the value of the estimator for a given

sample.

. ~ 1
e if ®={X,, ..., X,}, when we say ﬂ:HZXj
j

what we mean is #= f(X,,..., X,)

1
f(xl,...,xn)=HZxj
]

with

X1=X1,...,Xn=Xn

< the X, are random variables
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Bias and variance

e we know how to produce estimators (by ML)
 how do we evaluate an estimator?

e Q,: Is the expected value equal to the true value?
e this is measured by the bias

— if ~
O=F(X,....X)

then

Bias(é): Ey x [F(Xpoo X,)-6]

— an estimator that has bias will usually not converge to the perfect
estimate ¢, no matter how large the sample is 1

— e.g. if @is negative and the estimator is f(X,,...,X,)==> X’
the bias is clearly non-zero N

n
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Bias and variance

e the estimators iIs said to be biased

— this means that it is not expressive enough to approximate the
true value arbitrarily well

— this will be clearer when we talk about density estimation

e Q,: assuming that the estimator converges to the true
value, how many sample points do we need?
— this can be measured by the variance

Var(é):
Ex M X)) =By [F (X X )P

— the variance usually decreases as one collects more training
examples
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Example

e ML estimator for the mean of a Gaussian N(u, o)

B/.as(ﬁ) = Exl,...,x,, [/[l — /U] = E)(l,...,x,, [/[l]_ H
1
= E)(l,...,)(,7 |:;Z/:X/:| —H
1
= ;ZEXl,...,Xn [X/']_ H

1
:;ZEX, [X/]_lu

=pu—pu=0
e the estimator Is unbiased
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