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Bayesian decision theory
• recall that we have

– Y – state of the world
– X – observations
– g(x)  – decision function
– L[g(x),y] – loss of predicting y with g(x)

• Bayes decision rule is the rule that minimizes the risk
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• optimal decision rule is the maximum a-posteriori 
probability rule



MAP rule
h h th t it b i l t d i f th• we have shown that it can be implemented in any of the 

three following ways
– 1) )|(maxarg)( |
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• by introducing a “model” for the class-conditional 
distributions we can express this as a simple equation
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distributions we can express this as a simple equation
– e.g. for the multivariate Gaussian 
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The Gaussian classifier
di i i t

• the solution is
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discriminant:
PY|X(1|x ) = 0.5

with
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• the optimal rule is to assign x to the closest class
• closest is measured with the Mahalanobis distance di(x,y)
• can be further simplified in special cases
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• can be further simplified in special cases 



Geometric interpretation
• for Gaussian classes, equal covariance σ2I
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Geometric interpretation
• for Gaussian classes, equal but arbitrary covariance
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Bayesian decision theory
• advantages:

– BDR is optimal and cannot be beaten
– Bayes keeps you honest
– models reflect causal interpretation of the problem, this is how 

we think
– natural decomposition into “what we knew already” (prior) and 

“what data tells us” (CCD)
– no need for heuristics to combine these two sources of infono need for heuristics to combine these two sources of info
– BDR is, almost invariably, intuitive
– Bayes rule, chain rule, and marginalization enable modularity, 

and scalability to very complicated models and problemsand scalability to very complicated models and problems

• problems:
– BDR is optimal only insofar the models are correct.
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Implementation
• we do have an optimal solution
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• but in practice we do not know the values of the 
parameters µ, Σ, PY(1)
– we have to somehow estimate these values
– this is OK, we can come up with an estimate from a training set
– e.g. use the average value as an estimate for the mean
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Important 
• warning: at this point all optimality claims for the BDR 

cease to be valid!!
• the BDR is guaranteed 

to achieve the minimum
loss when we use theloss when we use the
true probabilities

• when we “plug in” the 
b bilit ti tprobability estimates, 

we could be 
implementing p g
a classifier that is quite distant from the optimal
– e.g. if the PX|Y(x|i) look like the example above

I could never approximate them well by parametric models (e g
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– I could never approximate them well by parametric models (e.g. 
Gaussian)



Maximum likelihood
• this seems pretty serious

– how should I get these probabilities then?

• we rely on the maximum likelihood (ML) principle
• this has three steps:

1) we choose a parametric model for all probabilities– 1) we choose a parametric model for all probabilities
– to make this clear we denote the vector of parameters by Θ and 

the class-conditional distributions by

note that this means that Θ is NOT a random variable (otherwise

);|(| ΘixP YX

– note that this means that Θ is NOT a random variable (otherwise 
it would have to show up as subscript)

– it is simply a parameter, and the probabilities are a function of this 
parameter
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Maximum likelihood
• three steps:

– 2) we assemble a collection  of datasets
D(i) = {x (i) x (i)} set of examples drawn independently fromD(i) = {x1

(i) , ..., xn
(i)} set of examples drawn independently from 

class i

3) we select the parameters of class i to be the ones that– 3) we select the parameters of class i to be the ones that 
maximize the probability of the data from that class
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Maximum likelihood
• since

– each sample D(i) is considered independently
t ti t d l f l (i)– parameter Θi estimated only from sample D(i)

• we simply have to repeat  the procedure for all classes
• so from now on we omit the class variable• so, from now on we omit the class variable

( )Θ=Θ
Θ

;maxarg* DPX

( )Θ=
Θ

Θ

;logmaxarg     DPX

• the function PX(D;Θ) is called the likelihood of the 
parameter Θ with respect to the data

i l h lik lih d f i
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• or simply the likelihood function 



Maximum likelihood
• note that the likelihood 

function is a function 
of the parameters Θof the parameters Θ

• it does not have the 
same shape as the 

fdensity itself
• e.g. the likelihood 

function of a Gaussianfunction of a Gaussian 
is not bell-shaped

• the likelihood is
defined only after we 
have a sample
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Maximum likelihood
• given a sample, to obtain ML estimate we need to solve

( )Θ=Θ ;maxarg* DP

• when Θ is a scalar this is high-school calculus

( )Θ=Θ
Θ

;maxarg DPX

when Θ is a scalar this is high school calculus

• we have a maximum when
first derivative is zero
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– first derivative is zero
– second derivative is negative



The gradient
• in higher dimensions, the generalization of the derivative 

is the gradient

∇f

• the gradient of a function f(w) at z is 
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interpretation
– it points in the direction of maximum 

growth of the function
f(x,y)

– which makes it perpendicular to the 
contours where the function is constant

),( 00 yxf∇
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max
The gradient

max

• note that if ∇f = 0
– there is no direction of growthg
– also -∇f = 0, and there is no direction of 

decrease
– we are either at a local minimum or maximum 

“ ddl ” i tor “saddle” point
• conversely, at local min or max or saddle 

point
di ti f th d min– no direction of growth or decrease

– ∇f = 0
• this shows that we have a critical point if 

d l if ∇f 0
saddle

and only if ∇f = 0
• to determine which type we need second 

order conditions
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The Hessian
• the extension of the second-order derivative is the 

Hessian matrix
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– at each point x, gives us the quadratic function 
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that best approximates f(x)
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The Hessian
• this means that, when gradient is 

zero at x, we have max
– a maximum when  function can be 

approximated by an “upwards-facing” 
quadratic

– a minimum when function can be 
approximated by a “downwards-facing” 
quadratic

– a saddle point otherwise

saddle
min
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The Hessian max

• for any matrix M, the function

Mxx t

• is
– upwards facing quadratic when M

Mxx

upwards facing quadratic when M
is negative definite

– downwards facing quadratic when M
is positive definite

min

saddle

is positive definite
– saddle otherwise

• hence, all that matters is the positive
d fi it f th H idefiniteness of the Hessian

• we have a maximum when Hessian
is negative definite
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is negative definite



Maximum likelihood
• in summary, given a sample, we need to solve

( )ΘΘ* DP
max

• the solutions are the parameters

( )Θ=Θ
Θ

;maxarg DPX

the solutions are the parameters 
such that

0);( =Θ∇ DP 0);( =Θ∇Θ DPX

n
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• note that you always have to check the second-order 
condition!

XΘ ,);(
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condition!



Maximum likelihood
• let’s consider the Gaussian example

• given a sample {T1, …, TN} of independent pointsgiven a sample {T1, …, TN} of independent points
• the likelihood is
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Maximum likelihood
• and the log-likelihood is

• the derivative with respect to the mean is zero when

• or

• note that this is just the sample mean
22

• note that this is just the sample mean



Maximum likelihood
• and the log-likelihood is

• the derivative with respect to the variance is zero when

• or

• note that this is just the sample variance
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• note that this is just the sample variance



Maximum likelihood
• example:

– if sample is {10,20,30,40,50}
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Homework
• show that the Hessian is negative definite

nt 2

• show that these formulas can be generalized to the vector

n
X

t DP ℜ∈∀≤∇Θ θθθθ   ,0);(2

show that these formulas can be generalized to the vector 
case
– D(i) = {x1

(i) , ..., xn
(i)} set of examples from class i

th ML ti t– the ML estimates are
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• note that the ML solution is usually intuitive 



Estimators
• when we talk about estimators, it is important to keep in 

mind that
– an estimate is a number
– an estimator is a random variable
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• an estimate is the value of the estimator for a given 
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Bias and variance
• we know how to produce estimators (by ML)
• how do we evaluate an estimator?
• Q1: is the expected value equal to the true value?
• this is measured by the bias

if– if 

then

),,(ˆ
1 nXXf K=θ

then

an estimator that has bias will usually not converge to the perfect

( ) [ ]θθ −= ),,(ˆ
1,,1 nXX XXfEBias

n
KK

– an estimator that has bias will usually not converge to the perfect 
estimate θ, no matter how large the sample is

– e.g. if θ is negative and the estimator is
the bias is clearly non zero
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the bias is clearly non-zero j



Bias and variance
• the estimators is said to be biased

– this means that it is not expressive enough to approximate the 
tr e al e arbitraril elltrue value arbitrarily well

– this will be clearer when we talk about density estimation

• Q2: assuming that the estimator converges to the true 2 g g
value, how many sample points do we need?
– this can be measured by the variance
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– the variance usually decreases as one collects more training 
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Example
• ML estimator for the mean of a Gaussian N(µ,σ2)
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