Maximum likelihood estimation

Nuno Vasconcelos
UCSD



Maximum likelihood

e parameter estimation in three steps:

— 1) choose a parametric model for probabilities
to make this clear we denote the vector of parameters by @

P, (X;©)
note that this means that @is NOT a random variable
— 2) assemble ® = {x,, ..., X} of examples drawn independently

— 3) select the parameters that maximize the probability of the data

®" =argmaxP, (D;0)

O

= argmax log P, (D;®)

C

* P, (D;0) is the likelihood of parameter @ with respect to
the data



Maximum likelihood

e In summary, given a sample, we need to solve

®" =argmax P, (D;0)

C

+ the solutions are the parameters | 4
such that IR
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* note that you always have to check the second-order
condition!



Maximum likelihood

e we solved the Gaussian case
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e given a sample {T,, ...,

* the log-likelihood Is

Ty} of independent points
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e the ML estimates of the mean and variance are
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Estimators

 when we talk about estimators, it is important to keep In
mind that

— an estimate is a number
— an estimator is a random variable

6="F(X,....X.)

e an estimate is the value of the estimator for a given
sample.

. ~ 1
e if ®={X,, ..., X,}, when we say ﬂ:HZXj
j

with

X1=X1,...,Xn=Xn

what we mean is #= f(X,,..., X,)

1
(X0 X)) =HZX,- «— the X; are random variables
j




Bias and variance

e we know how to produce estimators (by ML)
 how do we evaluate an estimator?

e Q,: Is the expected value equal to the true value?
e this is measured by the bias

— if ~
O=F(X,....X)

then

Bias(é): Ey x [F(Xpoo X,)-6]

— an estimator that has bias will usually not converge to the perfect
estimate ¢, no matter how large the sample is 1

— e.g. if @is negative and the estimator is f(X,,...,X,)==> X’
the bias is clearly non-zero N

n




Bias and variance

e the estimators iIs said to be biased

— this means that it is not expressive enough to approximate the
true value arbitrarily well

— this will be clearer when we talk about density estimation

e Q,: assuming that the estimator converges to the true
value, how many sample points do we need?
— this can be measured by the variance

Var(é):
Ex M X)) =By [F (X X )P

— the variance usually decreases as one collects more training
examples




Example

e ML estimator for the mean of a Gaussian N(u, o)

Bias(i)=Ex x la—ul=Ey « |i]-u
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=pu—pu=0
e the estimator Is unbiased



Example

e variance of ML estimator for mean of a Gaussian N(x, c?)

Vaf() Ey. . X{(ﬂ = X[/u])} Ex,.. X{(,u—,u)z}
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Example

e ML estimator for the mean of a Gaussian N(x, c?)

Var (i1 ZEXX[X )X, )]
:inj:o'ij

* and since X;,X; are independent o; =0, Vi#]

Var(iz)= Za

 the variance goes to zero as n increases!
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Example

e In summary, for ML estimator for the mean of a Gaussian
N( o?)

2
O

Ela]=p| |var(i)= Y
 this means that if | have a large sample, the value of the
estimate will be close to the true value with high

probability
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Example

* |s this always true?
e ML estimator for the variance of a Gaussian N(u,oc?)

Azz_zx — i) 1Z(x2 2X 1+ f1°)

:HZXiZ—/}

» the expected value is

Eyx.. x[AZ] 1ZExl x[x] Ex.. x, ﬂz]

:_ZE R =S i B = P S
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Exl,...,xn [/[‘2]: Exl,...,xn {izz X, Xj:| = izz Exi,x,— [Xi X j]

__ZE [X ]+_ZEXX[ ]

i, j#i

L [x? ]+—ZE X Es X ]

:%E [x? ]+—ZE X, ]%;E x,]

- =g, [x? ]+FZEXi X, Jn-1E, [X]

n
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Example

e using
~ 1 1
Eyx...x. [ﬂz]:HEx [XZ]"'FZExi [Xi ](n_l)Ex [X]
1 I l (n—l) 2
=—E,|X*? E,.[X
Le, [ (e, x)
e [xe]+ (07D
n ) n
we get
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Example

e In summary

[]( )02

e the estimator Is biased

oQ:

do we care?
clearly

limE, [&z]z o

N—o0

so, for large samples it is (for all practical purposes) unbiased

— what about small samples? the variance is likely to be large to

start with, a little bit of bias is not going to make much difference
S0, In practice, it is fine
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Important note

e since the estimator Is a random variable

— Wwe can never say that an estimate obtained with more samples is
“better” than an estimate from less samples.

— e.g.,if
1 100 « 1 1o,oooX
704 2710000 &7
we measure and obtain
[, =105 1, =103

IS 10.3 a better estimate of x than 10.5?
— we can never know, all we know is that

th=N (“’G%oo) Hp =N (“ ’JZO,OOOJ
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Important note

— and we can use this to compute

P(| 1ty — <] 1, — 1)

— but there is always a probability that the estimate produced by p,
IS better than that produced by p,

— even though p, has much smaller variance

— all that we can hope for, is to make the estimator better in a
probabilistic sense

— this means making

P, (6)

)

as concentrated as possible around the true value
— In this sense, emphasizing bias or variance can be wrong
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Bias and variance

« we really care about the conjunction of the two factors
— working hard to decrease variance if bias is large is useless

~ A

n
— working hard to decrease bias if variance is large is useless
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Mean squared error

» one possibility to account for both bias and variance is to
minimize the mean squared error
— if ~

— then

MSE(‘QA): Exl,...,xn Hf O, ST X )_Q}ZJ

n

e the connection to bias and variance follows from
MSE(d)= E[{@ —E|6]+E[B]- 9}2}

-~ o-elo] |+ 2eo-elo[iEl6]- o]
oo} 19
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Mean squared error

© MSE(f)= E[{ —El6]+EB]-0 }}

-/ {o-elo]f | +2e(lo-lofiEl6]-o
+E| El6]-of |

var(6)+ 26(6 - E[6 [ ]- o)+ [E[6]- of
var(6)+ 2{E|6 |- E|6 [{E|6 |- 0+ Bias?(6)

MSE(@) var( )+ Bias (@))




Bias variance trade-off

* In general, the MSE estimator has non-zero bias and

variance

e we can only reduce bias at the cost of increased variance

and vice-versa

— suppose we are not happy with the 1/n decay of the variance of

— this has

~ 1
ﬂ—EZXi

— one possibility is to use
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Bias variance trade-off

— this has

Biasfz

=(L-a)u

var|ji|-

2 __2
a O
N

* by choosing a < 1 we can decrease the variance, but the
bias will no longer be zero

e what value of &« minimizes the MSE?

MSE@J: var{fzJ+ Bias® LL:lJ
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Bias variance trade-off

— from which
MSE 2
OMS ‘ﬂ‘ O<:>ao-—+ay = 1°
ox n
2 2
<:>a£6—+,u2\=y2<:> a=—"

— and the MSE estimator of uis

e 2

e one can immediately detect a problem

— the optimal estimator depends on the quantity that we are trying
to estimate!

— the estimator is unrealizable




Estimators

e unrealizable solutions are a common source of problems
for the MSE estimator

e one alternative is to
— constrain the estimator to be in a class (e.g. unbiased)
— find, among all solutions in the class, that of least MSE

e many ideas on how to do this
— BLUE: best linear unbiased estimator
— MVUE: minimum variance unbiased
— check the parameter estimation literature

* why Is the ML estimator so popular?
— many of these alternatives are frequently unrealizable
— the ML solution typically makes intuitive sense
— connections to Bayesian estimation (we will talk about this later)
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Estimators

« consider BLUE estimator for the population mean

HeLug = ZWi X,

— what are the weights w; such that
E[IUBLUE]: E[X]: H

var| g e |= MSE[X ] is minimal?

— the answer Is

1
Mg uE :Hzxi

— note that this holds independently of whether X is Gaussian
— but, for Gaussian X, it is the same as ML!
— “when there is an easy realizable solution ML gets it”
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