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Maximum likelihood
• parameter estimation in three steps:

– 1) choose a parametric model for probabilities
to make this clear e denote the ector of parameters b Θto make this clear we denote the vector of parameters by Θ

note that this means that Θ is NOT a random variable

);( ΘxPX
note that this means that Θ is NOT a random variable

– 2) assemble D = {x1 , ..., xn} of examples drawn independently
– 3) select the parameters that maximize the probability of the data 
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• P (D;Θ) is the likelihood of parameter Θ with respect to

( )Θ=
Θ

;logmaxarg    DPX

2

• PX(D;Θ) is the likelihood of parameter Θ with respect to 
the data



Maximum likelihood
• in summary, given a sample, we need to solve
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• the solutions are the parameters
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the solutions are the parameters 
such that
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• note that you always have to check the second-order 
condition!
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condition!



Maximum likelihood
• we solved the Gaussian case

• given a sample {T1, …, TN} of independent pointsgiven a sample {T1, …, TN} of independent points
• the log-likelihood is

• the ML estimates of the mean and variance are
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Estimators
• when we talk about estimators, it is important to keep in 

mind that
– an estimate is a number
– an estimator is a random variable
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• an estimate is the value of the estimator for a given 
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Bias and variance
• we know how to produce estimators (by ML)
• how do we evaluate an estimator?
• Q1: is the expected value equal to the true value?
• this is measured by the bias

if– if 

then
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an estimator that has bias will usually not converge to the perfect
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1,,1 nXX XXfEBias
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– an estimator that has bias will usually not converge to the perfect 
estimate θ, no matter how large the sample is

– e.g. if θ is negative and the estimator is
the bias is clearly non zero
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the bias is clearly non-zero j



Bias and variance
• the estimators is said to be biased

– this means that it is not expressive enough to approximate the 
tr e al e arbitraril elltrue value arbitrarily well

– this will be clearer when we talk about density estimation

• Q2: assuming that the estimator converges to the true 2 g g
value, how many sample points do we need?
– this can be measured by the variance
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Example
• ML estimator for the mean of a Gaussian N(µ,σ2)
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Example
• variance of ML estimator for mean of a Gaussian N(µ,σ2)
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Example
• ML estimator for the mean of a Gaussian N(µ,σ2)
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• the variance goes to zero as n increases! 



Example
• in summary, for ML estimator for the mean of a Gaussian

N(µ,σ2)
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• this means that if I have a large sample, the value of the 
estimate will be close to the true value with high
probabilityprobability
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Example
• is this always true?
• ML estimator for the variance of a Gaussian N(µ,σ2)
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Example
• using
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Example
• using
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Example
• in summary
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• the estimator is biased
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the estimator is biased
• Q: do we care?

– clearly
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– so, for large samples it is (for all practical purposes) unbiased
– what about small samples? the variance is likely to be large to 

start with, a little bit of bias is not going to make much difference
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– so, in practice, it is fine



Important note
• since the estimator is a random variable

– we can never say that an estimate obtained with more samples is 
“better” than an estimate from less samples“better” than an estimate from less samples.

– e.g., if
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10ˆ 310ˆ
is 10.3  a better estimate of µ than 10.5? 

– we can never know all we know is that

5.10ˆ1 =µ 3.10ˆ2 =µ

– we can never know, all we know is that
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Important note
– and we can use this to compute

( )|||| 12 µµµµ −<−P

– but there is always a probability that the estimate produced by µ1
is better than that produced by µ2

( )|||| 12 µµµµ

is better than that produced by µ2

– even though µ2 has much smaller variance
– all that we can hope for, is to make the estimator better in a 

probabilistic senseprobabilistic sense
– this means making
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as concentrated as possible around the true value
– in this sense emphasizing bias or variance can be wrong
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Θ
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in this sense, emphasizing bias or variance can be wrong



Bias and variance
• we really care about the conjunction of the two factors

– working hard to decrease variance if bias is large is useless

Ε[θ]
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Ε[θ]

θ

– working hard to decrease bias if variance is large is useless
n
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Ε[θ]=θ
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Mean squared error
• one possibility to account for both bias and variance is to 

minimize the mean squared error
– if
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• the connection to bias and variance follows from
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Mean squared error
• ( ) [ ] [ ]{ }
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Bias variance trade-off
• in general, the MSE estimator has non-zero bias and 

variance
• we can only reduce bias at the cost of increased variance 

and vice-versa
– suppose we are not happy with the 1/n decay of the variance ofsuppose we are not happy with the 1/n decay of the variance of 
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– one possibility is to use
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Bias variance trade-off
– this has
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• by choosing α < 1 we can decrease the variance, but the 
bias will no longer be zero
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• what value of α minimizes the MSE?
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Bias variance trade-off
– from which
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• one can immediately detect a problem
– the optimal estimator depends on the quantity that we are trying 

to estimate!
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to estimate!
– the estimator is unrealizable



Estimators
• unrealizable solutions are a common source of problems 

for the MSE estimator
• one alternative is to

– constrain the estimator to be in a class (e.g. unbiased)
– find, among all solutions in the class, that of least MSEfind, among all solutions in the class, that of least MSE

• many ideas on how to do this
– BLUE: best linear unbiased estimator
– MVUE: minimum variance unbiased
– check the parameter estimation literature

• why is the ML estimator so popular?why is the ML estimator so popular?
– many of these alternatives are frequently unrealizable
– the ML solution typically makes intuitive sense

ti t B i ti ti ( ill t lk b t thi l t )
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– connections to Bayesian estimation (we will talk about this later)



Estimators
• consider BLUE estimator for the population mean

∑= iiBLUE Xwµ

– what are the weights wi such that
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– note that this holds independently of whether X is Gaussian
– but, for Gaussian X, it is the same as ML!
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– “when there is an easy realizable solution ML gets it”



30




